Search results for: static strain aging
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3332

Search results for: static strain aging

3002 Sensitivity Improvement of Optical Ring Resonator for Strain Analysis with the Direction of Strain Recognition Possibility

Authors: Tayebeh Sahraeibelverdi, Ahmad Shirazi Hadi Veladi, Mazdak Radmalekshah

Abstract:

Optical sensors became attractive due to preciseness, low power consumption, and intrinsic electromagnetic interference-free characteristic. Among the waveguide optical sensors, cavity-based ones attended for the high Q-factor. Micro ring resonators as a potential platform have been investigated for various applications as biosensors to pressure sensors thanks to their sensitive ring structure responding to any small change in the refractive index. Furthermore, these small micron size structures can come in an array, bringing the opportunity to have any of the resonance in a specific wavelength and be addressed in this way. Another exciting application is applying a strain to the ring and making them an optical strain gauge where the traditional ones are based on the piezoelectric material. Making them in arrays needs electrical wiring and about fifty times bigger in size. Any physical element that impacts the waveguide cross-section, Waveguide elastic-optic property change, or ring circumference can play a role. In comparison, ring size change has a larger effect than others. Here an engineered ring structure is investigated to study the strain effect on the ring resonance wavelength shift and its potential for more sensitive strain devices. At the same time, these devices can measure any strain by mounting on the surface of interest. The idea is to change the" O" shape ring to a "C" shape ring with a small opening starting from 2π/360 or one degree. We used the Mode solution of Lumbrical software to investigate the effect of changing the ring's opening and the shift induced by applied strain. The designed ring radius is a three Micron silicon on isolator ring which can be fabricated by standard complementary metal-oxide-semiconductor (CMOS) micromachining. The measured wavelength shifts from1-degree opening of the ring to a 6-degree opening have been investigated. Opening the ring for 1-degree affects the ring's quality factor from 3000 to 300, showing an order of magnitude Q-factor reduction. Assuming a strain making the ring-opening from 1 degree to 6 degrees, our simulation results showing negligible Q-factor reduction from 300 to 280. A ring resonator quality factor can reach up to 108 where an order of magnitude reduction is negligible. The resonance wavelength shift showed a blue shift and was obtained to be 1581, 1579,1578,1575nm for 1-, 2-, 4- and 6-degree ring-opening, respectively. This design can find the direction of the strain-induced by applying the opening on different parts of the ring. Moreover, by addressing the specified wavelength, we can precisely find the direction. We can open a significant opportunity to find cracks and any surface mechanical property very specifically and precisely. This idea can be implemented on polymer ring resonators while they can come with a flexible substrate and can be very sensitive to any strain making the two ends of the ring in the slit part come closer or further.

Keywords: optical ring resonator, strain gauge, strain sensor, surface mechanical property analysis

Procedia PDF Downloads 106
3001 Behavior of Fibre Reinforced Polymer Composite with Nano-Ceramic Particle under Ballistic Impact and Quasi-Static Punch-Shear Loading

Authors: K. Rajalakshmi, A. Vasudevan

Abstract:

The performance of Fibre Reinforced Polymer composite with the nano-ceramic particle as function of time and thickness of laminate which is subjected to ballistic impact and quasi-static punch-shear loading is investigated. The material investigated is made up of several layers of Kevlar fibres which are fabricated with nano-ceramic particles and epoxy resin by compression moulding. The ballistic impact and quasi-static punch-shear loading are studied experimentally and numerically. The failure mechanism is observed using scanning electron microscope (SEM). The result obtained in the experiment and numerical studies are compared. Due to nano size of the ceramic particle, the strength to weight ratio and penetrating resistance will improve in Fibre Reinforced Polymer composite which will have better impact property compared to ceramic plates.

Keywords: ballistic impact, Kevlar, nano ceramic, penetration, polymer composite, shear plug

Procedia PDF Downloads 274
3000 The Learning Process in Future Preparations: Middle-Aged and Older Adults' Experiences

Authors: Ya-Hui Lee, Ching-Yi Lu

Abstract:

Taiwan will become an aging society in 2018. The method to face the challenges related to the aging population has become an important topic. Purpose: This study aims to understand the future preparation of middle-age and older adults, and how they prepared themselves to face the problems of aging, and how they took actions to plan and cope with their future life. Moreover, how did they generate the process of learning action, so that they would be able to live a more active and meaningful life when they entered into their older age? Method: We conducted semi-structure interviews with 10 middle-aged and older adults who had taken actions to prepare for their future. We examined the interviewees’ consciousness and learning actions in their future preparation. Preliminary Results: 1. The triggering factors of the interviewees’ consciousness to prepare for the future included: family events, the desire to maintain active social lives after retirement, the continuation of the interviewees’ professional careers after retirement, and the aspiration for participation in volunteer services. 2. 'Health problems' and 'economic security' were issued of the utmost concern for the interviewees’ future. However, they would transform these worries to learning actions, comprising of active participation in learning, finding relevant information through learning; thus, accumulating more resources to cope with their future needs.

Keywords: middle-age and older adults, preparing for future, older adult learning

Procedia PDF Downloads 212
2999 An Investigation into Why Liquefaction Charts Work: A Necessary Step toward Integrating the States of Art and Practice

Authors: Tarek Abdoun, Ricardo Dobry

Abstract:

This paper is a systematic effort to clarify why field liquefaction charts based on Seed and Idriss’ Simplified Procedure work so well. This is a necessary step toward integrating the states of the art (SOA) and practice (SOP) for evaluating liquefaction and its effects. The SOA relies mostly on laboratory measurements and correlations with void ratio and relative density of the sand. The SOP is based on field measurements of penetration resistance and shear wave velocity coupled with empirical or semi-empirical correlations. This gap slows down further progress in both SOP and SOA. The paper accomplishes its objective through: a literature review of relevant aspects of the SOA including factors influencing threshold shear strain and pore pressure buildup during cyclic strain-controlled tests; a discussion of factors influencing field penetration resistance and shear wave velocity; and a discussion of the meaning of the curves in the liquefaction charts separating liquefaction from no liquefaction, helped by recent full-scale and centrifuge results. It is concluded that the charts are curves of constant cyclic strain at the lower end (Vs1 < 160 m/s), with this strain being about 0.03 to 0.05% for earthquake magnitude, Mw ≈ 7. It is also concluded, in a more speculative way, that the curves at the upper end probably correspond to a variable increasing cyclic strain and Ko, with this upper end controlled by over consolidated and preshaken sands, and with cyclic strains needed to cause liquefaction being as high as 0.1 to 0.3%. These conclusions are validated by application to case histories corresponding to Mw ≈ 7, mostly in the San Francisco Bay Area of California during the 1989 Loma Prieta earthquake.

