Search results for: stochastic signals
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1438

Search results for: stochastic signals

1108 Permanent Magnet Machine Can Be a Vibration Sensor for Itself

Authors: M. Barański

Abstract:

The article presents a new vibration diagnostic method designed to (PM) machines with permanent magnets. Those devices are commonly used in small wind and water systems or vehicles drives. The author’s method is very innovative and unique. Specific structural properties of PM machines are used in this method - electromotive force (EMF) generated due to vibrations. There was analysed number of publications which describe vibration diagnostic methods and tests of electrical PM machines and there was no method found to determine the technical condition of such machine basing on their own signals. In this article, the method genesis, the similarity of machines with permanent magnet to vibration sensor and simulation and laboratory tests results will be discussed. The method of determination the technical condition of electrical machine with permanent magnets basing on its own signals is the subject of patent application No P.405669, and it is the main thesis of author’s doctoral dissertation.

Keywords: vibrations, generator, permanent magnet, traction drive, electrical vehicle

Procedia PDF Downloads 366
1107 Stochastic Fleet Sizing and Routing in Drone Delivery

Authors: Amin Karimi, Lele Zhang, Mark Fackrell

Abstract:

Rural-to-urban population migrations are a global phenomenon, with projections indicating that by 2050, 68% of the world's population will inhabit densely populated urban centers. Concurrently, the popularity of e-commerce shopping has surged, evidenced by a 51% increase in total e-commerce sales from 2017 to 2021. Consequently, distribution and logistics systems, integral to effective supply chain management, confront escalating hurdles in efficiently delivering and distributing products within bustling urban environments. Additionally, events like environmental challenges and the COVID-19 pandemic have indicated that decision-makers are facing numerous sources of uncertainty. Therefore, to design an efficient and reliable logistics system, uncertainty must be considered. In this study, it examine fleet sizing and routing while considering uncertainty in demand rate. Fleet sizing is typically a strategic-level decision, while routing is an operational-level one. In this study, a carrier must make two types of decisions: strategic-level decisions regarding the number and types of drones to be purchased, and operational-level decisions regarding planning routes based on available fleet and realized demand. If the available fleets are insufficient to serve some customers, the carrier must outsource that delivery at a relatively high cost, calculated per order. With this hierarchy of decisions, it can model the problem using two-stage stochastic programming. The first-stage decisions involve planning the number and type of drones to be purchased, while the second-stage decisions involve planning routes. To solve this model, it employ logic-based benders decomposition, which decomposes the problem into a master problem and a set of sub-problems. The master problem becomes a mixed integer programming model to find the best fleet sizing decisions, and the sub-problems become capacitated vehicle routing problems considering battery status. Additionally, it assume a heterogeneous fleet based on load and battery capacity, and it consider that battery health deteriorates over time as it plan for multiple periods.

Keywords: drone-delivery, stochastic demand, VRP, fleet sizing

Procedia PDF Downloads 56
1106 A Physiological Approach for Early Detection of Hemorrhage

Authors: Rabie Fadil, Parshuram Aarotale, Shubha Majumder, Bijay Guargain

Abstract:

Hemorrhage is the loss of blood from the circulatory system and leading cause of battlefield and postpartum related deaths. Early detection of hemorrhage remains the most effective strategy to reduce mortality rate caused by traumatic injuries. In this study, we investigated the physiological changes via non-invasive cardiac signals at rest and under different hemorrhage conditions simulated through graded lower-body negative pressure (LBNP). Simultaneous electrocardiogram (ECG), photoplethysmogram (PPG), blood pressure (BP), impedance cardiogram (ICG), and phonocardiogram (PCG) were acquired from 10 participants (age:28 ± 6 year, weight:73 ± 11 kg, height:172 ± 8 cm). The LBNP protocol consisted of applying -20, -30, -40, -50, and -60 mmHg pressure to the lower half of the body. Beat-to-beat heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean aerial pressure (MAP) were extracted from ECG and blood pressure. Systolic amplitude (SA), systolic time (ST), diastolic time (DT), and left ventricle Ejection time (LVET) were extracted from PPG during each stage. Preliminary results showed that the application of -40 mmHg i.e. moderate stage simulated hemorrhage resulted significant changes in HR (85±4 bpm vs 68 ± 5bpm, p < 0.01), ST (191 ± 10 ms vs 253 ± 31 ms, p < 0.05), LVET (350 ± 14 ms vs 479 ± 47 ms, p < 0.05) and DT (551 ± 22 ms vs 683 ± 59 ms, p < 0.05) compared to rest, while no change was observed in SA (p > 0.05) as a consequence of LBNP application. These findings demonstrated the potential of cardiac signals in detecting moderate hemorrhage. In future, we will analyze all the LBNP stages and investigate the feasibility of other physiological signals to develop a predictive machine learning model for early detection of hemorrhage.

