Search results for: semantic processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4132

Search results for: semantic processing

3802 On the Semantics and Pragmatics of 'Be Able To': Modality and Actualisation

Authors: Benoît Leclercq, Ilse Depraetere

Abstract:

The goal of this presentation is to shed new light on the semantics and pragmatics of be able to. It presents the results of a corpus analysis based on data from the BNC (British National Corpus), and discusses these results in light of a specific stance on the semantics-pragmatics interface taking into account recent developments. Be able to is often discussed in relation to can and could, all of which can be used to express ability. Such an onomasiological approach often results in the identification of usage constraints for each expression. In the case of be able to, it is the formal properties of the modal expression (unlike can and could, be able to has non-finite forms) that are in the foreground, and the modal expression is described as the verb that conveys future ability. Be able to is also argued to expressed actualised ability in the past (I was able/could to open the door). This presentation aims to provide a more accurate pragmatic-semantic profile of be able to, based on extensive data analysis and one that is embedded in a very explicit view on the semantics-pragmatics interface. A random sample of 3000 examples (1000 for each modal verb) extracted from the BNC was analysed to account for the following issues. First, the challenge is to identify the exact semantic range of be able to. The results show that, contrary to general assumption, be able to does not only express ability but it shares most of the root meanings usually associated with the possibility modals can and could. The data reveal that what is called opportunity is, in fact, the most frequent meaning of be able to. Second, attention will be given to the notion of actualisation. It is commonly argued that be able to is the preferred form when the residue actualises: (1) The only reason he was able to do that was because of the restriction (BNC, spoken) (2) It is only through my imaginative shuffling of the aces that we are able to stay ahead of the pack. (BNC, written) Although this notion has been studied in detail within formal semantic approaches, empirical data is crucially lacking and it is unclear whether actualisation constitutes a conventional (and distinguishing) property of be able to. The empirical analysis provides solid evidence that actualisation is indeed a conventional feature of the modal. Furthermore, the dataset reveals that be able to expresses actualised 'opportunities' and not actualised 'abilities'. In the final part of this paper, attention will be given to the theoretical implications of the empirical findings, and in particular to the following paradox: how can the same expression encode both modal meaning (non-factual) and actualisation (factual)? It will be argued that this largely depends on one's conception of the semantics-pragmatics interface, and that this need not be an issue when actualisation (unlike modality) is analysed as a generalised conversational implicature and thus is considered part of the conventional pragmatic layer of be able to.

Keywords: Actualisation, Modality, Pragmatics, Semantics

Procedia PDF Downloads 133
3801 An Agent-Based Modelling Simulation Approach to Calculate Processing Delay of GEO Satellite Payload

Authors: V. Vicente E. Mujica, Gustavo Gonzalez

Abstract:

The global coverage of broadband multimedia and internet-based services in terrestrial-satellite networks demand particular interests for satellite providers in order to enhance services with low latencies and high signal quality to diverse users. In particular, the delay of on-board processing is an inherent source of latency in a satellite communication that sometimes is discarded for the end-to-end delay of the satellite link. The frame work for this paper includes modelling of an on-orbit satellite payload using an agent model that can reproduce the properties of processing delays. In essence, a comparison of different spatial interpolation methods is carried out to evaluate physical data obtained by an GEO satellite in order to define a discretization function for determining that delay. Furthermore, the performance of the proposed agent and the development of a delay discretization function are together validated by simulating an hybrid satellite and terrestrial network. Simulation results show high accuracy according to the characteristics of initial data points of processing delay for Ku bands.

Keywords: terrestrial-satellite networks, latency, on-orbit satellite payload, simulation

Procedia PDF Downloads 274
3800 Correlates of Income Generation of Small-Scale Fish Processors in Abeokuta Metropolis, Ogun State, Nigeria

Authors: Ayodeji Motunrayo Omoare

Abstract:

Economically fish provides an important source of food and income for both men and women especially many households in the developing world and fishing has an important social and cultural position in river-rine communities. However, fish is highly susceptible to deterioration. Consequently, this study was carried out to correlate income generation of small-scale women fish processors in Abeokuta metropolis, Ogun State, Nigeria. Eighty small-scale women fish processors were randomly selected from five communities as the sample size for this study. Collected data were analyzed using both descriptive and inferential statistics. The results showed that the mean age of the respondents was 31.75 years with average household size of 4 people while 47.5% of the respondents had primary education. Most (86.3%) of the respondents were married and had spent more than 11 years in fish processing. The respondents were predominantly Yoruba tribe (91.2%). Majority (71.3%) of the respondents used traditional kiln for processing their fish while 23.7% of the respondents used hot vegetable oil to fry their fish. Also, the result revealed that respondents sourced capital from Personal Savings (48.8%), Cooperatives (27.5%), Friends and Family (17.5%) and Microfinance Banks (6.2%) for fish processing activities. The respondents generated an average income of ₦7,000.00 from roasted fish, ₦3,500.00 from dried fish, and ₦5,200.00 from fried fish daily. However, inadequate processing equipment (95.0%), non-availability of credit facility from microfinance banks (85.0%), poor electricity supply (77.5%), inadequate extension service support (70.0%), and fuel scarcity (68.7%) were major constraints to fish processing in the study area. Results of chi-square analysis showed that there was a significant relationship between personal characteristics (χ2 = 36.83, df = 9), processing methods (χ2 = 15.88, df = 3) and income generated at p < 0.05 level of significance. It can be concluded that significant relationship existed between processing methods and income generated. The study, therefore, recommends that modern processing equipment should be made available to the respondents at a subsidized price by the agro-allied companies.

