Search results for: selective adsorption
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1650

Search results for: selective adsorption

1320 Study of the Adsorption of Metal Ions Ag+ Mg2+, Ni2+ by the Chemical and Electrochemical Polydibenzoether Crown

Authors: Dalila Chouder, Djaafer Benachour

Abstract:

This work concerns the study of the adsorption of metal ions Ag +, Mg +, and Ni2+ in aqueous medium by polydibenzoether-ROWN based on three factors: Temperature, time and concentration. The polydibenzoether crown was synthesized by two means: Chemical and electrochemical. The behavior of the two polymers has been different, and turns out very interesting for chemical polydibenzoether crown has identified conditions. Chemical and électronique polydibenzoether crown have different extraction screw vi property of adsoption of ions fifférents, this study also shows that plyméres doped may have an advantageous electrical conductivity.

Keywords: polymerization, electrochemical, conductivity, complexing metal ions

Procedia PDF Downloads 245
1319 Linear Parameter-Varying Control for Selective Catalytic Reduction Systems

Authors: Jihoon Lim, Patrick Kirchen, Ryozo Nagamune

Abstract:

This paper proposes a linear parameter-varying (LPV) controller capable of reducing nitrogen oxide (NOx) emissions with low ammonia (NH3) slip downstream of selective catalytic reduction (SCR) systems. SCR systems are widely adopted in diesel engines due to high NOx conversion efficiency. However, the nonlinearity of the SCR system and sensor uncertainty result in a challenging control problem. In order to overcome the control challenges, an LPV controller is proposed based on gain-scheduling parameters, that is, exhaust gas temperature and exhaust gas flow rate. Based on experimentally obtained data under the non-road transient driving cycle (NRTC), the simulations firstly show that the proposed controller yields high NOx conversion efficiency with a desired low NH3 slip. The performance of the proposed LPV controller is then compared with other controllers, including a gain-scheduling PID controller and a sliding mode controller. Additionally, the robustness is also demonstrated using the uncertainties ranging from 10 to 30%. The results show that the proposed controller is robustly stable under uncertainties.

Keywords: diesel engine, gain-scheduling control, linear parameter-varying, selective catalytic reduction

Procedia PDF Downloads 130
1318 Anticorrosive Performances of “Methyl Ester Sulfonates” Biodegradable Anionic Synthetized Surfactants on Carbon Steel X 70 in Oilfields

Authors: Asselah Amel, Affif Chaouche M'yassa, Toudji Amira, Tazerouti Amel

Abstract:

This study covers two aspects ; the biodegradability and the performances in corrosion inhibition of a series of synthetized surfactants namely Φ- sodium methyl ester sulfonates (Φ-MES: C₁₂-MES, C₁₄-MES and C₁₆-MES. The biodegradability of these organic compounds was studied using the respirometric method, ‘the standard ISO 9408’. Degradation was followed by analysis of dissolved oxygen using the dissolved oxygen meter over 28 days and the results were compared with that of sodium dodecyl sulphate (SDS). The inoculum used consists of activated sludge taken from the aeration basin of the biological wastewater treatment plant in the city of Boumerdes-Algeria. In addition, the anticorrosive performances of Φ-MES surfactants on a carbon steel "X70" were evaluated in an injection water from a well of Hassi R'mel region- Algeria, known as Baremian water, and are compared to sodium dodecyl sulphate. Two technics, the weight loss and the linear polarization resistance corrosion rate (LPR) are used allowing to investigate the relationships between the concentrations of these synthetized surfactants and their surface properties, surface coverage and inhibition efficiency. Various adsorption isotherm models were used to characterize the nature of adsorption and explain their mechanism. The results show that the MES anionic surfactants was readily biodegradable, degrading faster than SDS, about 88% for C₁₂-MES compared to 66% for the SDS. The length of their carbon chain affects their biodegradability; the longer the chain, the lower the biodegradability. The inhibition efficiency of these surfactants is around 78.4% for C₁₂-MES, 76.60% for C₁₄-MES and 98.19% for C₁₆-MES and increases with their concentration and reaches a maximum value around their critical micelle concentrations ( CMCs). Scanning electron microscopy coupled to energy dispersive X-ray spectroscopy allowed to the visualization of a good adhesion of the protective film formed by the surfactants to the surface of the steel. The studied surfactants show the Langmuirian behavior from which the thermodynamic parameters as adsorption constant (Kads), standard free energy of adsorption (〖∆G〗_ads^0 ) are determined. Interaction of the surfactants with steel surface have involved physisorptions.