Keywords: permeability, lateral spreading, liquefaction, centrifuge modeling, shear wave velocity charts

Procedia PDF Downloads 278
2998 The Impact of Different Rhizobium leguminosarum Strains on the Protein Content of Peas and Broad Beans

Authors: Alise Senberga, Laila Dubova, Liene Strauta, Ina Alsina, Ieva Erdberga

Abstract:

Legume symbiotic relationship with nitrogen fixating bacteria Rhizobim leguminosarum is an important factor used to improve the productivity of legumes, due to the fact that rhizobia can supply plant with the necessary amount of nitrogen. R. leguminosarum strains have shown different activity in fixing nitrogen. Depending on the chosen R. leguminosarum strain, host plant biochemical content can be altered. In this study we focused particularly on the changes in protein content in beans (using two different varieties) and peas (five different varieties) due to the use of several different R. leguminosarum strains (four strains for both beans and peas). Overall, the protein content increase was observed after seed inoculation with R. leguminosarum. Strain and plant cultivar interaction specification was observed. The effect of R. leguminosarum inoculation on the content of protein was dependent on the R. leguminosarum strain used. Plant cultivar also appeared to have a decisive role in protein content formation with the help of R. leguminosaru.

Keywords: legumes, protein content, rhizobia strains, soil

Procedia PDF Downloads 495
2997 Induction of Adaptive Response in Yeast Cells under Influence of Extremely High Frequency Electromagnetic Field

Authors: Sergei Voychuk

Abstract:

Introduction: Adaptive response (AR) is a manifestation of radiation hormesis, which deal with the radiation resistance that may be increased with the pretreatment with small doses of radiation. In the current study, we evaluated the potency of radiofrequency EMF to induce the AR mechanisms and to increase a resistance to UV light. Methods: Saccharomyces cerevisiae yeast strains, which were created to study induction of mutagenesis and recombination, were used in the study. The strains have mutations in rad2 and rad54 genes, responsible for DNA repair: nucleotide excision repair (PG-61), postreplication repair (PG-80) and mitotic (crossover) recombination (T2). An induction of mutation and recombination are revealed due to the formation of red colonies on agar plates. The PG-61 and T2 are UV sensitive strains, while PG-80 is sensitive to ionizing radiation. Extremely high frequency electromagnetic field (EHF-EMF) was used. The irradiation was performed in floating mode and frequency changed during exposure from 57 GHz to 62 GHz. The power of irradiation was 100 mkW, and duration of exposure was 10 and 30 min. Treatment was performed at RT and then cells were stored at 28° C during 1 h without any exposure but after that they were treated with UV light (254nm) for 20 sec (strain T2) and 120 sec (strain PG-61 and PG-80). Cell viability and quantity of red colonies were determined after 5 days of cultivation on agar plates. Results: It was determined that EHF-EMF caused 10-20% decrease of viability of T2 and PG-61 strains, while UV showed twice stronger effect (30-70%). EHF-EMF pretreatment increased T2 resistance to UV, and decreased it in PG-61. The PG-80 strain was insensitive to EHF-EMF and no AR effect was determined for this strain. It was not marked any induction of red colonies formation in T2 and PG-80 strain after EHF or UV exposure. The quantity of red colonies was 2 times more in PG-61 strain after EHF-EMF treatment and at least 300 times more after UV exposure. The pretreatment of PG-61 with EHF-EMF caused at least twice increase of viability and consequent decrease of amount of red colonies. Conclusion: EHF-EMF may induce AR in yeast cells and increase their viability under UV treatment.

Keywords: Saccharomyces cerevisiae, EHF-EMF, UV light, adaptive response

Procedia PDF Downloads 304
2996 Energy Metabolism and Mitochondrial Biogenesis in Muscles of Rats Subjected to Cold Water Immersion

Authors: Bosiacki Mateusz, Anna Lubkowska, Dariusz Chlubek, Irena Baranowska-Bosiacka

Abstract:

Exposure to cold temperatures can be considered a stressor that can lead to adaptive responses. The present study hypothesized the possibility of a positive effect of cold water exercise on mitochondrial biogenesis and muscle energy metabolism in aging rats. The purpose of this study was to evaluate the effects of cold water exercise on energy status, purine compounds, and mitochondrial biogenesis in the muscles of aging rats as indicators of the effects of cold water exercise and their usefulness in monitoring adaptive changes. The study was conducted on 64 aging rats of both sexes, 15 months old at the time of the experiment. The rats (male and female separately) were randomly assigned to the following study groups: control, sedentary animals; 5°C groups animals - training swimming in cold water at 5°C; 36°C groups - animals training swimming in water at thermal comfort temperature. The study was conducted with the approval of the Local Ethical Committee for Animal Experiments. The animals in the experiment were subjected to swimming training for 9 weeks. During the first week of the study, the duration of the first swimming training was 2 minutes (on the first day), increasing daily by 0.5 minutes up to 4 minutes on the fifth day of the first week. From the second to the eighth week, the swimming training was 4 minutes per day, five days a week. At the end of the study, forty-eight hours after the last swim training, the animals were dissected. In the skeletal muscle tissue of the thighs of the rats, we determined the concentrations of ATP, ADP, AMP, Ado (HPLC), PGC-1a protein expression (Western blot), PGC1A, Mfn1, Mfn2, Opa1, and Drp1 gene expression (qRT PCR). The study showed that swimming in water at a thermally comfortable temperature improved the energy metabolism of the aging rat muscles by increasing the metabolic rate (increase in ATP, ADP, TAN, AEC) and enhancing mitochondrial fusion (increase in mRNA expression of regulatory proteins Mfn1 and Mfn2). Cold water swimming improved muscle energy metabolism in aging rats by increasing the rate of muscle energy metabolism (increase in ATP, ADP, TAN, AEC concentrations) and enhancing mitochondrial biogenesis and dynamics (increase in the mRNA expression of proteins of fusion-regulating factors – Mfn1, Mfn2, and Opa1, and the factor regulating mitochondrial fission – Drp1). The concentration of high-energy compounds and the expression of proteins regulating mitochondrial dynamics in the muscle may be a useful indicator in monitoring adaptive changes occurring in aging muscles under the influence of exercise in cold water. It represents a short-term adaptation to changing environmental conditions and has a beneficial effect on maintaining the bioenergetic capacity of muscles in the long term. Conclusion: exercise in cold water can exert positive effects on energy metabolism, biogenesis and dynamics of mitochondria in aging rat muscles. Enhancement of mitochondrial dynamics under cold water exercise conditions can improve mitochondrial function and optimize the bioenergetic capacity of mitochondria in aging rat muscles.

Keywords: cold water immersion, adaptive responses, muscle energy metabolism, aging

Procedia PDF Downloads 63
2995 Clinch Process Simulation Using Diffuse Elements

Authors: Benzegaou Ali, Brani Benabderrahmane

Abstract:

This work describes a numerical study of the TOX–clinching process using diffuse elements. A computer code baptized SEMA "Static Explicit Method Analysis" is developed to simulate the clinch joining process. The FE code is based on an Updated Lagrangian scheme. The used resolution method is based on an explicit static approach. The integration of the elasto-plastic behavior law is realized with an algorithm of Simo and Taylor. The tools are represented by plane facets.

Keywords: diffuse elements, numerical simulation, clinching, contact, large deformation

Procedia PDF Downloads 346
2994 Effect of Microfiltration on the Composition and Ripening of Iranian Fetta Cheese

Authors: M. Dezyani, R. Ezzati belvirdi, M. Shakerian, H. Mirzaei

Abstract:

The effect of Microfiltration (MF) on proteolysis, hardness, and flavor of Feta cheese during 6 mo of aging was determined. Raw skim milk was microfiltered two-fold in two cheese making trials. In trial 1, four vats of cheese were made in 1 d using unconcentrated milk (1X), 1.26X, 1.51X, and 1.82X Concentration Factors (CF). Casein-(CN)-to-fat ratio was constant among treatments. Proteolysis during cheese aging decreased with increasing CF due to either limitation of substrate availability for chymosin due to low moisture in the nonfat substance (MNFS), inhibition of chymosin activity by high molecular weight milk serum proteins, such as α2-macroglobulin, retained in the cheese or low residual chymosin in the cheese. Hardness of fresh cheese increased, and cheese flavor intensity decreased with increasing CF. In trial 2, the 1X and 1.8X CF were compared directly. Changes made in the cheese making procedure for the 1.8X CF (more chymosin and less cooking) increased the MNFS and made proteolysis during aging more comparable for the 1X and 1.8X cheeses. The significant difference in cheese hardness due to CF in trial 1 was eliminated in trial 2. In a triangle test, panelists could not differentiate between the 1X and 1.8X cheeses. Therefore, increasing chymosin and making the composition of the two cheeses more similar allowed production of aged Fetta cheese from milk concentrated up to 1.8X by MF that was not perceived as different from aged feta cheese produced without MF.

Keywords: feta cheese, microfiltration, concentration factor, proteolysis

Procedia PDF Downloads 396
2993 Effect of Grain Size and Stress Parameters on Ratcheting Behaviour of Two Different Single Phase FCC Metals

Authors: Jayanta Kumar Mahato, Partha Sarathi De, Amrita Kundu, P. C. Chakraborti

Abstract:

Ratcheting is one of the most important phenomena to be considered for design and safety assessment of structural components subjected to stress controlled asymmetric cyclic loading in the elasto-plastic domain. In the present study uniaxial ratcheting behavior of commercially pure annealed OFHC copper and aluminium with two different grain sizes has been investigated. Stress-controlled tests have been conducted at various combinations of stress amplitude and mean stress. These stresses were selected in such a way that the ratio of equivalent stress amplitude (σₐeq) to ultimate tensile strength (σUTS) of the selected materials remains constant. It is found that irrespective of grain size the ratcheting fatigue lives decrease with the increase of both stress amplitude and mean stress following power relationships. However, the effect of stress amplitude on ratcheting lives is observed higher as compared to mean stress for both the FCC metals. It is also found that for both FCC metals ratcheting fatigue lives at a constant ratio of equivalent stress amplitude (σ ₐeq) to ultimate tensile strength (σUTS) are more in case fine grain size. So far ratcheting strain rate is concerned, it decreases rapidly within first few cycles and then a steady state is reached. Finally, the ratcheting strain rate increases up to the complete failure of the specimens due to a very large increase of true stress for a substantial reduction in cross-sectional area. The steady state ratcheting strain rate increases with the increase in both stress amplitude and mean stress. Interestingly, a unique perfectly power relationship between steady state ratcheting strain rate and cycles to failure has been found irrespective of stress combination for both FCC metals. Similar to ratcheting strain rate, the strain energy density decreases rapidly within first few cycles followed by steady state and then increases up to a failure of the specimens irrespective of stress combinations for both FCC metals; but strain energy density at steady state decreases with increase in mean stress and increases with the increase of stress amplitude. From the fractography study, it is found that the void density increases with the increase of maximum stress, but the void size and void density are almost same for any combination of stress parameters considering constant maximum stress.