Keywords: correlates, income, fish processors, women, small-scale

Procedia PDF Downloads 248
3799 Analysis Model for the Relationship of Users, Products, and Stores on Online Marketplace Based on Distributed Representation

Authors: Ke He, Wumaier Parezhati, Haruka Yamashita

Abstract:

Recently, online marketplaces in the e-commerce industry, such as Rakuten and Alibaba, have become some of the most popular online marketplaces in Asia. In these shopping websites, consumers can select purchase products from a large number of stores. Additionally, consumers of the e-commerce site have to register their name, age, gender, and other information in advance, to access their registered account. Therefore, establishing a method for analyzing consumer preferences from both the store and the product side is required. This study uses the Doc2Vec method, which has been studied in the field of natural language processing. Doc2Vec has been used in many cases to analyze the extraction of semantic relationships between documents (represented as consumers) and words (represented as products) in the field of document classification. This concept is applicable to represent the relationship between users and items; however, the problem is that one more factor (i.e., shops) needs to be considered in Doc2Vec. More precisely, a method for analyzing the relationship between consumers, stores, and products is required. The purpose of our study is to combine the analysis of the Doc2vec model for users and shops, and for users and items in the same feature space. This method enables the calculation of similar shops and items for each user. In this study, we derive the real data analysis accumulated in the online marketplace and demonstrate the efficiency of the proposal.

Keywords: Doc2Vec, online marketplace, marketing, recommendation systems

Procedia PDF Downloads 112
3798 Efficiency of a Semantic Approach in Teaching Foreign Languages

Authors: Genady Shlomper

Abstract:

During the process of language teaching, each teacher faces some general and some specific problems. Some of these problems are mutual to all languages because they yield to the rules of cognition, conscience, perception, understanding and memory; to the physiological and psychological principles pertaining to the human race irrespective of origin and nationality. Still, every language is a distinctive system, possessing individual properties and an obvious identity, as a result of a development in specific natural, geographical, cultural and historical conditions. The individual properties emerge in the script, in the phonetics, morphology and syntax. All these problems can and should be a subject of a detailed research and scientific analysis, mainly from practical considerations and language teaching requirements. There are some formidable obstacles in the language acquisition process. Among the first to be mentioned is the existence of concepts and entire categories in foreign languages, which are absent in the language of the students. Such phenomena reflect specific ways of thinking and the world-outlook, which were shaped during the evolution. Hindi is the national language of India, which belongs to the group of Indo-Iranian languages from the Indo-European family of languages. The lecturer has gained experience in teaching Hindi language to native speakers of Uzbek, Russian and Hebrew languages. He will show the difficulties in the field of phonetics, morphology and syntax, which the students have to deal with during the acquisition of the language. In the proposed lecture the lecturer will share his experience in making the process of language teaching more efficient by using non-formal semantic approach.

Keywords: applied linguistics, foreign language teaching, language teaching methodology, semantics

Procedia PDF Downloads 356
3797 Recent Advances in Data Warehouse

Authors: Fahad Hanash Alzahrani

Abstract:

This paper describes some recent advances in a quickly developing area of data storing and processing based on Data Warehouses and Data Mining techniques, which are associated with software, hardware, data mining algorithms and visualisation techniques having common features for any specific problems and tasks of their implementation.

Keywords: data warehouse, data mining, knowledge discovery in databases, on-line analytical processing

Procedia PDF Downloads 404
3796 Indexing and Incremental Approach Using Map Reduce Bipartite Graph (MRBG) for Mining Evolving Big Data

Authors: Adarsh Shroff

Abstract:

Big data is a collection of dataset so large and complex that it becomes difficult to process using data base management tools. To perform operations like search, analysis, visualization on big data by using data mining; which is the process of extraction of patterns or knowledge from large data set. In recent years, the data mining applications become stale and obsolete over time. Incremental processing is a promising approach to refreshing mining results. It utilizes previously saved states to avoid the expense of re-computation from scratch. This project uses i2MapReduce, an incremental processing extension to Map Reduce, the most widely used framework for mining big data. I2MapReduce performs key-value pair level incremental processing rather than task level re-computation, supports not only one-step computation but also more sophisticated iterative computation, which is widely used in data mining applications, and incorporates a set of novel techniques to reduce I/O overhead for accessing preserved fine-grain computation states. To optimize the mining results, evaluate i2MapReduce using a one-step algorithm and three iterative algorithms with diverse computation characteristics for efficient mining.