Keywords: corrosion, surfactants, adsorption, adsorption isotherems

Procedia PDF Downloads 77
1317 Decontamination of Chromium Containing Ground Water by Adsorption Using Chemically Modified Activated Carbon Fabric

Authors: J. R. Mudakavi, K. Puttanna

Abstract:

Chromium in the environment is considered as one of the most toxic elements probably next only to mercury and arsenic. It is acutely toxic, mutagenic and carcinogenic in the environment. Chromium contamination of soil and underground water due to industrial activities is a very serious problem in several parts of India covering Karnataka, Tamil Nadu, Andhra Pradesh etc. Functionally modified Activated Carbon Fabrics (ACF) offer targeted chromium removal from drinking water and industrial effluents. Activated carbon fabric is a light weight adsorbing material with high surface area and low resistance to fluid flow. We have investigated surface modification of ACF using various acids in the laboratory through batch as well as through continuous flow column experiments with a view to develop the optimum conditions for chromium removal. Among the various acids investigated, phosphoric acid modified ACF gave best results with a removal efficiency of 95% under optimum conditions. Optimum pH was around 2 – 4 with 2 hours contact time. Continuous column experiments with an effective bed contact time (EBCT) of 5 minutes indicated that breakthrough occurred after 300 bed volumes. Adsorption data followed a Freundlich isotherm pattern. Nickel adsorbs preferentially and sulphate reduces chromium adsorption by 50%. The ACF could be regenerated up to 52.3% using 3 M NaOH under optimal conditions. The process is simple, economical, energy efficient and applicable to industrial effluents and drinking water.

Keywords: activated carbon fabric, hexavalent chromium, adsorption, drinking water

Procedia PDF Downloads 318
1316 Synthesis of Amine Functionalized MOF-74 for Carbon Dioxide Capture

Authors: Ghulam Murshid, Samil Ullah

Abstract:

Scientific studies suggested that the incremented greenhouse gas concentration in the atmosphere, particularly of carbon dioxide (CO2) is one of the major factors in global warming. The concentration of CO2 in our climate has crossed the milestone level of 400 parts per million (ppm) hence breaking the record of human history. A report by 49 researchers from 10 countries said, 'Global CO2 emissions from burning fossil fuels will rise to a record 36 billion metric tons (39.683 billion tons) this year.' Main contributors of CO2 in to the atmosphere are usage of fossil fuel, transportation sector and power generation plants. Among all available technologies, which include; absorption via chemicals, membrane separation, cryogenic and adsorption are in practice around the globe. Adsorption of CO2 using metal organic frameworks (MOF) is getting interest of researcher around the globe. In the current work, MOF-74 as well as modified MOF-74 with a sterically hindered amine (AMP) was synthesized and characterized. The modification was carried out using a sterically hindered amine in order to study the effect on its adsorption capacity. Resulting samples were characterized by using Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscope (FESEM), Thermal Gravimetric Analyser (TGA) and Brunauer-Emmett-Teller (BET). The FTIR results clearly confirmed the formation of MOF-74 structure and the presence of AMP. FESEM and TEM revealed the topography and morphology of the both MOF-74 and amine modified MOF. BET isotherm result shows that due to the addition of AMP in to the structure, significant enhancement of CO2 adsorption was observed.

Keywords: adsorbents, amine, CO2, global warming

Procedia PDF Downloads 399
1315 Adsorption Cooling Using Hybrid Energy Resources

Authors: R. Benelmir, M. El Kadri, A. Donnot, D. Descieux

Abstract:

HVAC represents a significant part of energy needs in buildings. Integrating renewable energy in cooling processes contributes to reducing primary energy consumption. Sorption refrigeration allows cold production through the use of solar/biomass/geothermal energy or even valuation of waste heat. This work presents an analysis of an experimental bench incorporating an adsorption chiller driven by hybrid energy resources associating solar thermal collectors with a cogeneration gas engine and a geothermal heat pump.