Keywords: blood pressure, hemorrhage, lower-body negative pressure, LBNP, machine learning

Procedia PDF Downloads 167
1105 Jitter Based Reconstruction of Transmission Line Pulse Using On-Chip Sensor

Authors: Bhuvnesh Narayanan, Bernhard Weiss, Tvrtko Mandic, Adrijan Baric

Abstract:

This paper discusses a method to reconstruct internal high-frequency signals through subsampling techniques in an IC using an on-chip sensor. Though there are existing methods to internally probe and reconstruct high frequency signals through subsampling techniques; these methods have been applicable mainly for synchronized systems. This paper demonstrates a method for making such non-intrusive on-chip reconstructions possible also in non-synchronized systems. The TLP pulse is used to demonstrate the experimental validation of the concept. The on-chip sensor measures the voltage in an internal node. The jitter in the input pulse causes a varying pulse delay with respect to the on-chip sampling command. By measuring this pulse delay and by correlating it with the measured on-chip voltage, time domain waveforms can be reconstructed, and the influence of the pulse on the internal nodes can be better understood.

Keywords: on-chip sensor, jitter, transmission line pulse, subsampling

Procedia PDF Downloads 145
1104 An Efficient Separation for Convolutive Mixtures

Authors: Salah Al-Din I. Badran, Samad Ahmadi, Dylan Menzies, Ismail Shahin

Abstract:

This paper describes a new efficient blind source separation method; in this method we use a non-uniform filter bank and a new structure with different sub-bands. This method provides a reduced permutation and increased convergence speed comparing to the full-band algorithm. Recently, some structures have been suggested to deal with two problems: reducing permutation and increasing the speed of convergence of the adaptive algorithm for correlated input signals. The permutation problem is avoided with the use of adaptive filters of orders less than the full-band adaptive filter, which operate at a sampling rate lower than the sampling rate of the input signal. The decomposed signals by analysis bank filter are less correlated in each sub-band than the input signal at full-band, and can promote better rates of convergence.

Keywords: Blind source separation, estimates, full-band, mixtures, sub-band

Procedia PDF Downloads 444
1103 Multivariate Statistical Process Monitoring of Base Metal Flotation Plant Using Dissimilarity Scale-Based Singular Spectrum Analysis

Authors: Syamala Krishnannair

Abstract:

A multivariate statistical process monitoring methodology using dissimilarity scale-based singular spectrum analysis (SSA) is proposed for the detection and diagnosis of process faults in the base metal flotation plant. Process faults are detected based on the multi-level decomposition of process signals by SSA using the dissimilarity structure of the process data and the subsequent monitoring of the multiscale signals using the unified monitoring index which combines T² with SPE. Contribution plots are used to identify the root causes of the process faults. The overall results indicated that the proposed technique outperformed the conventional multivariate techniques in the detection and diagnosis of the process faults in the flotation plant.

Keywords: fault detection, fault diagnosis, process monitoring, dissimilarity scale

Procedia PDF Downloads 209
1102 Musical Tesla Coil with Faraday Box Controlled by a GNU Radio

Authors: Jairo Vega, Fabian Chamba, Jordy Urgiles

Abstract:

In this work, the implementation of a Matlabcontrolled Musical Tesla Coil and external audio signals was presented. First, the audio signal was obtained from a mobile device and processed in Matlab to modify it, adding noise or other desired effects. Then, the processed signal was passed through a preamplifier to increase its amplitude to a level suitable for further amplification through a power amplifier, which was part of the current driver circuit of the Tesla coil. To get the Tesla coil to generate music, a circuit capable of modulating and generating the audio signal by manipulating electrical discharges was used. To visualize and listen to these discharges, a small Faraday cage was built to attenuate the external electric fields. Finally, the implementation of the musical Tesla coil was concluded. However, it was observed that the audio signal volume was very low, and the components used heated up quickly. Due to these limitations, it was determined that the project could not be connected to power for long periods of time.

Keywords: Tesla coil, plasma, electrical signals, GNU Radio

Procedia PDF Downloads 97
1101 Production Planning for Animal Food Industry under Demand Uncertainty

Authors: Pirom Thangchitpianpol, Suttipong Jumroonrut

Abstract:

This research investigates the distribution of food demand for animal food and the optimum amount of that food production at minimum cost. The data consist of customer purchase orders for the food of laying hens, price of food for laying hens, cost per unit for the food inventory, cost related to food of laying hens in which the food is out of stock, such as fine, overtime, urgent purchase for material. They were collected from January, 1990 to December, 2013 from a factory in Nakhonratchasima province. The collected data are analyzed in order to explore the distribution of the monthly food demand for the laying hens and to see the rate of inventory per unit. The results are used in a stochastic linear programming model for aggregate planning in which the optimum production or minimum cost could be obtained. Programming algorithms in MATLAB and tools in Linprog software are used to get the solution. The distribution of the food demand for laying hens and the random numbers are used in the model. The study shows that the distribution of monthly food demand for laying has a normal distribution, the monthly average amount (unit: 30 kg) of production from January to December. The minimum total cost average for 12 months is Baht 62,329,181.77. Therefore, the production planning can reduce the cost by 14.64% from real cost.