Keywords: big data, map reduce, incremental processing, iterative computation

Procedia PDF Downloads 354
3795 Green Chemical Processing in the Teaching Laboratory: A Convenient Solvent Free Microwave Extraction of Natural Products

Authors: Mohamed Amine Ferhat, Mohamed Nadjib Bouhatem, Farid Chemat

Abstract:

One of the principal aims of sustainable and green processing development remains the dissemination and teaching of green chemistry to both developed and developing nations. This paper describes one attempt to show that “north-south” collaborations yield innovative sustainable and green technologies which give major benefits for both nations. In this paper we present early results from a solvent free microwave extraction (SFME) of essential oils using fresh orange peel, a byproduct in the production of orange juice. SFME is performed at atmospheric pressure without added any solvent or water. SFME increases essential oil yield and eliminate wastewater treatment. The procedure is appropriate for the teaching laboratory, and allows the students to learn extraction, chromatographic and spectroscopic analysis skills, and are expose to dramatic visual example of rapid, sustainable and green extraction of essential oil, and are introduced to commercially successful sustainable and green chemical processing with microwave energy.

Keywords: essential oil, extraction, green processing, microwave

Procedia PDF Downloads 547
3794 Psychometric Properties of the Sensory Processing Measure Preschool-Home among Children with Autism in Saudi Arabia

Authors: Shahad Alkhalifah, Jonh Wright

Abstract:

Autism spectrum disorder (ASD) is a pervasive developmental disorder associated, for 42% to 88% of people with ASD, with sensory processing disorders. Sensory processing disorders (SPD) impact daily functioning, and it is, therefore, essential to be able to diagnose them accurately. Currently, however, there is no assessment tool available for the Saudi Arabia (SA) population that would cover a wider enough age range. Therefore, this study aimed to assess the psychometric properties of the Sensory Processing Measure Preschool-Home Form (SPM-P) when used in English, with a population of English-speaking Saudi participants. This was chosen due to time limitations and the urgency in providing practitioners with appropriate tools. Using a convenience sampling approach group of caregivers of typically developing (TD) children and a group of caregivers for children with ASD were recruited (N = 40 and N = 16, respectively), and completed the SPM-P Home Form. Participants were also invited to complete it again after two weeks for test-retest reliability, and respectively, nine and five agreed. Reliability analyses suggested some issues with a few items when used in the Saudi culture, and, along with interscale correlations, it highlighted concerns with the factor structure. However, it was also found that the SPM-P Home has good criterion-based validity, and it is, therefore, suggested that it can be used until a tool is developed through translation and cultural adaptation. It is also suggested that the current factor structure of SPM-P Home is reassessed using a large sample.

Keywords: autism, sensory, assessment, reliability, sensory processing dysfunction, preschool, validity

Procedia PDF Downloads 230
3793 Classification of Land Cover Usage from Satellite Images Using Deep Learning Algorithms

Authors: Shaik Ayesha Fathima, Shaik Noor Jahan, Duvvada Rajeswara Rao

Abstract:

Earth's environment and its evolution can be seen through satellite images in near real-time. Through satellite imagery, remote sensing data provide crucial information that can be used for a variety of applications, including image fusion, change detection, land cover classification, agriculture, mining, disaster mitigation, and monitoring climate change. The objective of this project is to propose a method for classifying satellite images according to multiple predefined land cover classes. The proposed approach involves collecting data in image format. The data is then pre-processed using data pre-processing techniques. The processed data is fed into the proposed algorithm and the obtained result is analyzed. Some of the algorithms used in satellite imagery classification are U-Net, Random Forest, Deep Labv3, CNN, ANN, Resnet etc. In this project, we are using the DeepLabv3 (Atrous convolution) algorithm for land cover classification. The dataset used is the deep globe land cover classification dataset. DeepLabv3 is a semantic segmentation system that uses atrous convolution to capture multi-scale context by adopting multiple atrous rates in cascade or in parallel to determine the scale of segments.

Keywords: area calculation, atrous convolution, deep globe land cover classification, deepLabv3, land cover classification, resnet 50

Procedia PDF Downloads 140
3792 Intonation Salience as an Underframe to Text Intonation Models

Authors: Tatiana Stanchuliak

Abstract:

It is common knowledge that intonation is not laid over a ready text. On the contrary, intonation forms and accompanies the text on the level of its birth in the speaker’s mind. As a result, intonation plays one of the fundamental roles in the process of transferring a thought into external speech. Intonation structure can highlight the semantic significance of textual elements and become a ranging mark in understanding the information structure of the text. Intonation functions by means of prosodic characteristics, one of which is intonation salience, whose function in texts results in making some textual elements more prominent than others. This function of intonation, therefore, performs as organizing. It helps to form the frame of key elements of the text. The study under consideration made an attempt to look into the inner nature of salience and create a sort of a text intonation model. This general goal brought to some more specific intermediate results. First, there were established degrees of salience on the level of the smallest semantic element - intonation group, as well as prosodic means of creating salience, were examined. Second, the most frequent combinations of prosodic means made it possible to distinguish patterns of salience, which then became constituent elements of a text intonation model. Third, the analysis of the predicate structure allowed to divide the whole text into smaller parts, or units, which performed a specific function in the developing of the general communicative intention. It appeared that such units can be found in any text and they have common characteristics of their intonation arrangement. These findings are certainly very important both for the theory of intonation and their practical application.

