Search results for: standard finite difference schemes
11320 Non-Linear Finite Element Analysis of Bonded Single Lap Joint in Composite Material
Authors: A. Benhamena, L. Aminallah, A. Aid, M. Benguediab, A. Amrouche
Abstract:
The goal of this work is to analyze the severity of interfacial stress distribution in the single lap adhesive joint under tensile loading. The three-dimensional and non-linear finite element method based on the computation of the peel and shear stresses was used to analyze the fracture behaviour of single lap adhesive joint. The effect of the loading magnitude and the overlap length on the distribution of peel and shear stresses was highlighted. A good correlation was found between the FEM simulations and the analytical results.Keywords: aluminum 2024-T3 alloy, single-lap adhesive joints, Interface stress distributions, material nonlinear analysis, adhesive, bending moment, finite element method
Procedia PDF Downloads 57011319 A Case for Ethics Practice under the Revised ISO 14001:2015
Authors: Reuben Govender, M. L. Woermann
Abstract:
The ISO 14001 management system standard was first published in 1996. It is a voluntary standard adopted by both private and public sector organizations globally. Adoption of the ISO 14001 standard at the corporate level is done to help manage business impacts on the environment e.g. pollution control. The International Organization for Standardization (ISO) revised the standard in 2004 and recently in 2015. The current revision of the standard appears to adopt a communitarian-type philosophy. The inclusion of requirements to consider external 'interested party' needs and expectations implies this philosophy. Therefore, at operational level businesses implementing ISO 14001 will have to consider needs and expectations beyond local laws. Should these external needs and expectations be included in the scope of the environmental management system, they become requirements to be complied with in much the same way as compliance to laws. The authors assert that the recent changes to ISO 14001 introduce an ethical dimension to the standard. The authors assert that business ethics as a discipline now finds relevance in ISO 14001 via contemporary stakeholder theory and discourse ethics. Finally, the authors postulate implications of (not) addressing these requirements before July 2018 when transition to the revised standard must be complete globally.Keywords: business ethics, environmental ethics, ethics practice, ISO 14001:2015
Procedia PDF Downloads 26111318 Nonlinear Finite Element Analysis of Composite Cantilever Beam with External Prestressing
Authors: R. I. Liban, N. Tayşi
Abstract:
This paper deals with a nonlinear finite element analysis to examine the behavior up to failure of cantilever composite steel-concrete beams which are prestressed externally. 'Pre-' means stressing the high strength external tendons in the steel beam section before the concrete slab is added. The composite beam contains a concrete slab which is connected together with steel I-beam by means of perfect shear connectors between the concrete slab and the steel beam which is subjected to static loading. A finite element analysis will be done to study the effects of external prestressed tendons on the composite steel-concrete beams by locating the tendons in different locations (profiles). ANSYS version 12.1 computer program is being used to analyze the represented three-dimensional model of the cantilever composite beam. This model gives all these outputs, mainly load-displacement behavior of the cantilever end and in the middle span of the simple support part.Keywords: composite steel-concrete beams, external prestressing, finite element analysis, ANSYS
Procedia PDF Downloads 31511317 Geomechanical Numerical Modeling of Well Wall in Drilling with Finite Difference Method
Authors: Marzieh Zarei
Abstract:
Well instability is one of the most fundamental challenges faced by the oil and gas industry. Well wall stability analysis is a gap to be filled in the oil industry. The collection of static data such as well logging leads to the construction of a geomechanical numerical model, which will help in assessing the probable risks in future drilling. In this paper, geomechanical model was designed, and mechanical properties of the rock was determined at all points of the model. It was found the safe mud window was determined and the minimum and maximum mud pressures were determined in the ranges of 70-60 MPa and 110-100 MPa, respectively.Keywords: geomechanics, numerical model, well stability, in-situ stress, underbalanced drilling
Procedia PDF Downloads 12911316 Investigation of Heat Conduction through Particulate Filled Polymer Composite
Authors: Alok Agrawal, Alok Satapathy
Abstract:
In this paper, an attempt to determine the effective thermal conductivity (keff) of particulate filled polymer composites using finite element method (FEM) a powerful computational technique is made. A commercially available finite element package ANSYS is used for this numerical analysis. Three-dimensional spheres-in-cube lattice array models are constructed to simulate the microstructures of micro-sized particulate filled polymer composites with filler content ranging from 2.35 to 26.8 vol %. Based on the temperature profiles across the composite body, the keff of each composition is estimated theoretically by FEM. Composites with similar filler contents are than fabricated using compression molding technique by reinforcing micro-sized aluminium oxide (Al2O3) in polypropylene (PP) resin. Thermal conductivities of these composite samples are measured according to the ASTM standard E-1530 by using the Unitherm™ Model 2022 tester, which operates on the double guarded heat flow principle. The experimentally measured conductivity values are compared with the numerical values and also with those obtained from existing empirical models. This comparison reveals that the FEM simulated values are found to be in reasonable good agreement with the experimental data. Values obtained from the theoretical model proposed by the authors are also found to be in even closer approximation with the measured values within percolation limit. Further, this study shows that there is gradual enhancement in the conductivity of PP resin with increase in filler percentage and thereby its heat conduction capability is improved. It is noticed that with addition of 26.8 vol % of filler, the keff of composite increases to around 6.3 times that of neat PP. This study validates the proposed model for PP-Al2O3 composite system and proves that finite element analysis can be an excellent methodology for such investigations. With such improved heat conduction ability, these composites can find potential applications in micro-electronics, printed circuit boards, encapsulations etc.Keywords: analytical modelling, effective thermal conductivity, finite element method, polymer matrix composite
Procedia PDF Downloads 32111315 Evaluation of Prestressed Reinforced Concrete Slab Punching Shear Using Finite Element Method
Authors: Zhi Zhang, Liling Cao, Seyedbabak Momenzadeh, Lisa Davey
Abstract:
Reinforced concrete (RC) flat slab-column systems are commonly used in residential or office buildings, as the flat slab provides efficient clearance resulting in more stories at a given height than regular reinforced concrete beam-slab system. Punching shear of slab-column joints is a critical component of two-way reinforced concrete flat slab design. The unbalanced moment at the joint is transferred via slab moment and shear forces. ACI 318 provides an equation to evaluate the punching shear under the design load. It is important to note that the design code considers gravity and environmental load when considering the design load combinations, while it does not consider the effect from differential foundation settlement, which may be a governing load condition for the slab design. This paper describes how prestressed reinforced concrete slab punching shear is evaluated based on ACI 318 provisions and finite element analysis. A prestressed reinforced concrete slab under differential settlements is studied using the finite element modeling methodology. The punching shear check equation is explained. The methodology to extract data for punching shear check from the finite element model is described and correlated with the corresponding code provisions. The study indicates that the finite element analysis results should be carefully reviewed and processed in order to perform accurate punching shear evaluation. Conclusions are made based on the case studies to help engineers understand the punching shear behavior in prestressed and non-prestressed reinforced concrete slabs.Keywords: differential settlement, finite element model, prestressed reinforced concrete slab, punching shear
Procedia PDF Downloads 13011314 When English Learners Speak “Non-Standard” English
Authors: Gloria Chen
Abstract:
In the past, when we complimented someone who had a good command of English, we would say ‘She/He speaks/writes standard English,’ or ‘His/Her English is standard.’ However, with English has becoming a ‘global language,’ many scholars and English users even create a plural form for English as ‘world Englishes,’ which indicates that national/racial varieties of English not only exist, but also are accepted to a certain degree. Now, a question will be raised when it comes to English teaching and learning: ‘What variety/varieties of English should be taught?’ This presentation will first explore Braj Kachru’s well-known categorization of the inner circle, the outer circle, and the expanding circle of English users, as well as inner circle varieties such as ‘Ebonics’ and ‘cockney’. The presentation then will discuss the purposes and contexts of English learning, and apply different approaches to different purposes and contexts. Three major purposes of English teaching/learning will be emphasized and considered: (1) communicative competence, (2) academic competence, and (3) intercultural competence. This presentation will complete with the strategies of ‘code switch’ and ‘register switch’ in teaching English to non-standard English speakers in both speaking and writing.Keywords: world Englishes, standard and non-standard English, inner, outer, expanded circle communicative, academic, intercultural competence
Procedia PDF Downloads 26511313 Study on the Heat Transfer Performance of the Annular Fin under Condensing Conditions
Authors: Abdenour Bourabaa, Malika Fekih, Mohamed Saighi
Abstract:
A numerical investigation of the fin efficiency and temperature distribution of an annular fin under dehumidification has been presented in this paper. The non-homogeneous second order differential equation that describes the temperature distribution from the fin base to the fin tip has been solved using the central finite difference method. The effects of variations in parameters including relative humidity, air temperature, air face velocity on temperature distribution and fin efficiency are investigated and compared with those under fully dry fin conditions. Also, the effect of fin pitch on the dimensionless temperature has been studied.Keywords: annular fin, dehumidification, fin efficiency, heat and mass transfer, wet fin