Keywords: animal food, stochastic linear programming, aggregate planning, production planning, demand uncertainty

Procedia PDF Downloads 380
1100 Experimental Monitoring of the Parameters of the Ionosphere in the Local Area Using the Results of Multifrequency GNSS-Measurements

Authors: Andrey Kupriyanov

Abstract:

In recent years, much attention has been paid to the problems of ionospheric disturbances and their influence on the signals of global navigation satellite systems (GNSS) around the world. This is due to the increase in solar activity, the expansion of the scope of GNSS, the emergence of new satellite systems, the introduction of new frequencies and many others. The influence of the Earth's ionosphere on the propagation of radio signals is an important factor in many applied fields of science and technology. The paper considers the application of the method of transionospheric sounding using measurements from signals from Global Navigation Satellite Systems to determine the TEC distribution and scintillations of the ionospheric layers. To calculate these parameters, the International Reference Ionosphere (IRI) model of the ionosphere, refined in the local area, is used. The organization of operational monitoring of ionospheric parameters is analyzed using several NovAtel GPStation6 base stations. It allows performing primary processing of GNSS measurement data, calculating TEC and fixing scintillation moments, modeling the ionosphere using the obtained data, storing data and performing ionospheric correction in measurements. As a result of the study, it was proved that the use of the transionospheric sounding method for reconstructing the altitude distribution of electron concentration in different altitude range and would provide operational information about the ionosphere, which is necessary for solving a number of practical problems in the field of many applications. Also, the use of multi-frequency multisystem GNSS equipment and special software will allow achieving the specified accuracy and volume of measurements.

Keywords: global navigation satellite systems (GNSS), GPstation6, international reference ionosphere (IRI), ionosphere, scintillations, total electron content (TEC)

Procedia PDF Downloads 181
1099 BER Analysis of Energy Detection Spectrum Sensing in Cognitive Radio Using GNU Radio

Authors: B. Siva Kumar Reddy, B. Lakshmi

Abstract:

Cognitive Radio is a turning out technology that empowers viable usage of the spectrum. Energy Detector-based Sensing is the most broadly utilized spectrum sensing strategy. Besides, it is a lot of generic as receivers does not like any information on the primary user's signals, channel data, of even the sort of modulation. This paper puts forth the execution of energy detection sensing for AM (Amplitude Modulated) signal at 710 KHz, FM (Frequency Modulated) signal at 103.45 MHz (local station frequency), Wi-Fi signal at 2.4 GHz and WiMAX signals at 6 GHz. The OFDM/OFDMA based WiMAX physical layer with convolutional channel coding is actualized utilizing USRP N210 (Universal Software Radio Peripheral) and GNU Radio based Software Defined Radio (SDR). Test outcomes demonstrated the BER (Bit Error Rate) augmentation with channel noise and BER execution is dissected for different Eb/N0 (the energy per bit to noise power spectral density ratio) values.

Keywords: BER, Cognitive Radio, GNU Radio, OFDM, SDR, WiMAX

Procedia PDF Downloads 500
1098 UWB Channel Estimation Using an Efficient Sub-Nyquist Sampling Scheme

Authors: Yaacoub Tina, Youssef Roua, Radoi Emanuel, Burel Gilles

Abstract:

Recently, low-complexity sub-Nyquist sampling schemes based on the Finite Rate of Innovation (FRI) theory have been introduced to sample parametric signals at minimum rates. The multichannel modulating waveforms (MCMW) is such an efficient scheme, where the received signal is mixed with an appropriate set of arbitrary waveforms, integrated and sampled at rates far below the Nyquist rate. In this paper, the MCMW scheme is adapted to the special case of ultra wideband (UWB) channel estimation, characterized by dense multipaths. First, an appropriate structure, which accounts for the bandpass spectrum feature of UWB signals, is defined. Then, a novel approach to decrease the number of processing channels and reduce the complexity of this sampling scheme is presented. Finally, the proposed concepts are validated by simulation results, obtained with real filters, in the framework of a coherent Rake receiver.

Keywords: coherent rake receiver, finite rate of innovation, sub-nyquist sampling, ultra wideband

Procedia PDF Downloads 256
1097 Multivariate Rainfall Disaggregation Using MuDRain Model: Malaysia Experience

Authors: Ibrahim Suliman Hanaish

Abstract:

Disaggregation daily rainfall using stochastic models formulated based on multivariate approach (MuDRain) is discussed in this paper. Seven rain gauge stations are considered in this study for different distances from the referred station starting from 4 km to 160 km in Peninsular Malaysia. The hourly rainfall data used are covered the period from 1973 to 2008 and July and November months are considered as an example of dry and wet periods. The cross-correlation among the rain gauges is considered for the available hourly rainfall information at the neighboring stations or not. This paper discussed the applicability of the MuDRain model for disaggregation daily rainfall to hourly rainfall for both sources of cross-correlation. The goodness of fit of the model was based on the reproduction of fitting statistics like the means, variances, coefficients of skewness, lag zero cross-correlation of coefficients and the lag one auto correlation of coefficients. It is found the correlation coefficients based on extracted correlations that was based on daily are slightly higher than correlations based on available hourly rainfall especially for neighboring stations not more than 28 km. The results showed also the MuDRain model did not reproduce statistics very well. In addition, a bad reproduction of the actual hyetographs comparing to the synthetic hourly rainfall data. Mean while, it is showed a good fit between the distribution function of the historical and synthetic hourly rainfall. These discrepancies are unavoidable because of the lowest cross correlation of hourly rainfall. The overall performance indicated that the MuDRain model would not be appropriate choice for disaggregation daily rainfall.