Keywords: accentuation , inner speech, intention, intonation, intonation functions, models, patterns, predicate, salience, semantics, sentence stress, text

Procedia PDF Downloads 267
3791 Methodologies for Deriving Semantic Technical Information Using an Unstructured Patent Text Data

Authors: Jaehyung An, Sungjoo Lee

Abstract:

Patent documents constitute an up-to-date and reliable source of knowledge for reflecting technological advance, so patent analysis has been widely used for identification of technological trends and formulation of technology strategies. But, identifying technological information from patent data entails some limitations such as, high cost, complexity, and inconsistency because it rely on the expert’ knowledge. To overcome these limitations, researchers have applied to a quantitative analysis based on the keyword technique. By using this method, you can include a technological implication, particularly patent documents, or extract a keyword that indicates the important contents. However, it only uses the simple-counting method by keyword frequency, so it cannot take into account the sematic relationship with the keywords and sematic information such as, how the technologies are used in their technology area and how the technologies affect the other technologies. To automatically analyze unstructured technological information in patents to extract the semantic information, it should be transformed into an abstracted form that includes the technological key concepts. Specific sentence structure ‘SAO’ (subject, action, object) is newly emerged by representing ‘key concepts’ and can be extracted by NLP (Natural language processor). An SAO structure can be organized in a problem-solution format if the action-object (AO) states that the problem and subject (S) form the solution. In this paper, we propose the new methodology that can extract the SAO structure through technical elements extracting rules. Although sentence structures in the patents text have a unique format, prior studies have depended on general NLP (Natural language processor) applied to the common documents such as newspaper, research paper, and twitter mentions, so it cannot take into account the specific sentence structure types of the patent documents. To overcome this limitation, we identified a unique form of the patent sentences and defined the SAO structures in the patents text data. There are four types of technical elements that consist of technology adoption purpose, application area, tool for technology, and technical components. These four types of sentence structures from patents have their own specific word structure by location or sequence of the part of speech at each sentence. Finally, we developed algorithms for extracting SAOs and this result offer insight for the technology innovation process by providing different perspectives of technology.

Keywords: NLP, patent analysis, SAO, semantic-analysis

Procedia PDF Downloads 262
3790 Manufacturing Process and Cost Estimation through Process Detection by Applying Image Processing Technique

Authors: Chalakorn Chitsaart, Suchada Rianmora, Noppawat Vongpiyasatit

Abstract:

In order to reduce the transportation time and cost for direct interface between customer and manufacturer, the image processing technique has been introduced in this research where designing part and defining manufacturing process can be performed quickly. A3D virtual model is directly generated from a series of multi-view images of an object, and it can be modified, analyzed, and improved the structure, or function for the further implementations, such as computer-aided manufacturing (CAM). To estimate and quote the production cost, the user-friendly platform has been developed in this research where the appropriate manufacturing parameters and process detections have been identified and planned by CAM simulation.

Keywords: image processing technique, feature detections, surface registrations, capturing multi-view images, Production costs and Manufacturing processes

Procedia PDF Downloads 251
3789 Food Processing Technology and Packaging: A Case Study of Indian Cashew-Nut Industry

Authors: Parashram Jakappa Patil

Abstract:

India is the global leader in world cashew business and cashew-nut industry is one of the important food processing industries in world. However India is the largest producer, processor, exporter and importer eschew in the world. India is providing cashew to the rest of the world. India is meeting world demand of cashew. India has a tremendous potential of cashew production and export to other countries. Every year India earns more than 2000 cores rupees through cashew trade. Cashew industry is one of the important small scale industries in the country which is playing significant role in rural development. It is generating more than 400000 jobs at remote area and 95% cashew worker are women, it is giving income to poor cashew farmers, majority cashew processing units are small and cottage, it is helping to stop migration from young farmers for employment opportunities, it is motivation rural entrepreneurship development and it is also helping to environment protection etc. Hence India cashew business is very important agribusiness in India which has potential make inclusive development. World Bank and IMF recognized cashew-nut industry is one the important tool for poverty eradication at global level. It shows important of cashew business and its strong existence in India. In spite of such huge potential cashew processing industry is facing different problems such as lack of infrastructure ability, lack of supply of raw cashew, lack of availability of finance, collection of raw cashew, unavailability of warehouse, marketing of cashew kernels, lack of technical knowledge and especially processing technology and packaging of finished products. This industry has great prospects such as scope for more cashew cultivation and cashew production, employment generation, formation of cashew processing units, alcohols production from cashew apple, shield oil production, rural development, poverty elimination, development of social and economic backward class and environment protection etc. This industry has domestic as well as foreign market; India has tremendous potential in this regard. The cashew is a poor men’s crop but rich men’s food. The cashew is a source of income and livelihood for poor farmers. Cashew-nut industry may play very important role in the development of hilly region. The objectives of this paper are to identify problems of cashew processing and use of processing technology, problems of cashew kernel packaging, evolving of cashew processing technology over the year and its impact on final product and impact of good processing by adopting appropriate technology packaging on international trade of cashew-nut. The most important problem of cashew processing industry is that is processing and packaging. Bad processing reduce the quality of cashew kernel at large extent especially broken of cashew kernel which has very less price in market compare to whole cashew kernel and not eligible for export. On the other hand if there is no good packaging of cashew kernel will get moisture which destroy test of it. International trade of cashew-nut is depend of two things one is cashew processing and other is packaging. This study has strong relevance because cashew-nut industry is the labour oriented, where processing technology is not playing important role because 95% processing work is manual. Hence processing work was depending on physical performance of worker which makes presence of large workforce inevitable. There are many cashew processing units closed because they are not getting sufficient work force. However due to advancement in technology slowly this picture is changing and processing work get improve. Therefore it is interesting to explore all the aspects in context of cashew processing and packaging of cashew business.