Keywords: ratcheting phenomena, grain size, stress parameter, ratcheting lives, ratcheting strain rate

Procedia PDF Downloads 276
2992 Dynamic Variation in Nano-Scale CMOS SRAM Cells Due to LF/RTS Noise and Threshold Voltage

Authors: M. Fadlallah, G. Ghibaudo, C. G. Theodorou

Abstract:

The dynamic variation in memory devices such as the Static Random Access Memory can give errors in read or write operations. In this paper, the effect of low-frequency and random telegraph noise on the dynamic variation of one SRAM cell is detailed. The effect on circuit noise, speed, and length of time of processing is examined, using the Supply Read Retention Voltage and the Read Static Noise Margin. New test run methods are also developed. The obtained results simulation shows the importance of noise caused by dynamic variation, and the impact of Random Telegraph noise on SRAM variability is examined by evaluating the statistical distributions of Random Telegraph noise amplitude in the pull-up, pull-down. The threshold voltage mismatch between neighboring cell transistors due to intrinsic fluctuations typically contributes to larger reductions in static noise margin. Also the contribution of each of the SRAM transistor to total dynamic variation has been identified.

Keywords: low-frequency noise, random telegraph noise, dynamic variation, SRRV

Procedia PDF Downloads 162
2991 Perspective Shifting in the Elicited Language Production Can Defy with Aging

Authors: Tuyuan Cheng

Abstract:

As we age, many things become more difficult. Among the abilities are the linguistic and cognitive ones. Competing theories have shown that these two functions could diminish together or that one is selectively affected by the other. In other words, some proposes aging affects sentence production in the same way it affects sentence comprehension and other cognitive functions, while some argues it does not.To address this question, the current investigation is conducted into the critical aspect of sentences as well as cognitive abilities – the syntactic complexity and the number of perspective shifts being contained in the elicited production. Healthy non-pathological aging is often characterized by a cognitive and neural decline in a number of cognitive abilities. Although the language is assumed to be of the more stable domain, a variety of findings in the cognitive aging literature would suggest otherwise. Older adults often show deficits in language production and multiple aspects of comprehension. Nevertheless, while some age differences likely reflect cognitive decline, others might reflect changes in communicative goals, and some even display cognitive advantages. In the domain of language processing, research efforts have been made in tests that probed a variety of communicative abilities. In general, there exists a distinction: Comprehension seems to be selectively unaffected, while production does not. The current study raises a novel question and investigates whether aging affects the production of relative clauses (RCs) under the cognitive factor of perspective shifts. Based on Perspective Hypothesis (MacWhinney, 2000, 2005), our cognitive processes build upon a fundamental system of perspective-taking, and language provides a series of cues to facilitate the construction and shifting of perspectives. These cues include a wide variety of constructions, including RCs structures. In this regard, linguistic complexity can be determined by the number of perspective shifts, and the processing difficulties of RCs can be interpreted within the theory of perspective shifting. Two experiments were conducted to study language production under controlled conditions. In Experiment 1, older healthy participants were tested on standard measures of cognitive aging, including MMSE (Mini-Mental State Examination), ToMI-2 (a simplified Theory of Mind Inventory-2), and a perspective-shifting comprehension task programmed with E-Prime. The results were analyzed to examine if/how they are correlated with aging people’s subsequent production data. In Experiment 2, the production profile of differing RCs, SRC vs. ORC, were collected with healthy aging participants who perform a picture elicitation task. Variable containing 0, 1, or 2 perspective shifts were juxtaposed respectively to the pictures and counterbalanced presented for elicitation. In parallel, a controlled group of young adults were recruited to examine the linguistic and cognitive abilities in question. The results lead us to the discussion whetheraging affects RCs production in a manner determined by its semantic structure or the number of perspective shifts it contains or the status of participants’ mental understanding. The major findingsare: (1) Elders’ production on Chinese RCtypes did not display intrinsic difficulty asymmetry. (2) RC types (the linguistic structural features) and the cognitiveperspective shifts jointly play important roles in the elders’ RCproduction. (3) The production of RC may defy the aging in the case offlexibly preserved cognitive ability.

Keywords: cognition aging, perspective hypothesis, perspective shift, relative clauses, sentence complexity

Procedia PDF Downloads 98
2990 Development of Rh/Ce-Zr-La/Al2O3 TWCs’ Wash Coat: Effect of Reactor on Catalytic and Thermal Stability

Authors: Su-Ning Wang, Yao-Qiang Chen

Abstract:

The CeO2-ZrO2-La2O3-Al2O3 composite oxides are synthesized using co-precipitation method by two different reactors (i.e. continuous stirred-tank reactor and batch reactor), and the corresponding Rh-only three-way catalysts are obtained by wet-impregnation approach. The textural, structural, morphology and redox properties of the support materials, as well as the catalytic performance of the Rh-only catalyst are investigated systematically. The results reveal that the materials (CZLA-C) synthesized by continuous stirred-tank reactor have a better physic-chemical properties than the counterpart material (CZLA-B) prepared by batch reactor. After aging treatment at 1000 ℃ for 5 h, the BET surface area and pore volume of S1 reach up to 76 m2 g-1 and 0.36 mL/g, respectively, which is higher than that of S2. The XRD and Raman results demonstrate that a high structural stability is obtained by S1 because of the negligible lattice variation and the slight grain growth after aging treatment. The SEM and TEM images display that the morphology of S1 is assembled by many homogeneous primary nanoparticles (about 6.12 nm) that are connected to form mesoporous structure The TPR measurement shows that S1 possesses a higher reduction ability than S2. Compared with the catalyst supported on the CZLA-B, the as-prepared CZLA-C demonstrates an improved three-way catalytic activity both before and after aging treatment.