Keywords: rainfall disaggregation, multivariate disaggregation rainfall model, correlation, stochastic model

Procedia PDF Downloads 513
1096 The Effect of General Corrosion on the Guided Wave Inspection of the Pipeline

Authors: Shiuh-Kuang Yang, Sheam-Chyun Lin, Jyin-Wen Cheng, Deng-Guei Hsu

Abstract:

The torsional mode of guided wave, T(0,1), has been applied to detect characteristics and defects in pipelines, especially in the cases of coated, elevated and buried pipes. The signals of minor corrosions would be covered by the noise, unfortunately, because the coated material and buried medium always induce a strong attenuation of the guided wave. Furthermore, the guided wave would be attenuated more seriously and make the signals hard to be identified when setting the array ring of the transducers on a general corrosion area of the pipe. The objective of this study is then to discuss the effects of the above-mentioned general corrosion on guided wave tests by experiments and signal processing techniques, based on the use of the finite element method, the two-dimensional Fourier transform and the continuous wavelet transform. Results show that the excitation energy would be reduced when the array ring set on the pipe surface having general corrosion. The non-uniformed contact surface also produces the unwanted asymmetric modes of the propagating guided wave. Some of them are even mixing together with T(0,1) mode and increase the difficulty of measurements, especially when a defect or local corrosion merged in the general corrosion area. It is also showed that the guided waves attenuation are increasing with the increasing corrosion depth or the rising inspection frequency. However, the coherent signals caused by the general corrosion would be decayed with increasing frequency. The results obtained from this research should be able to provide detectors to understand the impact when the array ring set on the area of general corrosion and the way to distinguish the localized corrosion which is inside the area of general corrosion.

Keywords: guided wave, finite element method, two-dimensional fourier transform, wavelet transform, general corrosion, localized corrosion

Procedia PDF Downloads 404
1095 Surface-Enhanced Raman Spectroscopy on Gold Nanoparticles in the Kidney Disease

Authors: Leonardo C. Pacheco-Londoño, Nataly J Galan-Freyle, Lisandro Pacheco-Lugo, Antonio Acosta-Hoyos, Elkin Navarro, Gustavo Aroca-Martinez, Karin Rondón-Payares, Alberto C. Espinosa-Garavito, Samuel P. Hernández-Rivera

Abstract:

At the Life Science Research Center at Simon Bolivar University, a primary focus is the diagnosis of various diseases, and the use of gold nanoparticles (Au-NPs) in diverse biomedical applications is continually expanding. In the present study, Au-NPs were employed as substrates for Surface-Enhanced Raman Spectroscopy (SERS) aimed at diagnosing kidney diseases arising from Lupus Nephritis (LN), preeclampsia (PC), and Hypertension (H). Discrimination models were developed for distinguishing patients with and without kidney diseases based on the SERS signals from urine samples by partial least squares-discriminant analysis (PLS-DA). A comparative study of the Raman signals across the three conditions was conducted, leading to the identification of potential metabolite signals. Model performance was assessed through cross-validation and external validation, determining parameters like sensitivity and specificity. Additionally, a secondary analysis was performed using machine learning (ML) models, wherein different ML algorithms were evaluated for their efficiency. Models’ validation was carried out using cross-validation and external validation, and other parameters were determined, such as sensitivity and specificity; the models showed average values of 0.9 for both parameters. Additionally, it is not possible to highlight this collaborative effort involved two university research centers and two healthcare institutions, ensuring ethical treatment and informed consent of patient samples.

Keywords: SERS, Raman, PLS-DA, kidney diseases

Procedia PDF Downloads 45
1094 Estimation of Forces Applied to Forearm Using EMG Signal Features to Control of Powered Human Arm Prostheses

Authors: Faruk Ortes, Derya Karabulut, Yunus Ziya Arslan

Abstract:

Myoelectric features gathering from musculature environment are considered on a preferential basis to perceive muscle activation and control human arm prostheses according to recent experimental researches. EMG (electromyography) signal based human arm prostheses have shown a promising performance in terms of providing basic functional requirements of motions for the amputated people in recent years. However, these assistive devices for neurorehabilitation still have important limitations in enabling amputated people to perform rather sophisticated or functional movements. Surface electromyogram (EMG) is used as the control signal to command such devices. This kind of control consists of activating a motion in prosthetic arm using muscle activation for the same particular motion. Extraction of clear and certain neural information from EMG signals plays a major role especially in fine control of hand prosthesis movements. Many signal processing methods have been utilized for feature extraction from EMG signals. The specific objective of this study was to compare widely used time domain features of EMG signal including integrated EMG(IEMG), root mean square (RMS) and waveform length(WL) for prediction of externally applied forces to human hands. Obtained features were classified using artificial neural networks (ANN) to predict the forces. EMG signals supplied to process were recorded during only type of muscle contraction which is isometric and isotonic one. Experiments were performed by three healthy subjects who are right-handed and in a range of 25-35 year-old aging. EMG signals were collected from muscles of the proximal part of the upper body consisting of: biceps brachii, triceps brachii, pectorialis major and trapezius. The force prediction results obtained from the ANN were statistically analyzed and merits and pitfalls of the extracted features were discussed with detail. The obtained results are anticipated to contribute classification process of EMG signal and motion control of powered human arm prosthetics control.