Keywords: cashew, processing technology, packaging, international trade, change

Procedia PDF Downloads 422
3788 Multiscale Connected Component Labelling and Applications to Scientific Microscopy Image Processing

Authors: Yayun Hsu, Henry Horng-Shing Lu

Abstract:

In this paper, a new method is proposed to extending the method of connected component labeling from processing binary images to multi-scale modeling of images. By using the adaptive threshold of multi-scale attributes, this approach minimizes the possibility of missing those important components with weak intensities. In addition, the computational cost of this approach remains similar to that of the typical approach of component labeling. Then, this methodology is applied to grain boundary detection and Drosophila Brain-bow neuron segmentation. These demonstrate the feasibility of the proposed approach in the analysis of challenging microscopy images for scientific discovery.

Keywords: microscopic image processing, scientific data mining, multi-scale modeling, data mining

Procedia PDF Downloads 435
3787 Linguistic Analysis of Argumentation Structures in Georgian Political Speeches

Authors: Mariam Matiashvili

Abstract:

Argumentation is an integral part of our daily communications - formal or informal. Argumentative reasoning, techniques, and language tools are used both in personal conversations and in the business environment. Verbalization of the opinions requires the use of extraordinary syntactic-pragmatic structural quantities - arguments that add credibility to the statement. The study of argumentative structures allows us to identify the linguistic features that make the text argumentative. Knowing what elements make up an argumentative text in a particular language helps the users of that language improve their skills. Also, natural language processing (NLP) has become especially relevant recently. In this context, one of the main emphases is on the computational processing of argumentative texts, which will enable the automatic recognition and analysis of large volumes of textual data. The research deals with the linguistic analysis of the argumentative structures of Georgian political speeches - particularly the linguistic structure, characteristics, and functions of the parts of the argumentative text - claims, support, and attack statements. The research aims to describe the linguistic cues that give the sentence a judgmental/controversial character and helps to identify reasoning parts of the argumentative text. The empirical data comes from the Georgian Political Corpus, particularly TV debates. Consequently, the texts are of a dialogical nature, representing a discussion between two or more people (most often between a journalist and a politician). The research uses the following approaches to identify and analyze the argumentative structures Lexical Classification & Analysis - Identify lexical items that are relevant in argumentative texts creating process - Creating the lexicon of argumentation (presents groups of words gathered from a semantic point of view); Grammatical Analysis and Classification - means grammatical analysis of the words and phrases identified based on the arguing lexicon. Argumentation Schemas - Describe and identify the Argumentation Schemes that are most likely used in Georgian Political Speeches. As a final step, we analyzed the relations between the above mentioned components. For example, If an identified argument scheme is “Argument from Analogy”, identified lexical items semantically express analogy too, and they are most likely adverbs in Georgian. As a result, we created the lexicon with the words that play a significant role in creating Georgian argumentative structures. Linguistic analysis has shown that verbs play a crucial role in creating argumentative structures.

Keywords: georgian, argumentation schemas, argumentation structures, argumentation lexicon

Procedia PDF Downloads 74
3786 Towards the Effectiveness/ Performance of Spatial Communication within the Composite Interior Spaces: Wayfinding System in the Saudi National Museum as a Case Study

Authors: Afnan T. Bagasi, Donia M. Bettaieb, Abeer Alsobahi

Abstract:

The wayfinding system is related to the course of the museum journey for visitors directly and indirectly. The design aspects of this system play an important role, making it an effective and communication system within the museum space. However, translating the concepts that pertain to its design, such as Intelligibility that is based on integration and connectivity in museum space design, needs more customization in the form of specific design considerations with reference to the most important approaches. Those approaches link the organizational and practical aspects to the semiotic and semantic aspects related to the space syntax by targeting the visual and perceived consistency of visitors. In this context, the study aims to identify how to apply the concept of intelligibility and clarity by employing integration and connectivity to design a wayfinding system in museums as a kind of composite interior space. Using the available plans and images to extrapolate the design considerations used to design the wayfinding system in the Saudi National Museum as a case study, a descriptive-analytical method was used to understand the basic organizational and morphological principles of the museum space through four main aspects in space design: morphological, semantic, semiotic, and pragmatic. The study's findings will assist designers, professionals, and researchers in the field of museum design in understanding the significance of the wayfinding system by delving into it through museum spaces by highlighting the essential aspects using a clear analytical method.

Keywords: wayfinding system, museum journey, intelligibility, integration, connectivity

Procedia PDF Downloads 172
3785 Detection of Clipped Fragments in Speech Signals

Authors: Sergei Aleinik, Yuri Matveev

Abstract:

In this paper a novel method for the detection of clipping in speech signals is described. It is shown that the new method has better performance than known clipping detection methods, is easy to implement, and is robust to changes in signal amplitude, size of data, etc. Statistical simulation results are presented.