Procedia PDF Downloads 48011312 Stability of Square Plate with Concentric Cutout
Authors: B. S. Jayashankarbabu, Karisiddappa
Abstract:
The finite element method is used to obtain the elastic buckling load factor for square isotropic plate containing circular, square and rectangular cutouts. ANSYS commercial finite element software had been used in the study. The applied inplane loads considered are uniaxial and biaxial compressions. In all the cases the load is distributed uniformly along the plate outer edges. The effects of the size and shape of concentric cutouts with different plate thickness ratios and the influence of plate edge condition, such as SSSS, CCCC and mixed boundary condition SCSC on the plate buckling strength have been considered in the analysis.Keywords: concentric cutout, elastic buckling, finite element method, inplane loads, thickness ratio
Procedia PDF Downloads 39111311 Time/Temperature-Dependent Finite Element Model of Laminated Glass Beams
Authors: Alena Zemanová, Jan Zeman, Michal Šejnoha
Abstract:
The polymer foil used for manufacturing of laminated glass members behaves in a viscoelastic manner with temperature dependence. This contribution aims at incorporating the time/temperature-dependent behavior of interlayer to our earlier elastic finite element model for laminated glass beams. The model is based on a refined beam theory: each layer behaves according to the finite-strain shear deformable formulation by Reissner and the adjacent layers are connected via the Lagrange multipliers ensuring the inter-layer compatibility of a laminated unit. The time/temperature-dependent behavior of the interlayer is accounted for by the generalized Maxwell model and by the time-temperature superposition principle due to the Williams, Landel, and Ferry. The resulting system is solved by the Newton method with consistent linearization and the viscoelastic response is determined incrementally by the exponential algorithm. By comparing the model predictions against available experimental data, we demonstrate that the proposed formulation is reliable and accurately reproduces the behavior of the laminated glass units.Keywords: finite element method, finite-strain Reissner model, Lagrange multipliers, generalized Maxwell model, laminated glass, Newton method, Williams-Landel-Ferry equation
Procedia PDF Downloads 43111310 Comparison between Simulation and Experimentally Observed Interactions between Two Different Sized Magnetic Beads in a Fluidic System
Authors: Olayinka Oduwole, Steve Sheard
Abstract:
The magnetic separation of biological cells using super-magnetic beads has been used widely for various bioassays. These bioassays can further be integrated with other laboratory components to form a biosensor which can be used for cell sorting, mixing, purification, transport, manipulation etc. These bio-sensing applications have also been facilitated by the wide availability of magnetic beads which range in size and magnetic properties produced by different manufacturers. In order to improve the efficiency and separation capabilities of these biosensors, it is important to determine the magnetic force induced velocities and interaction of beads within the magnetic field; this will help biosensor users choose the desired magnetic bead for their specific application. This study presents for the first time the interaction between a pair of different sized super-paramagnetic beads suspended in a static fluid moving within a uniform magnetic field using a modified finite-time-finite-difference scheme. A captured video was used to record the trajectory pattern and a good agreement was obtained between the simulated trajectories and the video data. The model is, therefore, a good approximation for predicting the velocities as well as the interaction between various magnetic particles which differ in size and magnetic properties for bio-sensing applications requiring a low concentration of magnetic beads.Keywords: biosensor, magnetic field, magnetic separation, super-paramagnetic bead
Procedia PDF Downloads 47311309 Secure Optical Communication System Using Quantum Cryptography
Authors: Ehab AbdulRazzaq Hussein
Abstract:
Quantum cryptography (QC) is an emerging technology for secure key distribution with single-photon transmissions. In contrast to classical cryptographic schemes, the security of QC schemes is guaranteed by the fundamental laws of nature. Their security stems from the impossibility to distinguish non-orthogonal quantum states with certainty. A potential eavesdropper introduces errors in the transmissions, which can later be discovered by the legitimate participants of the communication. In this paper, the modeling approach is proposed for QC protocol BB84 using polarization coding. The single-photon system is assumed to be used in the designed models. Thus, Eve cannot use beam-splitting strategy to eavesdrop on the quantum channel transmission. The only eavesdropping strategy possible to Eve is the intercept/resend strategy. After quantum transmission of the QC protocol, the quantum bit error rate (QBER) is estimated and compared with a threshold value. If it is above this value the procedure must be stopped and performed later again.Keywords: security, key distribution, cryptography, quantum protocols, Quantum Cryptography (QC), Quantum Key Distribution (QKD).