Keywords: assistive devices for neurorehabilitation, electromyography, feature extraction, force estimation, human arm prosthesis

Procedia PDF Downloads 367
1093 Determining the Effects of Wind-Aided Midge Movement on the Probability of Coexistence of Multiple Bluetongue Virus Serotypes in Patchy Environments

Authors: Francis Mugabi, Kevin Duffy, Joseph J. Y. T Mugisha, Obiora Collins

Abstract:

Bluetongue virus (BTV) has 27 serotypes, with some of them coexisting in patchy (different) environments, which make its control difficult. Wind-aided midge movement is a known mechanism in the spread of BTV. However, its effects on the probability of coexistence of multiple BTV serotypes are not clear. Deterministic and stochastic models for r BTV serotypes in n discrete patches connected by midge and/or cattle movement are formulated and analyzed. For the deterministic model without midge and cattle movement, using the comparison principle, it is shown that if the patch reproduction number R0 < 1, i=1,2,...,n, j=1,2,...,r, all serotypes go extinct. If R^j_i0>1, competitive exclusion takes place. Using numerical simulations, it is shown that when the n patches are connected by midge movement, coexistence takes place. To account for demographic and movement variability, the deterministic model is transformed into a continuous-time Markov chain stochastic model. Utilizing a multitype branching process, it is shown that the midge movement can have a large effect on the probability of coexistence of multiple BTV serotypes. The probability of coexistence can be brought to zero when the control interventions that directly kill the adult midges are applied. These results indicate the significance of wind-aided midge movement and vector control interventions on the coexistence and control of multiple BTV serotypes in patchy environments.

Keywords: bluetongue virus, coexistence, multiple serotypes, midge movement, branching process

Procedia PDF Downloads 150
1092 Early Detection of Major Earthquakes Using Broadband Accelerometers

Authors: Umberto Cerasani, Luca Cerasani

Abstract:

Methods for earthquakes forecasting have been intensively investigated in the last decades, but there is still no universal solution agreed by seismologists. Rock failure is most often preceded by a tiny elastic movement in the failure area and by the appearance of micro-cracks. These micro-cracks could be detected at the soil surface and represent useful earth-quakes precursors. The aim of this study was to verify whether tiny raw acceleration signals (in the 10⁻¹ to 10⁻⁴ cm/s² range) prior to the arrival of main primary-waves could be exploitable and related to earthquakes magnitude. Mathematical tools such as Fast Fourier Transform (FFT), moving average and wavelets have been applied on raw acceleration data available on the ITACA web site, and the study focused on one of the most unpredictable earth-quakes, i.e., the August 24th, 2016 at 01H36 one that occurred in the central Italy area. It appeared that these tiny acceleration signals preceding main P-waves have different patterns both on frequency and time domains for high magnitude earthquakes compared to lower ones.

Keywords: earthquake, accelerometer, earthquake forecasting, seism

Procedia PDF Downloads 144
1091 Real Time Acquisition and Psychoacoustic Analysis of Brain Wave

Authors: Shweta Singh, Dipali Bansal, Rashima Mahajan

Abstract:

Psychoacoustics has become a potential area of research due to the growing interest of both laypersons and medical and mental health professionals. Non-invasive brain computer interface like Electroencephalography (EEG) is widely being used in this field. An attempt has been made in this paper to examine the response of EEG signals to acoustic stimuli further analysing the brain electrical activity. The real time EEG is acquired for 6 participants using a cost effective and portable EMOTIV EEG neuron headset. EEG data analysis is further done using EMOTIV test bench, EDF browser and EEGLAB (MATLAB Tool) application software platforms. Spectral analysis of acquired neural signals (AF3 channel) using these software platforms are clearly indicative of increased brain activity in various bands. The inferences drawn from such an analysis have significant correlation with subject’s subjective reporting of the experiences. The results suggest that the methodology adopted can further be used to assist patients with sleeping and depressive disorders.

Keywords: OM chant, spectral analysis, EDF browser, EEGLAB, EMOTIV, real time acquisition

Procedia PDF Downloads 281
1090 Design and Implementation of a Bluetooth-Based Misplaced Object Finder Using DFRobot Arduino Interfaced with Led and Buzzer

Authors: Bright Emeni

Abstract:

The project is a system that allows users to locate their misplaced or lost devices by using Bluetooth technology. It utilizes the DFRobot Bettle BLE Arduino microcontroller as its main component for communication and control. By interfacing it with an LED and a buzzer, the system provides visual and auditory signals to assist in locating the target device. The search process can be initiated through an Android application, by which the system creates a Bluetooth connection between the microcontroller and the target device, permitting the exchange of signals for tracking purposes. When the device is within range, the LED indicator illuminates, and the buzzer produces audible alerts, guiding the user to the device's location. The application also provides an estimated distance of the object using Bluetooth signal strength. The project’s goal is to offer a practical and efficient solution for finding misplaced devices, leveraging the capabilities of Bluetooth technology and microcontroller-based control systems.