Keywords: composite oxides, reactor, catalysis, catalytic performance

Procedia PDF Downloads 277
2989 Determination of Mechanical Properties of Adhesives via Digital Image Correlation (DIC) Method

Authors: Murat Demir Aydin, Elanur Celebi

Abstract:

Adhesively bonded joints are used as an alternative to traditional joining methods due to the important advantages they provide. The most important consideration in the use of adhesively bonded joints is that these joints have appropriate requirements for their use in terms of safety. In order to ensure control of this condition, damage analysis of the adhesively bonded joints should be performed by determining the mechanical properties of the adhesives. When the literature is investigated; it is generally seen that the mechanical properties of adhesives are determined by traditional measurement methods. In this study, to determine the mechanical properties of adhesives, the Digital Image Correlation (DIC) method, which can be an alternative to traditional measurement methods, has been used. The DIC method is a new optical measurement method which is used to determine the parameters of displacement and strain in an appropriate and correct way. In this study, tensile tests of Thick Adherent Shear Test (TAST) samples formed using DP410 liquid structural adhesive and steel materials and bulk tensile specimens formed using and DP410 liquid structural adhesive was performed. The displacement and strain values of the samples were determined by DIC method and the shear stress-strain curves of the adhesive for TAST specimens and the tensile strain curves of the bulk adhesive specimens were obtained. Various methods such as numerical methods are required as conventional measurement methods (strain gauge, mechanic extensometer, etc.) are not sufficient in determining the strain and displacement values of the very thin adhesive layer such as TAST samples. As a result, the DIC method removes these requirements and easily achieves displacement measurements with sufficient accuracy.

Keywords: structural adhesive, adhesively bonded joints, digital image correlation, thick adhered shear test (TAST)

Procedia PDF Downloads 301
2988 Shape Sensing and Damage Detection of Thin-Walled Cylinders Using an Inverse Finite Element Method

Authors: Ionel D. Craiu, Mihai Nedelcu

Abstract:

Thin-walled cylinders are often used by the offshore industry as columns of floating installations. Based on observed strains, the inverse Finite Element Method (iFEM) may rebuild the deformation of structures. Structural Health Monitoring uses this approach extensively. However, the number of in-situ strain gauges is what determines how accurate it is, and for shell structures with complicated deformation, this number can easily become too high for practical use. Any thin-walled beam member's complicated deformation can be modeled by the Generalized Beam Theory (GBT) as a linear combination of pre-specified cross-section deformation modes. GBT uses bar finite elements as opposed to shell finite elements. This paper proposes an iFEM/GBT formulation for the shape sensing of thin-walled cylinders based on these benefits. This method significantly reduces the number of strain gauges compared to using the traditional inverse-shell finite elements. Using numerical simulations, dent damage detection is achieved by comparing the strain distributions of the undamaged and damaged members. The effect of noise on strain measurements is also investigated.

Keywords: damage detection, generalized beam theory, inverse finite element method, shape sensing

Procedia PDF Downloads 96
2987 The Derivation of a Four-Strain Optimized Mohr's Circle for Use in Experimental Reinforced Concrete Research

Authors: Edvard P. G. Bruun

Abstract:

One of the best ways of improving our understanding of reinforced concrete is through large-scale experimental testing. The gathered information is critical in making inferences about structural mechanics and deriving the mathematical models that are the basis for finite element analysis programs and design codes. An effective way of measuring the strains across a region of a specimen is by using a system of surface mounted Linear Variable Differential Transformers (LVDTs). While a single LVDT can only measure the linear strain in one direction, by combining several measurements at known angles a Mohr’s circle of strain can be derived for the whole region under investigation. This paper presents a method that can be used by researchers, which improves the accuracy and removes experimental bias in the calculation of the Mohr’s circle, using four rather than three independent strain measurements. Obtaining high quality strain data is essential, since knowing the angular deviation (shear strain) and the angle of principal strain in the region are important properties in characterizing the governing structural mechanics. For example, the Modified Compression Field Theory (MCFT) developed at the University of Toronto, is a rotating crack model that requires knowing the direction of the principal stress and strain, and then calculates the average secant stiffness in this direction. But since LVDTs can only measure average strains across a plane (i.e., between discrete points), localized cracking and spalling that typically occur in reinforced concrete, can lead to unrealistic results. To build in redundancy and improve the quality of the data gathered, the typical experimental setup for a large-scale shell specimen has four independent directions (X, Y, H, and V) that are instrumented. The question now becomes, which three should be used? The most common approach is to simply discard one of the measurements. The problem is that this can produce drastically different answers, depending on the three strain values that are chosen. To overcome this experimental bias, and to avoid simply discarding valuable data, a more rigorous approach would be to somehow make use of all four measurements. This paper presents the derivation of a method to draw what is effectively a Mohr’s circle of 'best-fit', which optimizes the circle by using all four independent strain values. The four-strain optimized Mohr’s circle approach has been utilized to process data from recent large-scale shell tests at the University of Toronto (Ruggiero, Proestos, and Bruun), where analysis of the test data has shown that the traditional three-strain method can lead to widely different results. This paper presents the derivation of the method and shows its application in the context of two reinforced concrete shells tested in pure torsion. In general, the constitutive models and relationships that characterize reinforced concrete are only as good as the experimental data that is gathered – ensuring that a rigorous and unbiased approach exists for calculating the Mohr’s circle of strain during an experiment, is of utmost importance to the structural research community.