Keywords: clipping, clipped signal, speech signal processing, digital signal processing

Procedia PDF Downloads 394
3784 Plant Disease Detection Using Image Processing and Machine Learning

Authors: Sanskar, Abhinav Pal, Aryush Gupta, Sushil Kumar Mishra

Abstract:

One of the critical and tedious assignments in agricultural practices is the detection of diseases on vegetation. Agricultural production is very important in today’s economy because plant diseases are common, and early detection of plant diseases is important in agriculture. Automatic detection of such early diseases is useful because it reduces control efforts in large productive farms. Using digital image processing and machine learning algorithms, this paper presents a method for plant disease detection. Detection of the disease occurs on different leaves of the plant. The proposed system for plant disease detection is simple and computationally efficient, requiring less time than learning-based approaches. The accuracy of various plant and foliar diseases is calculated and presented in this paper.

Keywords: plant diseases, machine learning, image processing, deep learning

Procedia PDF Downloads 14
3783 Biogas Control: Methane Production Monitoring Using Arduino

Authors: W. Ait Ahmed, M. Aggour, M. Naciri

Abstract:

Extracting energy from biomass is an important alternative to produce different types of energy (heat, electricity, or both) assuring low pollution and better efficiency. It is a new yet reliable approach to reduce green gas emission by extracting methane from industry effluents and use it to power machinery. We focused in our project on using paper and mill effluents, treated in a UASB reactor. The methane produced is used in the factory’s power supply. The aim of this work is to develop an electronic system using Arduino platform connected to a gas sensor, to measure and display the curve of daily methane production on processing. The sensor will send the gas values in ppm to the Arduino board so that the later sends the RS232 hardware protocol. The code developed with processing will transform the values into a curve and display it on the computer screen.

Keywords: biogas, Arduino, processing, code, methane, gas sensor, program

Procedia PDF Downloads 324
3782 Morphological Processing of Punjabi Text for Sentiment Analysis of Farmer Suicides

Authors: Jaspreet Singh, Gurvinder Singh, Prabhsimran Singh, Rajinder Singh, Prithvipal Singh, Karanjeet Singh Kahlon, Ravinder Singh Sawhney

Abstract:

Morphological evaluation of Indian languages is one of the burgeoning fields in the area of Natural Language Processing (NLP). The evaluation of a language is an eminent task in the era of information retrieval and text mining. The extraction and classification of knowledge from text can be exploited for sentiment analysis and morphological evaluation. This study coalesce morphological evaluation and sentiment analysis for the task of classification of farmer suicide cases reported in Punjab state of India. The pre-processing of Punjabi text involves morphological evaluation and normalization of Punjabi word tokens followed by the training of proposed model using deep learning classification on Punjabi language text extracted from online Punjabi news reports. The class-wise accuracies of sentiment prediction for four negatively oriented classes of farmer suicide cases are 93.85%, 88.53%, 83.3%, and 95.45% respectively. The overall accuracy of sentiment classification obtained using proposed framework on 275 Punjabi text documents is found to be 90.29%.

Keywords: deep neural network, farmer suicides, morphological processing, punjabi text, sentiment analysis

Procedia PDF Downloads 328
3781 Image Rotation Using an Augmented 2-Step Shear Transform

Authors: Hee-Choul Kwon, Heeyong Kwon

Abstract:

Image rotation is one of main pre-processing steps for image processing or image pattern recognition. It is implemented with a rotation matrix multiplication. It requires a lot of floating point arithmetic operations and trigonometric calculations, so it takes a long time to execute. Therefore, there has been a need for a high speed image rotation algorithm without two major time-consuming operations. However, the rotated image has a drawback, i.e. distortions. We solved the problem using an augmented two-step shear transform. We compare the presented algorithm with the conventional rotation with images of various sizes. Experimental results show that the presented algorithm is superior to the conventional rotation one.

Keywords: high-speed rotation operation, image rotation, transform matrix, image processing, pattern recognition

Procedia PDF Downloads 278
3780 Implementation of an Image Processing System Using Artificial Intelligence for the Diagnosis of Malaria Disease

Authors: Mohammed Bnebaghdad, Feriel Betouche, Malika Semmani

Abstract:

Image processing become more sophisticated over time due to technological advances, especially artificial intelligence (AI) technology. Currently, AI image processing is used in many areas, including surveillance, industry, science, and medicine. AI in medical image processing can help doctors diagnose diseases faster, with minimal mistakes, and with less effort. Among these diseases is malaria, which remains a major public health challenge in many parts of the world. It affects millions of people every year, particularly in tropical and subtropical regions. Early detection of malaria is essential to prevent serious complications and reduce the burden of the disease. In this paper, we propose and implement a scheme based on AI image processing to enhance malaria disease diagnosis through automated analysis of blood smear images. The scheme is based on the convolutional neural network (CNN) method. So, we have developed a model that classifies infected and uninfected single red cells using images available on Kaggle, as well as real blood smear images obtained from the Central Laboratory of Medical Biology EHS Laadi Flici (formerly El Kettar) in Algeria. The real images were segmented into individual cells using the watershed algorithm in order to match the images from the Kaagle dataset. The model was trained and tested, achieving an accuracy of 99% and 97% accuracy for new real images. This validates that the model performs well with new real images, although with slightly lower accuracy. Additionally, the model has been embedded in a Raspberry Pi4, and a graphical user interface (GUI) was developed to visualize the malaria diagnostic results and facilitate user interaction.