Keywords: Bluetooth finder, object finder, Bluetooth tracking, tracker

Procedia PDF Downloads 64
1089 Sparsity Order Selection and Denoising in Compressed Sensing Framework

Authors: Mahdi Shamsi, Tohid Yousefi Rezaii, Siavash Eftekharifar

Abstract:

Compressed sensing (CS) is a new powerful mathematical theory concentrating on sparse signals which is widely used in signal processing. The main idea is to sense sparse signals by far fewer measurements than the Nyquist sampling rate, but the reconstruction process becomes nonlinear and more complicated. Common dilemma in sparse signal recovery in CS is the lack of knowledge about sparsity order of the signal, which can be viewed as model order selection procedure. In this paper, we address the problem of sparsity order estimation in sparse signal recovery. This is of main interest in situations where the signal sparsity is unknown or the signal to be recovered is approximately sparse. It is shown that the proposed method also leads to some kind of signal denoising, where the observations are contaminated with noise. Finally, the performance of the proposed approach is evaluated in different scenarios and compared to an existing method, which shows the effectiveness of the proposed method in terms of order selection as well as denoising.

Keywords: compressed sensing, data denoising, model order selection, sparse representation

Procedia PDF Downloads 483
1088 A Fast Convergence Subband BSS Structure

Authors: Salah Al-Din I. Badran, Samad Ahmadi, Ismail Shahin

Abstract:

A blind source separation method is proposed; in this method we use a non-uniform filter bank and a novel normalisation. This method provides a reduced computational complexity and increased convergence speed comparing to the full-band algorithm. Recently, adaptive sub-band scheme has been recommended to solve two problems: reduction of computational complexity and increase the convergence speed of the adaptive algorithm for correlated input signals. In this work the reduction in computational complexity is achieved with the use of adaptive filters of orders less than the full-band adaptive filters, which operate at a sampling rate lower than the sampling rate of the input signal. The decomposed signals by analysis bank filter are less correlated in each sub-band than the input signal at full bandwidth, and can promote better rates of convergence.

Keywords: blind source separation, computational complexity, subband, convergence speed, mixture

Procedia PDF Downloads 555
1087 Economics of Precision Mechanization in Wine and Table Grape Production

Authors: Dean A. McCorkle, Ed W. Hellman, Rebekka M. Dudensing, Dan D. Hanselka

Abstract:

The motivation for this study centers on the labor- and cost-intensive nature of wine and table grape production in the U.S., and the potential opportunities for precision mechanization using robotics to augment those production tasks that are labor-intensive. The objectives of this study are to evaluate the economic viability of grape production in five U.S. states under current operating conditions, identify common production challenges and tasks that could be augmented with new technology, and quantify a maximum price for new technology that growers would be able to pay. Wine and table grape production is primed for precision mechanization technology as it faces a variety of production and labor issues. Methodology: Using a grower panel process, this project includes the development of a representative wine grape vineyard in five states and a representative table grape vineyard in California. The panels provided production, budget, and financial-related information that are typical for vineyards in their area. Labor costs for various production tasks are of particular interest. Using the data from the representative budget, 10-year projected financial statements have been developed for the representative vineyard and evaluated using a stochastic simulation model approach. Labor costs for selected vineyard production tasks were evaluated for the potential of new precision mechanization technology being developed. These tasks were selected based on a variety of factors, including input from the panel members, and the extent to which the development of new technology was deemed to be feasible. The net present value (NPV) of the labor cost over seven years for each production task was derived. This allowed for the calculation of a maximum price for new technology whereby the NPV of labor costs would equal the NPV of purchasing, owning, and operating new technology. Expected Results: The results from the stochastic model will show the projected financial health of each representative vineyard over the 2015-2024 timeframe. Investigators have developed a preliminary list of production tasks that have the potential for precision mechanization. For each task, the labor requirements, labor costs, and the maximum price for new technology will be presented and discussed. Together, these results will allow technology developers to focus and prioritize their research and development efforts for wine and table grape vineyards, and suggest opportunities to strengthen vineyard profitability and long-term viability using precision mechanization.

Keywords: net present value, robotic technology, stochastic simulation, wine and table grapes

Procedia PDF Downloads 260
1086 The Lubrication Regimes Recognition of a Pressure-Fed Journal Bearing by Time and Frequency Domain Analysis of Acoustic Emission Signals

Authors: S. Hosseini, M. Ahmadi Najafabadi, M. Akhlaghi

Abstract:

The health of the journal bearings is very important in preventing unforeseen breakdowns in rotary machines, and poor lubrication is one of the most important factors for producing the bearing failures. Hydrodynamic lubrication (HL), mixed lubrication (ML), and boundary lubrication (BL) are three regimes of a journal bearing lubrication. This paper uses acoustic emission (AE) measurement technique to correlate features of the AE signals to the three lubrication regimes. The transitions from HL to ML based on operating factors such as rotating speed, load, inlet oil pressure by time domain and time-frequency domain signal analysis techniques are detected, and then metal-to-metal contacts between sliding surfaces of the journal and bearing are identified. It is found that there is a significant difference between theoretical and experimental operating values that are obtained for defining the lubrication regions.