Keywords: solar cooling, cogeneration, geothermal heat pump, hybrid energy resources

Procedia PDF Downloads 334
1314 Optimization of Adsorption Performance of Lignocellulosic Waste Pretreatment and Chemical Modification

Authors: Bendjelloul Meriem, Elandaloussi El Hadj

Abstract:

In this work, we studied the effectiveness of a lignocellulosic waste (wood sawdust) for the removal of cadmium Cd (II) in aqueous solution. The adsorbent material SBO-CH2-CO2Na has been prepared by alkaline pretreatment of wood sawdust followed by a chemical modification with sodium salt of chloroacetic acid. The characterization of the as-prepared material by FTIR has proven that the grafting of acetate spacer took actually place in the lignocellulosic backbone by the appearance of characteristic band of carboxylic groups in the IR spectrum. The removal study of Cd2+ by SBO-CH2-CO2Na material at the solid-liquid interface was carried out by kinetics, sorption isotherms, effect of temperature and thermodynamic parameters were evaluated. The last part of this work was dedicated to assess the regenerability of the adsorbent material after three reuse cycles. The results indicate that SBO-CH2-CO2Na matrix possesses a high effectiveness in removing Cd (II) with an adsorption capacity of 222.22 mg/g, yet a better value that those of many low-cost adsorbents so far reported in the literature. The results found in the course of this study suggest that ionic exchange is the most appropriate mechanism involved in the removal of cadmium ions.

Keywords: adsorption, cadmium, isotherms, lignocellulosic, regenerability

Procedia PDF Downloads 311
1313 Arsenic Removal by Membrane Technology, Adsorption and Ion Exchange: An Environmental Lifecycle Assessment

Authors: Karan R. Chavan, Paula Saavalainen, Kumudini V. Marathe, Riitta L. Keiski, Ganapati D. Yadav

Abstract:

Co-contamination of groundwaters by arsenic in different forms is often observed around the globe. Arsenic is introduced into the waters by several mechanisms and different technologies are proposed and practiced for effective removal. The assessment of three prominent technologies, namely, adsorption, ion exchange and nanofiltration was carried out in this study based on lifecycle methodology. The life of the technologies was divided into two stages: cradle to gate (C-G) and gate to gate (G-G), in order to find out the impacts in different categories of environmental burdens, human health and resource consumption. Life cycle inventory was estimated by use of models and design equations concerning with the different technologies. Regeneration was considered for each technology and over the course of its full lifetime. The impact values of adsorption technology for the C-G stage are greater by thousand times (103) and million times (106) compared to ion exchange and nanofiltration technologies, respectively. The impact of G-G stage of the lifecycle is the major contributor of the impact for all the 3 technologies due to electricity consumption during the operation. Overall, the ion Exchange technology fares well in this study of removal of As (V) only.

Keywords: arsenic, nanofiltration, lifecycle assessment, membrane technology

Procedia PDF Downloads 224
1312 A Comparative Study of Murayya Koenigii Varieties for the Removal of Cr (VI) from Aqueous Solutions

Authors: Mesfin Tsegaw, Sivakumar C. V., Chandrakal Gunturu, Meera Indracanti

Abstract:

Chromium (VI), a toxic metal ion, is widely used in electroplating, stainless steel production, leather tanning, paint, and textile manufacturing. Cr (VI) is mobile in the environment, acutely toxic and carcinogenic. In the present study, the ability to remove Cr (VI) from aqueous solutions has been compared using leaves of dwarf and gamthi varieties of Murayya koerigii abundantly available in Selaqui region of Dehradun as an adsorbent. Effects of temperature, pH, initial concentration of adsorbate and adsorbent dosage have been studied for effective removal of Cr (VI). The biosorptive ability of biosorbent was reliant on the pH of the biosorbate, with pH 2 being most favorable for both the varieties. The obtained results were analyzed by the Freundlich and Langmuir equation at different temperature and related parameters were determined for each adsorption isotherm. The study also includes results on the kinetic dimensions of adsorption of the Cr (VI) on the derived adsorbent. Gamthi variety has a promising absorption rate of 80% over the dwarf variety. FTIR studies confirmed that carboxyl and hydroxyl groups were the main groups involved in the metal uptake.