Keywords: reinforced concrete, shell tests, Mohr’s circle, experimental research

Procedia PDF Downloads 210
2986 Instrumentation of Urban Pavements Built with Construction and Demolition Waste

Authors: Sofia Figueroa, Efrain Bernal, Silvia Del Pilar Forero, Humberto Ramirez

Abstract:

This work shows a detailed review of the scope of global research on the road infrastructure using materials from Construction and Demolition Waste (C&DW), also called RCD. In the first phase of this research, a segment of road was designed using recycled materials such as Reclaimed Asphalt Pavement (RAP) on the top, the natural coarse base including 30% of RAP and recycled concrete blocks. The second part of this segment was designed using regular materials for each layer of the pavement. Both structures were built next to each other in order to analyze and measure the material properties as well as performance and environmental factors in the pavement under real traffic and weather conditions. Different monitoring devices were installed among the structure, based on the literature revision, such as soil cells, linear potentiometer, moisture sensors, and strain gauges that help us to know the C&DW as a part of the pavement structure. This research includes not only the physical characterization but also the measured parameters in a field such as an asphalt mixture (RAP) strain (ετ), vertical strain (εᵥ) and moisture control in coarse layers (%w), and the applied loads and strain in the subgrade (εᵥ). The results will show us what is happening with these materials in order to obtain not only a sustainable solution but also to know its behavior and lifecycle.

Keywords: sustainable pavements, construction & demolition waste-C&DW, recycled rigid concrete, reclaimed asphalt pavement-rap

Procedia PDF Downloads 125
2985 Field Evaluation of Pile Behavior in Sandy Soil Underlain by Clay

Authors: R. Bakr, M. Elmeligy, A. Ibrahim

Abstract:

When the building loads are relatively small, challenges are often facing the foundation design especially when inappropriate soil conditions exist. These may be represented in the existence of soft soil in the upper layers of soil while sandy soil or firm cohesive soil exist in the deeper layers. In such cases, the design becomes infeasible if the piles are extended to the deeper layers, especially when there are sandy layers existing at shallower depths underlain by stiff clayey soil. In this research, models of piles terminated in sand underlain by clay soils are numerically simulated by different modelling theories. Finite element software, Plaxis 3-D Foundation was used to evaluate the pile behavior under different loading scenarios. The standard static load test according to ASTM D-1143 was simulated and compared with the real-life loading scenario. The results showed that the pile behavior obtained from the current static load test do not realistically represent that obtained from real-life loading. Attempts were carried out to capture the proper numerical loading scenario that simulates the pile behavior in real-life loading including the long-term effect. A modified method based on this research findings is proposed for the static pile loading tests. Field loading tests were carried out to validate the new method. Results obtained from both numerical and field tests by using the modified method prove that this method is more accurate in predicting the pile behavior in sand soil underlain by clay more than the current standard static load.

Keywords: numerical simulation, static load test, pile behavior, sand underlain with clay, creep

Procedia PDF Downloads 307
2984 Investigation of the Multiaxial Pedicle Screw Tulip Design Using Finite Element Analysis

Authors: S. Daqiqeh Rezaei, S. Mohajerzadeh, M. R. Sharifi

Abstract:

Pedicle screws are used to stabilize vertebrae and treat several types of spinal diseases and injuries. Multiaxial pedicle screws are a type of pedicle screw that increase surgical versatility, but they also increase design complexity. Failure of multiaxial pedicle screws caused by static loading, dynamic loading and fatigue can lead to irreparable damage to the patient. Inappropriate deformation of the multiaxial pedicle screw tulip can cause system failure. Investigation of deformation and stress in these tulips can be employed to optimize multiaxial pedicle screw design. The sensitivity of this matter necessitates precise analyzing and modeling of pedicle screws. In this work, three commercial multiaxial pedicle screw tulips and a newly designed tulip are investigated using finite element analysis. Employing video measuring machine (VMM), tulips are modeled. Afterwards, utilizing ANSYS, static analysis is performed on these models. In the end, stresses and displacements of the models are compared.

Keywords: pedicle screw, multiaxial pedicle screw, finite element analysis, static analysis

Procedia PDF Downloads 350
2983 Genetically Modified Fuel-Ethanol Industrial Yeast Strains as Biocontrol Agents

Authors: Patrícia Branco, Catarina Prista, Helena Albergaria

Abstract:

Industrial fuel-ethanol fermentations are carried out under non-sterile conditions, which favors the development of microbial contaminants, leading to huge economic losses. Wild yeasts such as Brettanomyces bruxellensis and lactic acid bacteria are the main contaminants of industrial bioethanol fermentation, affecting Saccharomyces cerevisiae performance and decreasing ethanol yields and productivity. In order to control microbial contaminations, the fuel-ethanol industry uses different treatments, including acid washing and antibiotics. However, these control measures carry environmental risks such as acid toxicity and the rise of antibiotic-resistant bacteria. Therefore, it is crucial to develop and apply less toxic and more environmentally friendly biocontrol methods. In the present study, an industrial fuel-ethanol starter, S. cerevisiae Ethanol-Red, was genetically modified to over-express AMPs with activity against fuel-ethanol microbial contaminants and evaluated regarding its biocontrol effect during mixed-culture alcoholic fermentations artificially contaminated with B. bruxellensis. To achieve this goal, S. cerevisiae Ethanol-Red strain was transformed with a plasmid containing the AMPs-codifying genes, i.e., partial sequences of TDH1 (925-963 bp) and TDH2/3 (925-963 bp) and a geneticin resistance marker. The biocontrol effect of those genetically modified strains was evaluated against B. bruxellensis and compared with the antagonistic effect exerted by the modified strain with an empty plasmid (without the AMPs-codifying genes) and the non-modified strain S. cerevisiae Ethanol-Red. For that purpose, mixed-culture alcoholic fermentations were performed in a synthetic must use the modified S. cerevisiae Ethanol-Red strains together with B. bruxellensis. Single-culture fermentations of B. bruxellensis strains were also performed as a negative control of the antagonistic effect exerted by S. cerevisiae strains. Results clearly showed an improved biocontrol effect of the genetically-modified strains against B. bruxellensis when compared with the modified Ethanol-Red strain with the empty plasmid (without the AMPs-codifying genes) and with the non-modified Ethanol-Red strain. In mixed-culture fermentation with the modified S. cerevisiae strain, B. bruxellensis culturability decreased from 5×104 CFU/mL on day-0 to less than 1 CFU/mL on day-10, while in single-culture B. bruxellensis increased its culturability from 6×104 to 1×106 CFU/mL in the first 6 days and kept this value until day-10. Besides, the modified Ethanol-Red strain exhibited an enhanced antagonistic effect against B. bruxellensis when compared with that induced by the non-modified Ethanol-Red strain. Indeed, culturability loss of B. bruxellensis after 10 days of fermentation with the modified Ethanol-Red strain was 98.7 and 100% higher than that occurred in fermentations performed with the non-modified Ethanol-Red and the empty-plasmid modified strain, respectively. Therefore, one can conclude that the S. cerevisiae genetically modified strain obtained in the present work may be a valuable solution for the mitigation of microbial contamination in fuel-ethanol fermentations, representing a much safer and environmentally friendly preservation strategy than the antimicrobial treatments (acid washing and antibiotics) currently applied in fuel-ethanol industry.