Keywords: acoustic emission technique, pressure fed journal bearing, time and frequency signal analysis, metal-to-metal contact

Procedia PDF Downloads 155
1085 Investigation of the Unbiased Characteristic of Doppler Frequency to Different Antenna Array Geometries

Authors: Somayeh Komeylian

Abstract:

Array signal processing techniques have been recently developing in a variety application of the performance enhancement of receivers by refraining the power of jamming and interference signals. In this scenario, biases induced to the antenna array receiver degrade significantly the accurate estimation of the carrier phase. Owing to the integration of frequency becomes the carrier phase, we have obtained the unbiased doppler frequency for the high precision estimation of carrier phase. The unbiased characteristic of Doppler frequency to the power jamming and the other interference signals allows achieving the highly accurate estimation of phase carrier. In this study, we have rigorously investigated the unbiased characteristic of Doppler frequency to the variation of the antenna array geometries. The simulation results have efficiently verified that the Doppler frequency remains also unbiased and accurate to the variation of antenna array geometries.

Keywords: array signal processing, unbiased doppler frequency, GNSS, carrier phase, and slowly fluctuating point target

Procedia PDF Downloads 159
1084 Development of an EEG-Based Real-Time Emotion Recognition System on Edge AI

Authors: James Rigor Camacho, Wansu Lim

Abstract:

Over the last few years, the development of new wearable and processing technologies has accelerated in order to harness physiological data such as electroencephalograms (EEGs) for EEG-based applications. EEG has been demonstrated to be a source of emotion recognition signals with the highest classification accuracy among physiological signals. However, when emotion recognition systems are used for real-time classification, the training unit is frequently left to run offline or in the cloud rather than working locally on the edge. That strategy has hampered research, and the full potential of using an edge AI device has yet to be realized. Edge AI devices are computers with high performance that can process complex algorithms. It is capable of collecting, processing, and storing data on its own. It can also analyze and apply complicated algorithms like localization, detection, and recognition on a real-time application, making it a powerful embedded device. The NVIDIA Jetson series, specifically the Jetson Nano device, was used in the implementation. The cEEGrid, which is integrated to the open-source brain computer-interface platform (OpenBCI), is used to collect EEG signals. An EEG-based real-time emotion recognition system on Edge AI is proposed in this paper. To perform graphical spectrogram categorization of EEG signals and to predict emotional states based on input data properties, machine learning-based classifiers were used. Until the emotional state was identified, the EEG signals were analyzed using the K-Nearest Neighbor (KNN) technique, which is a supervised learning system. In EEG signal processing, after each EEG signal has been received in real-time and translated from time to frequency domain, the Fast Fourier Transform (FFT) technique is utilized to observe the frequency bands in each EEG signal. To appropriately show the variance of each EEG frequency band, power density, standard deviation, and mean are calculated and employed. The next stage is to identify the features that have been chosen to predict emotion in EEG data using the K-Nearest Neighbors (KNN) technique. Arousal and valence datasets are used to train the parameters defined by the KNN technique.Because classification and recognition of specific classes, as well as emotion prediction, are conducted both online and locally on the edge, the KNN technique increased the performance of the emotion recognition system on the NVIDIA Jetson Nano. Finally, this implementation aims to bridge the research gap on cost-effective and efficient real-time emotion recognition using a resource constrained hardware device, like the NVIDIA Jetson Nano. On the cutting edge of AI, EEG-based emotion identification can be employed in applications that can rapidly expand the research and implementation industry's use.

Keywords: edge AI device, EEG, emotion recognition system, supervised learning algorithm, sensors

Procedia PDF Downloads 105
1083 Pricing, Production and Inventory Policies Manufacturing under Stochastic Demand and Continuous Prices

Authors: Masoud Rabbani, Majede Smizadeh, Hamed Farrokhi-Asl

Abstract:

We study jointly determining prices and production in a multiple period horizon under a general non-stationary stochastic demand with continuous prices. In some periods we need to increase capacity of production to satisfy demand. This paper presents a model to aid multi-period production capacity planning by quantifying the trade-off between product quality and production cost. The product quality is estimated as the statistical variation from the target performances obtained from the output tolerances of the production machines that manufacture the components. We consider different tolerance for different machines that use to increase capacity. The production cost is estimated as the total cost of owning and operating a production facility during the planning horizon.so capacity planning has cost that impact on price. Pricing products often turns out to be difficult to measure them because customers have a reservation price to pay that impact on price and demand. We decide to determine prices and production for periods after enhance capacity and consider reservation price to determine price. First we use an algorithm base on fuzzy set of the optimal objective function values to determine capacity planning by determine maximize interval from upper bound in minimum objectives and define weight for objectives. Then we try to determine inventory and pricing policies. We can use a lemma to solve a problem in MATLAB and find exact answer.