Keywords: adsorption, cromium, kinetics, variety

Procedia PDF Downloads 122
1311 Capture of Co₂ From Natural Gas Using Modified Imidazolium Ionic Liquids

Authors: Alaa A. Ghanem, S. E. M. Desouky

Abstract:

Natural gas (NG) is considered one of the most essential global energy sources. NG fields are often far away from the market, and a long-distance transporting pipeline usually is required. Production of NG with high content of CO₂ leads to severe problems such as equipment corrosion along with the production line until refinery.in addition to a high level of toxicity and decreasing in calorific value of the NG. So it is recommended to remove or decrease the CO₂ percent to meet transport specifications. This can be reached using different removal techniques such as physical and chemical absorption, pressure swing adsorption, membrane separation, or low-temperature separation. Many solvents and chemicals are being used to capture carbon dioxide on a large scale; among them, Ionic liquids have great potential due to their tunable properties; low vapour pressure, low melting point, and sensible thermal stability. In this research, three modifiedimidazolium ionic liquids will be synthesized and characterized using different tools of analysis such as FT-IR, 1H NMR. Thermal stability and surface activity will be studied. The synthesized compounds will be evaluated as selective solvents for CO₂ removal from natural gas using PVT cell.

Keywords: natural gas, CO₂ capture, imidazolium ionic liquid, PVT cell

Procedia PDF Downloads 154
1310 Channel Estimation for Orthogonal Frequency Division Multiplexing Systems over Doubly Selective Channels Base on DCS-DCSOMP Algorithm

Authors: Linyu Wang, Furui Huo, Jianhong Xiang

Abstract:

The Doppler shift generated by high-speed movement and multipath effects in the channel are the main reasons for the generation of a time-frequency doubly-selective (DS) channel. There is severe inter-carrier interference (ICI) in the DS channel. Channel estimation for an orthogonal frequency division multiplexing (OFDM) system over a DS channel is very difficult. The simultaneous orthogonal matching pursuit algorithm under distributed compressive sensing theory (DCS-SOMP) has been used in channel estimation for OFDM systems over DS channels. However, the reconstruction accuracy of the DCS-SOMP algorithm is not high enough in the low SNR stage. To solve this problem, in this paper, we propose an improved DCS-SOMP algorithm based on the inner product difference comparison operation (DCS-DCSOMP). The reconstruction accuracy is improved by increasing the number of candidate indexes and designing the comparison conditions of inner product difference. We combine the DCS-DCSOMP algorithm with the basis expansion model (BEM) to reduce the complexity of channel estimation. Simulation results show the effectiveness of the proposed algorithm and its advantages over other algorithms.

Keywords: OFDM, doubly selective, channel estimation, compressed sensing

Procedia PDF Downloads 76
1309 Density Functional Theory Study of the Surface Interactions between Sodium Carbonate Aerosols and Fission Products

Authors: Ankita Jadon, Sidi Souvi, Nathalie Girault, Denis Petitprez

Abstract:

The interaction of fission products (FP) with sodium carbonate (Na₂CO₃) aerosols is of a high safety concern because of their potential role in the radiological source term mitigation by FP trapping. In a sodium-cooled fast nuclear reactor (SFR) experiencing a severe accident, sodium (Na) aerosols can be formed after the ejection of the liquid Na coolant inside the containment. The surface interactions between these aerosols and different FP species have been investigated using ab-initio, density functional theory (DFT) calculations using Vienna ab-initio simulation package (VASP). In addition, an improved thermodynamic model has been proposed to treat DFT-VASP calculated energies to extrapolate them to temperatures and pressures of interest in our study. A combined experimental and theoretical chemistry study has been carried out to have both atomistic and macroscopic understanding of the chemical processes; the theoretical chemistry part of this approach is presented in this paper. The Perdew, Burke, and Ernzerhof functional were applied in combination with Grimme’s van der Waals correction to compute exchange-correlational energy at 0 K. Seven different surface cleavages were studied of Ƴ-Na₂CO₃ phase (stable at 603.15 K), it was found that for defect-free surfaces, the (001) facet is the most stable. Furthermore, calculations were performed to study surface defects and reconstructions on the ideal surface. All the studied surface defects were found to be less stable than the ideal surface. More than one adsorbate-ligand configurations were found to be stable confirming that FP vapors could be trapped on various adsorption sites. The calculated adsorption energies (Eads, eV) for the three most stable adsorption sites for I₂ are -1.33, -1.088, and -1.085. Moreover, the adsorption of the first molecule of I₂ changes the surface in a way which would favor stronger adsorption of a second molecule of I2 (Eads, eV = -1.261). For HI adsorption, the most favored reactions have the following Eads (eV) -1.982, -1.790, -1.683 implying that HI would be more reactive than I₂. In addition to FP species, adsorption of H₂O was also studied as the hydrated surface can have different reactivity than the bare surface. One thermodynamically favored site for H₂O adsorption was found with an Eads, eV of -0.754. Finally, the calculations of hydrated surfaces of Na₂CO₃ show that a layer of water adsorbed on the surface significantly reduces its affinity for iodine (Eads, eV = -1.066). According to the thermodynamic model built, the required partial pressure at 373 K to have adsorption of the first layer of iodine is 4.57×10⁻⁴ bar. The second layer will be adsorbed at partial pressures higher than 8.56×10⁻⁶ bar; a layer of water on the surface will increase these pressure almost ten folds to 3.71×10⁻³ bar. The surface interacts with elemental Cs with an Eads (eV) of -1.60, while interacts even strongly with CsI with an Eads (eV) of -2.39. More results on the interactions between Na₂CO₃ (001) and cesium-based FP will also be presented in this paper.

Keywords: iodine uptake, sodium carbonate surface, sodium-cooled fast nuclear reactor, DFT calculations, fission products

Procedia PDF Downloads 133
1308 Synthesis of Magnetic Chitosan Beads and Its Cross-Linked Derivatives for Sorption of Zinc Ions from Water Samples of Yamuna and Hindon Rivers in India

Authors: Priti Rani, Rajni Johar, P. S. Jassal

Abstract:

The magnetic chitosan beads (MCB) were synthesized using co-precipitation method and made to react with epichlorohydrin (ECH) to get the cross-linked derivative (ECH-MCB). The beads were characterized by FTIR, SEM, EDX, and TGA. It is found that zinc metal ion sorption efficiency of ECH-MCB is significantly higher than MCB. Various factors affecting the uptake behavior of metal ions, such as pH, adsorbent dosage, contact time, and temperature effects, were investigated. The adsorption parameters fitted well with Langmuir and Freundlich isotherms. The equilibrium parameter RL values support that the adsorption (0 < RL < 1) is favorable and spontaneous process. The thermodynamic parameters confirm that it is an endothermic reaction, which results in an increase in the randomness of adsorption process. The beads were regenerated using ethylene diamine tetraacetic acid (EDTA) for further use. These beads prove as promising materials for the removal of pollutants from industrial wastewater. Water samples from Yamuna and Hindon rivers were analysed for the detection of Zn (II) ions.

Keywords: chitosan magnetic beads, EDTA, epichlorohydrin, removal efficiency

Procedia PDF Downloads 126
1307 Engineered Bio-Coal from Pressed Seed Cake for Removal of 2, 4, 6-Trichlorophenol with Parametric Optimization Using Box–Behnken Method

Authors: Harsha Nagar, Vineet Aniya, Alka Kumari, Satyavathi B.