Keywords: antimicrobial peptides, fuel-ethanol microbial contaminations, fuel-ethanol fermentation, biocontrol agents, genetically-modified yeasts

Procedia PDF Downloads 86
2982 Improvement of Performance for R. C. Beams Made from Recycled Aggregate by Using Non-Traditional Admixture

Authors: A. H. Yehia, M. M. Rashwan, K. A. Assaf, K. Abd el Samee

Abstract:

The aim of this work is to use an environmental, cheap; organic non-traditional admixture to improve the structural behavior of sustainable reinforced concrete beams contains different ratios of recycled concrete aggregate. The used admixture prepared by using wastes from vegetable oil industry. Under and over reinforced concrete beams made from natural aggregate and different ratios of recycled concrete aggregate were tested under static load until failure. Eight beams were tested to investigate the performance and mechanism effect of admixture on improving deformation characteristics, modulus of elasticity and toughness of tested beams. Test results show efficiency of organic admixture on improving flexural behavior of beams contains 20% recycled concrete aggregate more over the other ratios.

Keywords: deflection, modulus of elasticity, non-traditional admixture, recycled concrete aggregate, strain, toughness, under and over reinforcement

Procedia PDF Downloads 441
2981 Video Summarization: Techniques and Applications

Authors: Zaynab El Khattabi, Youness Tabii, Abdelhamid Benkaddour

Abstract:

Nowadays, huge amount of multimedia repositories make the browsing, retrieval and delivery of video contents very slow and even difficult tasks. Video summarization has been proposed to improve faster browsing of large video collections and more efficient content indexing and access. In this paper, we focus on approaches to video summarization. The video summaries can be generated in many different forms. However, two fundamentals ways to generate summaries are static and dynamic. We present different techniques for each mode in the literature and describe some features used for generating video summaries. We conclude with perspective for further research.

Keywords: video summarization, static summarization, video skimming, semantic features

Procedia PDF Downloads 378
2980 Effect of Aging Condition on Semisolid Cast 2024 Aluminum Alloy

Authors: S. Wisutmethangoon, S. Pannaray, T. Plookphol, J. Wannasin

Abstract:

2024 Aluminium alloy was squeezed cast by the Gas Induced Semi Solid (GISS) process. Effect of artificial aging on microstructure and mechanical properties of this alloy was studied in the present work. The solutionized specimens were aged hardened at temperatures of 175°C, 200°C, and 225°C under various time durations. The highest hardness of about 77.7 HRE was attained from specimen aged at the temperature of 175 °C for 36 h. Upon investigation the microstructure by using Transmission Electron Microscopy (TEM), the phase was mainly attributed to the strengthening effect in the aged alloy. The apparent activation energy for precipitation hardening of the alloy was calculated as 133,805 J/mol.

Keywords: 2024 aluminium alloy, gas induced semi solid, T6 heat treatment, aged hardening, transmission electron microscopy

Procedia PDF Downloads 293
2979 Clinical Parameters Response to Low Level Laser Versus Monochromatic Near Infrared Photo Energy in Diabetic Patient with Peripheral Neuropathy

Authors: Abeer Ahmed Abdehameed

Abstract:

Background: Diabetic sensorimotor polyneuropathy (DSP) is one of the most common micro vascular complications of type 2 diabetes. Loss of sensation is thought to contribute to lake of static and dynamic stability and increased risk of falling. Purpose: The purpose of this study was to compare the effects of low level laser (LLL) and monochromatic near infrared photo energy (MIRE) on pain , cutaneous sensation, static stability and index of lower limb blood flow in diabetic with peripheral neuropathy. Methods: Forty subjects with diabetic peripheral neuropathy were recruited for study. They were divided into two groups: The ( MIRE) group that included (20) patients and (LLL) group included (20) patients. All patients in the study had been subjected to various physical assessment procedures including pain, cutaneous sensation, Doppler flow meter and static stability assessments. The baseline measurements were followed by treatment sessions that conducted twice a week for 6 successive weeks. Results: The statistical analysis of the data had revealed significant improvement of the pain in both groups, with significant improvement in cutaneous sensation and static balance in (MIRE) group compared to (LLL) group; on the other hand results showed no significant differences on lower limb blood flow in both groups. Conclusion: Low level laser and monochromatic near infrared therapy can improve painful symptoms in patients with diabetic neuropathy. On the other hand (MIRE) is useful in improving cutaneous sensation and static stability in patients with diabetic neuropathy.

Keywords: diabetic neuropathy, doppler flow meter, low level laser, monochromatic near infrared photo energy

Procedia PDF Downloads 300
2978 Finite Element Analysis and Multibody Dynamics of 6-DOF Industrial Robot

Authors: Rahul Arora, S. S. Dhami

Abstract:

This paper implements the design structure of industrial robot along with the different transmission components like gear assembly and analysis of complete industrial robot. In this paper, it gives the overview on the most efficient types of modeling and different analysis results that can be obtained for an industrial robot. The investigation is executed in regards to two classifications i.e. the deformation and the stress tests. SolidWorks is utilized to design and review the 3D drawing plan while ANSYS Workbench is utilized to execute the FEA on an industrial robot and the designed component. The CAD evaluation was conducted on a disentangled model of an industrial robot. The study includes design and drafting its transmission system. In CAE study static, modal and dynamic analysis are presented. Every one of the outcomes is divided in regard with the impact of the static and dynamic analysis on the situating exactness of the robot. It gives critical data with respect to parts of the industrial robot that are inclined to harm under higher high force applications. Therefore, the mechanical structure under different operating conditions can help in optimizing the manipulator geometry and in selecting the right material for the same. The FEA analysis is conducted for four different materials on the same industrial robot and gear assembly.