Keywords: medical image processing, malaria parasite, classification, CNN, artificial intelligence

Procedia PDF Downloads 22
3779 Weighted-Distance Sliding Windows and Cooccurrence Graphs for Supporting Entity-Relationship Discovery in Unstructured Text

Authors: Paolo Fantozzi, Luigi Laura, Umberto Nanni

Abstract:

The problem of Entity relation discovery in structured data, a well covered topic in literature, consists in searching within unstructured sources (typically, text) in order to find connections among entities. These can be a whole dictionary, or a specific collection of named items. In many cases machine learning and/or text mining techniques are used for this goal. These approaches might be unfeasible in computationally challenging problems, such as processing massive data streams. A faster approach consists in collecting the cooccurrences of any two words (entities) in order to create a graph of relations - a cooccurrence graph. Indeed each cooccurrence highlights some grade of semantic correlation between the words because it is more common to have related words close each other than having them in the opposite sides of the text. Some authors have used sliding windows for such problem: they count all the occurrences within a sliding windows running over the whole text. In this paper we generalise such technique, coming up to a Weighted-Distance Sliding Window, where each occurrence of two named items within the window is accounted with a weight depending on the distance between items: a closer distance implies a stronger evidence of a relationship. We develop an experiment in order to support this intuition, by applying this technique to a data set consisting in the text of the Bible, split into verses.

Keywords: cooccurrence graph, entity relation graph, unstructured text, weighted distance

Procedia PDF Downloads 154
3778 Assessment of Pre-Processing Influence on Near-Infrared Spectra for Predicting the Mechanical Properties of Wood

Authors: Aasheesh Raturi, Vimal Kothiyal, P. D. Semalty

Abstract:

We studied mechanical properties of Eucalyptus tereticornis using FT-NIR spectroscopy. Firstly, spectra were pre-processed to eliminate useless information. Then, prediction model was constructed by partial least squares regression. To study the influence of pre-processing on prediction of mechanical properties for NIR analysis of wood samples, we applied various pretreatment methods like straight line subtraction, constant offset elimination, vector-normalization, min-max normalization, multiple scattering. Correction, first derivative, second derivatives and their combination with other treatment such as First derivative + straight line subtraction, First derivative+ vector normalization and First derivative+ multiplicative scattering correction. The data processing methods in combination of preprocessing with different NIR regions, RMSECV, RMSEP and optimum factors/rank were obtained by optimization process of model development. More than 350 combinations were obtained during optimization process. More than one pre-processing method gave good calibration/cross-validation and prediction/test models, but only the best calibration/cross-validation and prediction/test models are reported here. The results show that one can safely use NIR region between 4000 to 7500 cm-1 with straight line subtraction, constant offset elimination, first derivative and second derivative preprocessing method which were found to be most appropriate for models development.

Keywords: FT-NIR, mechanical properties, pre-processing, PLS

Procedia PDF Downloads 362
3777 Social-Cognitive Aspects of Interpretation: Didactic Approaches in Language Processing and English as a Second Language Difficulties in Dyslexia

Authors: Schnell Zsuzsanna

Abstract:

Background: The interpretation of written texts, language processing in the visual domain, in other words, atypical reading abilities, also known as dyslexia, is an ever-growing phenomenon in today’s societies and educational communities. The much-researched problem affects cognitive abilities and, coupled with normal intelligence normally manifests difficulties in the differentiation of sounds and orthography and in the holistic processing of written words. The factors of susceptibility are varied: social, cognitive psychological, and linguistic factors interact with each other. Methods: The research will explain the psycholinguistics of dyslexia on the basis of several empirical experiments and demonstrate how domain-general abilities of inhibition, retrieval from the mental lexicon, priming, phonological processing, and visual modality transfer affect successful language processing and interpretation. Interpretation of visual stimuli is hindered, and the problem seems to be embedded in a sociocultural, psycholinguistic, and cognitive background. This makes the picture even more complex, suggesting that the understanding and resolving of the issues of dyslexia has to be interdisciplinary, aided by several disciplines in the field of humanities and social sciences, and should be researched from an empirical approach, where the practical, educational corollaries can be analyzed on an applied basis. Aim and applicability: The lecture sheds light on the applied, cognitive aspects of interpretation, social cognitive traits of language processing, the mental underpinnings of cognitive interpretation strategies in different languages (namely, Hungarian and English), offering solutions with a few applied techniques for success in foreign language learning that can be useful advice for the developers of testing methodologies and measures across ESL teaching and testing platforms.