Keywords: price policy, inventory policy, capacity planning, product quality, epsilon -constraint

Procedia PDF Downloads 569
1082 Efficient Wind Fragility Analysis of Concrete Chimney under Stochastic Extreme Wind Incorporating Temperature Effects

Authors: Soumya Bhattacharjya, Avinandan Sahoo, Gaurav Datta

Abstract:

Wind fragility analysis of chimney is often carried out disregarding temperature effect. However, the combined effect of wind and temperature is the most critical limit state for chimney design. Hence, in the present paper, an efficient fragility analysis for concrete chimney is explored under combined wind and temperature effect. Wind time histories are generated by Davenports Power Spectral Density Function and using Weighed Amplitude Wave Superposition Technique. Fragility analysis is often carried out in full Monte Carlo Simulation framework, which requires extensive computational time. Thus, in the present paper, an efficient adaptive metamodelling technique is adopted to judiciously approximate limit state function, which will be subsequently used in the simulation framework. This will save substantial computational time and make the approach computationally efficient. Uncertainty in wind speed, wind load related parameters, and resistance-related parameters is considered. The results by the full simulation approach, conventional metamodelling approach and proposed adaptive metamodelling approach will be compared. Effect of disregarding temperature in wind fragility analysis will be highlighted.

Keywords: adaptive metamodelling technique, concrete chimney, fragility analysis, stochastic extreme wind load, temperature effect

Procedia PDF Downloads 214
1081 Peak Frequencies in the Collective Membrane Potential of a Hindmarsh-Rose Small-World Neural Network

Authors: Sun Zhe, Ruggero Micheletto

Abstract:

As discussed extensively in many studies, noise in neural networks have an important role in the functioning and time evolution of the system. The mechanism by which noise induce stochastic resonance enhancing and influencing certain operations is not clarified nor is the mechanism of information storage and coding. With the present research we want to study the role of noise, especially focusing on the frequency peaks in a three variable Hindmarsh−Rose Small−World network. We investigated the behaviour of the network to external noises. We demonstrate that a variation of signal to noise ratio of about 10 dB induces an increase in membrane potential signal of about 15%, averaged over the whole network. We also considered the integral of the whole membrane potential as a paradigm of internal noise, the one generated by the brain network. We showed that this internal noise is attenuated with the size of the network or with the number of random connections. By means of Fourier analysis we found that it has distinct peaks of frequencies, moreover, we showed that increasing the size of the network introducing more neurons, reduced the maximum frequencies generated by the network, whereas the increase in the number of random connections (determined by the small-world probability p) led to a trend toward higher frequencies. This study may give clues on how networks utilize noise to alter the collective behaviour of the system in their operations.

Keywords: neural networks, stochastic processes, small-world networks, discrete Fourier analysis

Procedia PDF Downloads 291
1080 Joint Optimal Pricing and Lot-Sizing Decisions for an Advance Sales System under Stochastic Conditions

Authors: Maryam Ghoreishi, Christian Larsen

Abstract:

In this paper, we investigate the effect of stochastic inputs on problem of joint optimal pricing and lot-sizing decisions where the inventory cycle is divided into advance and spot sales periods. During the advance sales period, customer can make reservations while customer with reservations can cancel their order. However, during the spot sales period customers receive the order as soon as the order is placed, but they cannot make any reservation or cancellation during that period. We assume that the inter arrival times during the advance sales and spot sales period are exponentially distributed where the arrival rate is decreasing function of price. Moreover, we assume that the number of cancelled reservations is binomially distributed. In addition, we assume that deterioration process follows an exponential distribution. We investigate two cases. First, we consider two-state case where we find the optimal price during the spot sales period and the optimal price during the advance sales period. Next, we develop a generalized case where we extend two-state case also to allow dynamic prices during the spot sales period. We apply the Markov decision theory in order to find the optimal solutions. In addition, for the generalized case, we apply the policy iteration algorithm in order to find the optimal prices, the optimal lot-size and maximum advance sales amount.

Keywords: inventory control, pricing, Markov decision theory, advance sales system

Procedia PDF Downloads 323
1079 Select-Low and Select-High Methods for the Wheeled Robot Dynamic States Control

Authors: Bogusław Schreyer

Abstract:

The paper enquires on the two methods of the wheeled robot braking torque control. Those two methods are applied when the adhesion coefficient under left side wheels is different from the adhesion coefficient under the right side wheels. In case of the select-low (SL) method the braking torque on both wheels is controlled by the signals originating from the wheels on the side of the lower adhesion. In the select-high (SH) method the torque is controlled by the signals originating from the wheels on the side of the higher adhesion. The SL method is securing stable and secure robot behaviors during the braking process. However, the efficiency of this method is relatively low. The SH method is more efficient in terms of time and braking distance but in some situations may cause wheels blocking. It is important to monitor the velocity of all wheels and then take a decision about the braking torque distribution accordingly. In case of the SH method the braking torque slope may require significant decrease in order to avoid wheel blocking.

Keywords: select-high, select-low, torque distribution, wheeled robots

Procedia PDF Downloads 119