Keywords: CAD, CAE, FEA, robot, static, dynamic, modal, gear assembly

Procedia PDF Downloads 359
2977 The Effect of Arbitrary Support Conditions on the Static Behavior of Curved Beams Using the Finite Element Method

Authors: Hossein Mottaghi T., Amir R. Masoodi

Abstract:

This study presents a finite curved element for analyzing the static behavior of curved beams within the elastic range. The objective is to enhance accuracy while reducing the number of elements by incorporating first-order shear deformations of Timoshenko beams. Initially, finite element formulations are developed by considering polynomial initial functions for axial, shear, and rotational deformations for a three-node element. Subsequently, nodal interpolation functions for this element are derived, followed by the construction of the element stiffness matrix. To enable the utilization of the stiffness matrix in the static analysis of curved beams, the constructed matrix in the local coordinates of the element is transformed to the global coordinate system using the rotation matrix. A numerical benchmark example is investigated to assess the accuracy and effectiveness of this method. Moreover, the influence of spring stiffness on the rotation of the endpoint of a clamped beam is examined by substituting each support reaction of the beam with a spring. In the parametric study, the effect of the central angle of the beam on the rotation of the beam's endpoint in a cantilever beam under a concentrated load is examined. This research encompasses various mechanical, geometrical, and boundary configurations to evaluate the static characteristics of curved beams, thus providing valuable insights for their analysis and examination.

Keywords: curved beam, finite element method, first-order shear deformation theory, elastic support

Procedia PDF Downloads 20
2976 Evaluation of the Use of U-Wrap Anchorage Systems for Strengthening Concrete Members Reinforced by Fiber Reinforced-Polymer Laminate

Authors: Mai A. Aljaberi

Abstract:

The anchorage of fibre-reinforced polymer (FRP) sheets is the most effective solution to prevent or delay debonding failure; this system has proven to get better levels of FRP utilization. Unfortunately, the related design information is still unclear. This shortcoming limits the widespread use of the anchorage system. In order to minimize the knowledge gap about the design of U-wrap anchors, this paper reports the results of tested beams which were strengthened with carbon fiber-reinforced polymer (CFRP) sheets at their tension sides and secured with U-wrap anchors at each end of the longitudinal CFRP. The beams were tested under four-point loading until failure. The parameters examined include the compressive strength of the concrete and the number of longitudinal CFRP. It is concluded that these parameters have a considerable effect on the debonding of the strain. The greatest improvement in the strain was 55.8% over the control beam.

Keywords: CFRP, concrete strengthening, debonding failure, debonding strain, U-wrap anchor

Procedia PDF Downloads 61
2975 Electro-Discharge Drilling in Residual Stress Measurement of Annealed St.37 Steel

Authors: H. Gholami, M. Jalali Azizpour

Abstract:

For materials such as hard coating whose stresses state are difficult to obtain by a widely used method called high-speed hole-drilling method (ASTM Standard E837). It is important to develop a non contact method. This process itself imposes an additional stresses. The through thickness residual stress of st37 steel using elector-discharge was investigated. The strain gage and dynamic strain indicator used in all cases was FRS-2-11 rosette type and TML 221, respectively. The average residual stress in depth of 320 µm was -6.47 MPa.

Keywords: HVOF, residual stress, thermal spray, WC-Co

Procedia PDF Downloads 298
2974 Confinement of Concrete Filled Steel Tubular Beams Using U-Links

Authors: Madiha Z. Ammari, Abdul Qader AlNajmi

Abstract:

A new system of U-links was used in this study to confine the concrete core in concrete-filled steel beams. This system aims to employ the separation expected between the steel tube and the concrete core in the compression side of the section in the plastic hinge zone. A total of six rectangular CFT beam specimens were tested under flexure using different D/t ratios and different diameters for the U-links to examine their effect on the flexural behavior of these beams. The ultimate flexural strength of the CFT beam specimens with U-links showed an increase of strength about 47% of the specimen with D/t ratio equals 37.5 above standard CFT beam specimen without U-links inside. State of concrete inside the tubes has shown no crushing of concrete when those beams were cut open at the location of the plastic hinge. Strain measurements revealed that the compressive strain of concrete was 5-6 times the concrete crushing strain.

Keywords: concrete-filled tubes, U-links, plated studies, beams, flexural strength, concrete, confinement

Procedia PDF Downloads 327
2973 Study of the Influence of Hole Topology on Crack Propagation Rate

Authors: Hallan Moura Ladeira, Carla Tatiana Mota Anflor

Abstract:

The drilling process for bolted or riveted joints of components is very common in the naval, aeronautical, mechanical, and civil industries. In this context, the present work aims to study, through computer simulation, the influence of hole geometry (through, chamfered, and rounded) on crack propagation when submitted to static and dynamic loads. For the static crack evaluation, failure was considered when the stress intensity factor (FIT) exceeds the fracture toughness of the material (KIc). In the case of fatigue, the condition of the small crack tip plastification zone and the Paris Law were considered for determining region II of the dadN x ΔK curve. Initially, a parametric analysis of the hole geometry was performed to obtain a topology that would result in less discontinuity of the stress field and, consequently, less influence on static crack growth. The best performing topology was then used to study the fatigue crack growth rate considering the Paris Law. The numerical tests were performed on a 7075-T6 aluminum specimen resulting in dadN x ΔK curves in good agreement with the literature.

Keywords: holes, cracks, loading, fracture toughness

Procedia PDF Downloads 97