Keywords: dyslexia, social cognition, transparency, modalities

Procedia PDF Downloads 85
3776 Machine Learning and Deep Learning Approach for People Recognition and Tracking in Crowd for Safety Monitoring

Authors: A. Degale Desta, Cheng Jian

Abstract:

Deep learning application in computer vision is rapidly advancing, giving it the ability to monitor the public and quickly identify potentially anomalous behaviour from crowd scenes. Therefore, the purpose of the current work is to improve the performance of safety of people in crowd events from panic behaviour through introducing the innovative idea of Aggregation of Ensembles (AOE), which makes use of the pre-trained ConvNets and a pool of classifiers to find anomalies in video data with packed scenes. According to the theory of algorithms that applied K-means, KNN, CNN, SVD, and Faster-CNN, YOLOv5 architectures learn different levels of semantic representation from crowd videos; the proposed approach leverages an ensemble of various fine-tuned convolutional neural networks (CNN), allowing for the extraction of enriched feature sets. In addition to the above algorithms, a long short-term memory neural network to forecast future feature values and a handmade feature that takes into consideration the peculiarities of the crowd to understand human behavior. On well-known datasets of panic situations, experiments are run to assess the effectiveness and precision of the suggested method. Results reveal that, compared to state-of-the-art methodologies, the system produces better and more promising results in terms of accuracy and processing speed.

Keywords: action recognition, computer vision, crowd detecting and tracking, deep learning

Procedia PDF Downloads 165
3775 Ice Load Measurements on Known Structures Using Image Processing Methods

Authors: Azam Fazelpour, Saeed R. Dehghani, Vlastimil Masek, Yuri S. Muzychka

Abstract:

This study employs a method based on image analyses and structure information to detect accumulated ice on known structures. The icing of marine vessels and offshore structures causes significant reductions in their efficiency and creates unsafe working conditions. Image processing methods are used to measure ice loads automatically. Most image processing methods are developed based on captured image analyses. In this method, ice loads on structures are calculated by defining structure coordinates and processing captured images. A pyramidal structure is designed with nine cylindrical bars as the known structure of experimental setup. Unsymmetrical ice accumulated on the structure in a cold room represents the actual case of experiments. Camera intrinsic and extrinsic parameters are used to define structure coordinates in the image coordinate system according to the camera location and angle. The thresholding method is applied to capture images and detect iced structures in a binary image. The ice thickness of each element is calculated by combining the information from the binary image and the structure coordinate. Averaging ice diameters from different camera views obtains ice thicknesses of structure elements. Comparison between ice load measurements using this method and the actual ice loads shows positive correlations with an acceptable range of error. The method can be applied to complex structures defining structure and camera coordinates.

Keywords: camera calibration, ice detection, ice load measurements, image processing

Procedia PDF Downloads 368
3774 Adding a Few Language-Level Constructs to Improve OOP Verifiability of Semantic Correctness

Authors: Lian Yang

Abstract:

Object-oriented programming (OOP) is the dominant programming paradigm in today’s software industry and it has literally enabled average software developers to develop millions of commercial strength software applications in the era of INTERNET revolution over the past three decades. On the other hand, the lack of strict mathematical model and domain constraint features at the language level has long perplexed the computer science academia and OOP engineering community. This situation resulted in inconsistent system qualities and hard-to-understand designs in some OOP projects. The difficulties with regards to fix the current situation are also well known. Although the power of OOP lies in its unbridled flexibility and enormously rich data modeling capability, we argue that the ambiguity and the implicit facade surrounding the conceptual model of a class and an object should be eliminated as much as possible. We listed the five major usage of class and propose to separate them by proposing new language constructs. By using well-established theories of set and FSM, we propose to apply certain simple, generic, and yet effective constraints at OOP language level in an attempt to find a possible solution to the above-mentioned issues regarding OOP. The goal is to make OOP more theoretically sound as well as to aid programmers uncover warning signs of irregularities and domain-specific issues in applications early on the development stage and catch semantic mistakes at runtime, improving correctness verifiability of software programs. On the other hand, the aim of this paper is more practical than theoretical.

Keywords: new language constructs, set theory, FSM theory, user defined value type, function groups, membership qualification attribute (MQA), check-constraint (CC)

Procedia PDF Downloads 241
3773 Glucose Monitoring System Using Machine Learning Algorithms

Authors: Sangeeta Palekar, Neeraj Rangwani, Akash Poddar, Jayu Kalambe

Abstract:

The bio-medical analysis is an indispensable procedure for identifying health-related diseases like diabetes. Monitoring the glucose level in our body regularly helps us identify hyperglycemia and hypoglycemia, which can cause severe medical problems like nerve damage or kidney diseases. This paper presents a method for predicting the glucose concentration in blood samples using image processing and machine learning algorithms. The glucose solution is prepared by the glucose oxidase (GOD) and peroxidase (POD) method. An experimental database is generated based on the colorimetric technique. The image of the glucose solution is captured by the raspberry pi camera and analyzed using image processing by extracting the RGB, HSV, LUX color space values. Regression algorithms like multiple linear regression, decision tree, RandomForest, and XGBoost were used to predict the unknown glucose concentration. The multiple linear regression algorithm predicts the results with 97% accuracy. The image processing and machine learning-based approach reduce the hardware complexities of existing platforms.

Keywords: artificial intelligence glucose detection, glucose oxidase, peroxidase, image processing, machine learning

Procedia PDF Downloads 206