Procedia PDF Downloads 40411308 Analysis of the Suspension Rocker of Formula SAE Prototype by Finite Element Method
Authors: Jessyca A. Bessa, Darlan A. Barroso, Jonas P. Reges, Auzuir R. Alexandria
Abstract:
This work aims to study the rocker. This is a device of the suspension of Formula SAE vehicle that receives efforts from the motion scrolling of the vehicle and transmits them to the chassis frame minimized by a momentum ratio and smoothed by the set spring - damper. A review of parameters used in vehicle dynamics and a geometric analysis of the forces and stresses caused by such was carried out. The main function of the rocker is to reduce the force transmitted to the frame due to movement of rolling and subsequent application of the suspension. This functions is taken as satisfactory, since the force applied to the wheel and which would be transmitted to the chassis is reduced from 3833.9N to 3496.48N. From these values can be further more detailed simulations using the finite element method aimed at mass reduction or even rocker manufacturing feasibility aluminum. Then, the analysis by the finite element method was applied. This analysis uses the theory of discretization of systems and examines the strength of the component based on the distortion energy, determining the maximum straining experienced by the component and the region of higher demand.Keywords: rocker, suspension, the finite element method, mechatronics engineering
Procedia PDF Downloads 54111307 Behavior of the Masonry Infill in Structures Subjected to the Horizontal Loads
Authors: Mezigheche Nawel, Gouasmia Abdelhacine, Athmani Allaeddine, Merzoud Mouloud
Abstract:
Masonry infill walls are inevitable in the self-supporting structures, but their contribution in the resistance of earthquake loads is generally neglected in the structural analyses. The principal aim of this work through a numerical study of the behavior of masonry infill walls in structures subjected to horizontal load is to propose by finite elements numerical modeling, a more reliable approach, faster and close to reality. In this study, 3D finite element analysis was developed to study the behavior of masonry infill walls in structures subjected to horizontal load: The finite element software being used was ABAQUS, it is observed that more rigidity of the masonry filling is significant, more the structure is rigid, so we can conclude that the filling brings an additional rigidity to the structure not to be neglected. It is also observed that when the framework is subjected to horizontal loads, the framework separates from the filling on the level of the tended diagonal.Keywords: finite element, masonry infill walls, rigidity of the masonry, tended diagonal
Procedia PDF Downloads 49111306 In vivo Mechanical Characterization of Facial Skin Combining Digital Image Correlation and Finite Element
Authors: Huixin Wei, Shibin Wang, Linan Li, Lei Zhou, Xinhao Tu
Abstract:
Facial skin is a biomedical material with complex mechanical properties of anisotropy, viscoelasticity, and hyperelasticity. The mechanical properties of facial skin are crucial for a number of applications including facial plastic surgery, animation, dermatology, cosmetic industry, and impact biomechanics. Skin is a complex multi-layered material which can be broadly divided into three main layers, the epidermis, the dermis, and the hypodermis. Collagen fibers account for 75% of the dry weight of dermal tissue, and it is these fibers which are responsible for the mechanical properties of skin. Many research on the anisotropic mechanical properties are mainly concentrated on in vitro, but there is a great difference between in vivo and in vitro for mechanical properties of the skin. In this study, we presented a method to measure the mechanical properties of facial skin in vivo. Digital image correlation (DIC) and indentation tests were used to obtain the experiment data, including the deformation of facial surface and indentation force-displacement curve. Then, the experiment was simulated using a finite element (FE) model. Application of Computed Tomography (CT) and reconstruction techniques obtained the real tissue geometry. A three-dimensional FE model of facial skin, including a bi-layer system, was obtained. As the epidermis is relatively thin, the epidermis and dermis were regarded as one layer and below it was hypodermis in this study. The upper layer was modeled as a Gasser-Ogden-Holzapfel (GOH) model to describe hyperelastic and anisotropic behaviors of the dermis. The under layer was modeled as a linear elastic model. In conclusion, the material properties of two-layer were determined by minimizing the error between the FE data and experimental data.Keywords: facial skin, indentation test, finite element, digital image correlation, computed tomography
Procedia PDF Downloads 11211305 The Perception and Integration of Lexical Tone and Vowel in Mandarin-speaking Children with Autism: An Event-Related Potential Study
Authors: Rui Wang, Luodi Yu, Dan Huang, Hsuan-Chih Chen, Yang Zhang, Suiping Wang
Abstract:
Enhanced discrimination of pure tones but diminished discrimination of speech pitch (i.e., lexical tone) were found in children with autism who speak a tonal language (Mandarin), suggesting a speech-specific impairment of pitch perception in these children. However, in tonal languages, both lexical tone and vowel are phonemic cues and integrally dependent on each other. Therefore, it is unclear whether the presence of phonemic vowel dimension contributes to the observed lexical tone deficits in Mandarin-speaking children with autism. The current study employed a multi-feature oddball paradigm to examine how vowel and tone dimensions contribute to the neural responses for syllable change detection and involuntary attentional orienting in school-age Mandarin-speaking children with autism. In the oddball sequence, syllable /da1/ served as the standard stimulus. There were three deviant stimulus conditions, representing tone-only change (TO, /da4/), vowel-only change (VO, /du1/), and change of tone and vowel simultaneously (TV, /du4/). EEG data were collected from 25 children with autism and 20 age-matched normal controls during passive listening to the stimulation. For each deviant condition, difference waveform measuring mismatch negativity (MMN) was derived from subtracting the ERP waveform to the standard sound from that to the deviant sound for each participant. Additionally, the linear summation of TO and VO difference waveforms was compared to the TV difference waveform, to examine whether neural sensitivity for TV change detection reflects simple summation or nonlinear integration of the two individual dimensions. The MMN results showed that the autism group had smaller amplitude compared with the control group in the TO and VO conditions, suggesting impaired discriminative sensitivity for both dimensions. In the control group, amplitude of the TV difference waveform approximated the linear summation of the TO and VO waveforms only in the early time window but not in the late window, suggesting a time course from dimensional summation to nonlinear integration. In the autism group, however, the nonlinear TV integration was already present in the early window. These findings suggest that speech perception atypicality in children with autism rests not only in the processing of single phonemic dimensions, but also in the dimensional integration process.Keywords: autism, event-related potentials , mismatch negativity, speech perception
Procedia PDF Downloads 21811304 Identification of the Orthotropic Parameters of Cortical Bone under Nanoindentation
Authors: D. Remache, M. Semaan, C. Baron, M. Pithioux, P. Chabrand, J. M. Rossi, J. L. Milan
Abstract:
A good understanding of the mechanical properties of the bone implies a better understanding of its various diseases, such as osteoporosis. Berkovich nanoindentation tests were performed on the human cortical bone to extract its orthotropic parameters. The nanoindentation experiments were then simulated by the finite element method. Different configurations of interactions between the tip indenter and the bone were simulated. The orthotropic parameters of the material were identified by the inverse method for each configuration. The friction effect on the bone mechanical properties was then discussed. It was found that the inverse method using the finite element method is a very efficient method to predict the mechanical behavior of the bone.Keywords: mechanical behavior of bone, nanoindentation, finite element analysis, inverse optimization approaches
Procedia PDF Downloads 38811303 The Antecedent Factor Affecting Manpower’s Working Performance of Suan Sunandha Rajabhat University
Authors: Suvimon Wajeetongratana, Sittichai Thammasane
Abstract:
This research objective was to study the development training that affecting the work performance of Suan Sunandha Rajabhat University manpower. The sample of 200 manpower was used to collect data for the survey. The statistics for data analysis were frequency percentage, mean value, standard deviation and hypothesis testing using independent samples (t-test). The study indicated that the development training has the most affect to employees in the high level and the second was coaching by the senior follow by the orientation in case of changing jobs task or changing positions. Interms of manpower work performance have three performance areas are quality of the job is better than the original. Moreover the results of hypothesis testing found that the difference personal information including gender, age, education, income per month have difference effectiveness of attitudes and also found the develop training is correlated with the performance of employees in the same direction.Keywords: development training, employees job satisfaction, work performance, Sunandha Rajabhat University
Procedia PDF Downloads 21711302 Modeling Anisotropic Damage Algorithms of Metallic Structures
Authors: Bahar Ayhan
Abstract:
The present paper is concerned with the numerical modeling of the inelastic behavior of the anisotropically damaged ductile materials, which are based on a generalized macroscopic theory within the framework of continuum damage mechanics. Kinematic decomposition of the strain rates into elastic, plastic and damage parts is basis for accomplishing the structure of continuum theory. The evolution of the damage strain rate tensor is detailed with the consideration of anisotropic effects. Helmholtz free energy functions are constructed separately for the elastic and inelastic behaviors in order to be able to address the plastic and damage process. Additionally, the constitutive structure, which is based on the standard dissipative material approach, is elaborated with stress tensor, a yield criterion for plasticity and a fracture criterion for damage besides the potential functions of each inelastic phenomenon. The finite element method is used to approximate the linearized variational problem. Stress and strain outcomes are solved by using the numerical integration algorithm based on operator split methodology with a plastic and damage (multiplicator) variable separately. Numerical simulations are proposed in order to demonstrate the efficiency of the formulation by comparing the examples in the literature.Keywords: anisotropic damage, finite element method, plasticity, coupling
Procedia PDF Downloads 20611301 Hydraulic Characteristics of Mine Tailings by Metaheuristics Approach
Authors: Akhila Vasudev, Himanshu Kaushik, Tadikonda Venkata Bharat
Abstract:
A large number of mine tailings are produced every year as part of the extraction process of phosphates, gold, copper, and other materials. Mine tailings are high in water content and have very slow dewatering behavior. The efficient design of tailings dam and economical disposal of these slurries requires the knowledge of tailings consolidation behavior. The large-strain consolidation theory closely predicts the self-weight consolidation of these slurries as the theory considers the conservation of mass and momentum conservation and considers the hydraulic conductivity as a function of void ratio. Classical laboratory techniques, such as settling column test, seepage consolidation test, etc., are expensive and time-consuming for the estimation of hydraulic conductivity variation with void ratio. Inverse estimation of the constitutive relationships from the measured settlement versus time curves is explored. In this work, inverse analysis based on metaheuristics techniques will be explored for predicting the hydraulic conductivity parameters for mine tailings from the base excess pore water pressure dissipation curve and the initial conditions of the mine tailings. The proposed inverse model uses particle swarm optimization (PSO) algorithm, which is based on the social behavior of animals searching for food sources. The finite-difference numerical solution of the forward analytical model is integrated with the PSO algorithm to solve the inverse problem. The method is tested on synthetic data of base excess pore pressure dissipation curves generated using the finite difference method. The effectiveness of the method is verified using base excess pore pressure dissipation curve obtained from a settling column experiment and further ensured through comparison with available predicted hydraulic conductivity parameters.Keywords: base excess pore pressure, hydraulic conductivity, large strain consolidation, mine tailings
Procedia PDF Downloads 13311300 Efficient Relay Selection Scheme Utilizing OVSF Code in Cooperative Communication System
Authors: Yeong-Seop Ahn, Myoung-Jin Kim, Young-Min Ko, Hyoung-Kyu Song
Abstract:
This paper proposes a relay selection scheme utilizing an orthogonal variable spreading factor (OVSF) code in a cooperative communication. The relay selection scheme influences on the communication performance in the cooperative communication. Conventional relay selection schemes such as the best harmonic mean relay selection scheme or the threshold-based relay selection scheme should know information such as channel state information (CSI) in advance. The proposed relay selection scheme does not require information in advance by using a reference signal utilizing the OVSF code. The simulation result shows that bit error rate (BER) performance of proposed relay selection scheme is similar to the best harmonic mean relay selection scheme that is known as one of the optimal relay selection schemes.Keywords: cooperative communication, relay selection, OFDM, OVSF code
Procedia PDF Downloads 63711299 Production and Evaluation of Enriched Aadun (a Local Maize Snack)
Authors: E. Oluwasola, E. Bamidele, E. Ogunbusola
Abstract:
Enriched “aadun” was produced from maize with, supplemented with cray fish and beans. Sodium chloride (Nacl) was also added to the product which acts as preservatives. The produced enriched “aadun” was compared with commercial “aadun” organoleptically the result of the sensory evaluation carried out on the product showed that there is a statistical significant difference between the mouth feel of enriched and commercial “aadun” at 0.05 level of significance (t=5.499, P<0.05) Similarly, the mean difference between enriched and commercial “aadun” in terms of aroma (t=4.403, P<0.05), taste (t=4.592, P<0.05) colour (t=2.788, P<0.05) and general acceptability (t=3.894, P<0.05) is statistically significant at 95% confidence level in each case, therefore, it is clearly revealed that product 321 (Enriched “aadun”) is more acceptable and significant better than product 432 (commercial “aadun”) in all the attributes evaluated. The proximate analysis using standard methods of analysis was carried out which include the moisture content, ash and protein content for both the enriched aadun and commercial aadun the result showed moisture content 9%, ash 6.2%, protein 19.6% and 12.9% moisture content, 4%ash content, 8.75% protein for the commercial and improved aadun respectively.Keywords: aadun, enriched, maize, supplemented
Procedia PDF Downloads 55611298 Numerical Investigation of Poling Vector Angle on Adaptive Sandwich Plate Deflection
Authors: Alireza Pouladkhan, Mohammad Yavari Foroushani, Ali Mortazavi
Abstract:
This paper presents a finite element model for a sandwich plate containing a piezoelectric core. A sandwich plate with a piezoelectric core is constructed using the shear mode of piezoelectric materials. The orientation of poling vector has a significant effect on deflection and stress induced in the piezo-actuated adaptive sandwich plate. In the present study, the influence of this factor for a clamped-clamped-free-free and simple-simple-free-free square sandwich plate is investigated using Finite Element Method. The study uses ABAQUS (v.6.7) software to derive the finite element model of the sandwich plate. By using this model, the study gives the influences of the poling vector angle on the response of the smart structure and determines the maximum transverse displacement and maximum stress induced.Keywords: finite element method, sandwich plate, poling vector, piezoelectric materials, smart structure, electric enthalpy
Procedia PDF Downloads 23311297 Mitigation of Size Effects in Woven Fabric Composites Using Finite Element Analysis Approach
Authors: Azeez Shaik, Yagnik Kalariya, Amit Salvi
Abstract:
High-performance requirements and emission norms were forcing the automobile industry to opt for lightweight materials which improve the fuel efficiency and absorb energy during crash applications. In such scenario, the woven fabric composites are providing better energy absorption compared to metals. Woven fabric composites have a repetitive unit cell (RUC) and the mechanical properties of these materials are highly dependent on RUC. This work investigates the importance of detailed modelling of the RUC, the size effects associated and the mitigation techniques to avoid them using Finite element analysis approach.Keywords: repetitive unit cell, representative volume element, size effects, cohesive zone, finite element analysis
Procedia PDF Downloads 25511296 Evaluation of Dynamic Behavior of a Rotor-Bearing System in Operating Conditions
Authors: Mohammad Hadi Jalali, Behrooz Shahriari, Mostafa Ghayour, Saeed Ziaei-Rad, Shahram Yousefi
Abstract:
Most flexible rotors can be considered as beam-like structures. In many cases, rotors are modeled as one-dimensional bodies, made basically of beam-like shafts with rigid bodies attached to them. This approach is typical of rotor dynamics, both analytical and numerical, and several rotor dynamic codes, based on the finite element method, follow this trend. In this paper, a finite element model based on Timoshenko beam elements is utilized to analyze the lateral dynamic behavior of a certain rotor-bearing system in operating conditions.Keywords: finite element method, Timoshenko beam elements, operational deflection shape, unbalance response
Procedia PDF Downloads 42611295 Finite Element Modeling of a Lower Limb Based on the East Asian Body Characteristics for Pedestrian Protection
Authors: Xianping Du, Runlu Miao, Guanjun Zhang, Libo Cao, Feng Zhu
Abstract:
Current vehicle safety standards and human body injury criteria were established based on the biomechanical response of Euro-American human body, without considering the difference in the body anthropometry and injury characteristics among different races, particularly the East Asian people with smaller body size. Absence of such race specific design considerations will negatively influence the protective performance of safety products for these populations, and weaken the accuracy of injury thresholds derived. To resolve these issues, in this study, we aim to develop a race specific finite element model to simulate the impact response of the lower extremity of a 50th percentile East Asian (Chinese) male. The model was built based on medical images for the leg of an average size Chinese male and slightly adjusted based on the statistical data. The model includes detailed anatomic features and is able to simulate the muscle active force. Thirteen biomechanical tests available in the literature were used to validate its biofidelity. Using the validated model, a pedestrian-car impact accident taking place in China was re-constructed computationally. The results show that the newly developed lower leg model has a good performance in predicting dynamic response and tibia fracture pattern. An additional comparison on the fracture tolerance of the East Asian and Euro-American lower limb suggests that the current injury criterion underestimates the degree of injury of East Asian human body.Keywords: lower limb, East Asian body characteristics, traffic accident reconstruction, finite element analysis, injury tolerance
Procedia PDF Downloads 28811294 Simulation of Reflectometry in Alborz Tokamak
Authors: S. Kohestani, R. Amrollahi, P. Daryabor
Abstract:
Microwave diagnostics such as reflectometry are receiving growing attention in magnetic confinement fusionresearch. In order to obtain the better understanding of plasma confinement physics, more detailed measurements on density profile and its fluctuations might be required. A 2D full-wave simulation of ordinary mode propagation has been written in an effort to model effects seen in reflectometry experiment. The code uses the finite-difference-time-domain method with a perfectly-matched-layer absorption boundary to solve Maxwell’s equations.The code has been used to simulate the reflectometer measurement in Alborz Tokamak.Keywords: reflectometry, simulation, ordinary mode, tokamak
Procedia PDF Downloads 42011293 Numerical Evolution Methods of Rational Form for Diffusion Equations
Authors: Said Algarni
Abstract:
The purpose of this study was to investigate selected numerical methods that demonstrate good performance in solving PDEs. We adapted alternative method that involve rational polynomials. Padé time stepping (PTS) method, which is highly stable for the purposes of the present application and is associated with lower computational costs, was applied. Furthermore, PTS was modified for our study which focused on diffusion equations. Numerical runs were conducted to obtain the optimal local error control threshold.Keywords: Padé time stepping, finite difference, reaction diffusion equation, PDEs
Procedia PDF Downloads 29811292 Evaluation of Non-Staggered Body-Fitted Grid Based Solution Method in Application to Supercritical Fluid Flows
Authors: Suresh Sahu, Abhijeet M. Vaidya, Naresh K. Maheshwari
Abstract:
The efforts to understand the heat transfer behavior of supercritical water in supercritical water cooled reactor (SCWR) are ongoing worldwide to fulfill the future energy demand. The higher thermal efficiency of these reactors compared to a conventional nuclear reactor is one of the driving forces for attracting the attention of nuclear scientists. In this work, a solution procedure has been described for solving supercritical fluid flow problems in complex geometries. The solution procedure is based on non-staggered grid. All governing equations are discretized by finite volume method (FVM) in curvilinear coordinate system. Convective terms are discretized by first-order upwind scheme and central difference approximation has been used to discretize the diffusive parts. k-ε turbulence model with standard wall function has been employed. SIMPLE solution procedure has been implemented for the curvilinear coordinate system. Based on this solution method, 3-D Computational Fluid Dynamics (CFD) code has been developed. In order to demonstrate the capability of this CFD code in supercritical fluid flows, heat transfer to supercritical water in circular tubes has been considered as a test problem. Results obtained by code have been compared with experimental results reported in literature.Keywords: curvilinear coordinate, body-fitted mesh, momentum interpolation, non-staggered grid, supercritical fluids
Procedia PDF Downloads 13011291 The Importance of Patenting and Technology Exports as Indicators of Economic Development
Authors: Hugo Rodríguez
Abstract:
The patenting of inventions is the result of an organized effort to achieve technological improvement and its consequent positive impact on the population's standard of living. Technology exports, either of high-tech goods or of Information and Communication Technology (ICT) services, represent the level of acceptance that world markets have of that technology acquired or developed by a country, either in public or private settings. A quantitative measure of the above variables is expected to have a positive and relevant impact on the level of economic development of the countries, measured on this first occasion through their level of Gross Domestic Product (GDP). And in that sense, it not only explains the performance of an economy but the difference between nations. We present an econometric model where we seek to explain the difference between the GDP levels of 178 countries through their different performance in the outputs of the technological production process. We take the variables of Patenting, ICT Exports and High Technology Exports as results of the innovation process. This model achieves an explanatory power for four annual cuts (2000, 2005, 2010 and 2015) equivalent to an adjusted r2 of 0.91, 0.87, 0.91 and 0.96, respectively.Keywords: Development, exports, patents, technology
Procedia PDF Downloads 110