Abstract:

In the present study, engineered bio-coal was produced from pressed seed cake, which otherwise is non-edible in origin. The production process involves a slow pyrolysis wherein, based on the optimization of process parameters; a substantial reduction in H/C and O/C of 77% was achieved with respect to the original ratio of 1.67 and 0.8, respectively. The bio-coal, so the product was found to have a higher heating value of 29899 kJ/kg with surface area 17 m²/g and pore volume of 0.002 cc/g. The functional characterization of bio-coal and its subsequent modification was carried out to enhance its active sites, which were further used as an adsorbent material for removal of 2,4,6-Trichlorophenol (2,4,6-TCP) herbicide from the aqueous stream. The point of zero charge for the bio-coal was found to be pH < 3 where its surface is positively charged and attracts anions resulting in the maximum 2, 4, 6-TCP adsorption at pH 2.0. The parametric optimization of the adsorption process was studied based on the Box-Behken design with the desirability approach. The results showed optimum values of adsorption efficiency of 74.04% and uptake capacity of 118.336 mg/g for an initial metal concentration of 250 mg/l and particle size of 0.12 mm at pH 2.0 and 1 g/L of bio-coal loading. Negative Gibbs free energy change values indicated the feasibility of 2,4,6-TCP adsorption on biochar. Decreasing the ΔG values with the rise in temperature indicated high favourability at low temperatures. The equilibrium modeling results showed that both isotherms (Langmuir and Freundlich) accurately predicted the equilibrium data, which may be attributed to the different affinity of the functional groups of bio-coal for 2,4,6-TCP removal. The possible mechanism for 2,4,6-TCP adsorption is found to be physisorption (pore diffusion, p*_p electron donor-acceptor interaction, H-bonding, and van der Waals dispersion forces) and chemisorption (phenolic and amine groups chemical bonding) based on the kinetics data modeling.

Keywords: engineered biocoal, 2, 4, 6-trichlorophenol, box behnken design, biosorption

Procedia PDF Downloads 96
1306 Selective Extraction of Couple Nickel(II) / Cobalt(II) by a Series of Schiff Bases in Sulfate Medium, in the Chloroforme-Water

Authors: N. Belhadj, M. Hadj Youcef, T. Benabdallah, Belbachir Ibtissem, N. Boceiri

Abstract:

This work deals with the synthesis, the structural elucidation and the exploration the extracting properties of a series of ortho-hydroxy Schiff base in sulfate medium. After the synthesis and characterization of their structures, the study of their behavior in solution was carried out by pH-metric titration in different media homogeneous and heterogeneous solution. This allowed to explore and to quantify in each of these media, some of their properties in solution such as, their acid-base behavior (determination and comparison of pKa), their distribution powers (determination and comparison of logKd), and their thermodynamic constants (determining ∆H°, ΔS° and ∆G°moy) by optimizing both the temperature and ionic strength. Study of the extraction of nickel (II) and cobalt(II) separately was undertaken in the aqueous-organic system, chloroform-water. Different extraction parameters have been thus optimized such, the pH, the concentration of extractant and the ionic strength, and the extraction constants established in each case. The extracted metal complexes have been isolated and their spatial configurations elucidated. The selective extraction of the couple cobalt (II)/nickel (II) was finally performed by our series of Schiff base in the chloroforme/water.

Keywords: selective extraction, Schiff base, distribution, cobalt(II), nickel(II)

Procedia PDF Downloads 444
1305 Ethical Discussions on Prenatal Diagnosis: Iranian Case of Thalassemia Prevention Program

Authors: Sachiko Hosoya

Abstract:

Objectives: The purpose of this paper is to investigate the social policy of preventive genetic medicine in Iran, by following the legalization process of abortion law and the factors affecting the process in wider Iranian contexts. In this paper, ethical discussions of prenatal diagnosis and selective abortion in Iran will be presented, by exploring Iranian social policy to control genetic diseases, especially a genetic hemoglobin disorder called Thalassemia. The ethical dilemmas in application of genetic medicine into social policy will be focused. Method: In order to examine the role of the policy for prevention of genetic diseases and selective abortion in Iran, various resources have been sutudied, not only academic articles, but also discussion in the Parliament and documents related to a court case, as well as ethnographic data on living situation of Thalassemia patients. Results: Firstly, the discussion on prenatal diagnosis and selective abortion is overviewed from the viewpoints of ethics, disability rights activists, and public policy for lower-resources countries. As a result, it should be noted that the point more important in the discussion on prenatal diagnosis and selective abortion in Iran is the allocation of medical resources. Secondly, the process of implementation of national thalassemia screening program and legalization of ‘Therapeutic Abortion Law’ is analyzed, through scrutinizing documents such as the Majlis record, government documents and related laws and regulations. Although some western academics accuse that Iranian policy of selective abortion seems to be akin to eugenic public policy, Iranian government carefully avoid to distortions of the policy as ‘eugenic’. Thirdly, as a comparative example, discussions on an Iranian court case of patient’s ‘right not to be born’ will be introduced. Along with that, restrictive living environments of people with Thalassemia patients and the carriers are depicted, to understand some disabling social factors for people with genetic diseases in the local contexts of Iran.

Keywords: abortion, Iran, prenatal diagnosis, public health ethics, Thalassemia prevention program

Procedia PDF Downloads 327
1304 Wastewater Treatment by Modified Bentonite

Authors: Mecabih Zohra

Abstract:

Water is such an important element of many manufacturing processes which that use a big amount of chemical substances, It is likely to cause it contamination of water returning to rivers by industrial discharged. These contaminants can be a high in suspended solid and chemical oxygen demand. In this study, urban wastewater of sidi bel abbes city (Algeria) was treated by adsorption using modified bentonite from Magnia (Algeria) by conducting batch experiments to investigate its equilibrium characteristics and kinetics. Purified bentonite is characterized by; CEC, XRF, BET, FITR, XRD, SEM and 27Al spectroscopy. The results showed the removal of suspended solids exceeds 98.47% and COD up to 99.52%, and regarding of sorption efficiencies (qm), the maximum COD sorption efficiencies (qm) calculated using the Langmuir model is 156.23, 64.47 and 17.19 mg/g respectively, for a pH range of 4 to 9.

Keywords: adsorption, bentonite, COD, wastewater

Procedia PDF Downloads 58
1303 Wastewater Treatment by Modified Bentonite

Authors: Mecabih Zohra

Abstract:

Water is such an important element of many manufacturing processes which that use a big amount of chemical substances, It is likely to cause it contamination of water returning to rivers by industrial discharged. These contaminants can be a high in suspended solid and chemical oxygen demand. In this study, urban wastewater of sidi bel abbes city (Algeria) was treated by adsorption using modified bentonite from Magnia (Algeria) by conducting batch experiments to investigate its equilibrium characteristics and kinetics. Purified bentonite is characterized by; CEC, XRF, BET, FITR, XRD, SEM and 27Al spectroscopy. The results showed the removal of suspended solids exceeds 98.47% and COD up to 99.52%, and regarding of sorption efficiencies (qm), the maximum COD sorption efficiencies (qm) calculated using the Langmuir model is 156.23, 64.47 and 17.19 mg/g respectively, for a pH range of 4 to 9.

Keywords: adsorption, bentonite, COD, wastewater

Procedia PDF Downloads 65
1302 Electrochemical Studies of Some Schiff Bases on the Corrosion of Steel in H2SO4 Solution

Authors: Ahmed A. Farag, M. A. Hgazy

Abstract:

The influence of three Schiff bases (SB-I, SB-II, and SB-III) on the corrosion of carbon steel in 0.5 M H2SO4 solution was studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The inhibition efficiency increases with the concentration of the Schiff bases and follow the trend: SB-III > SB-II > SB-I. Tafel polarization measurements revealed that the three tested inhibitors function as anodic inhibitors. The thermodynamic parameters Kads and ΔGºads are calculated and discussed. The Langmuir isotherm equation was found to provide an accurate description of the adsorption behaviour of the investigated Schiff bases. Depending on the results, the inhibitive mechanism was proposed.

Keywords: Schiff bases, corrosion inhibitors, EIS, adsorption

Procedia PDF Downloads 522
1301 Preparation of Composite Alginate/Perlite Beads for Pb (II) Removal in Aqueous Solution

Authors: Hasan Türe, Kader Terzioglu, Evren Tunca

Abstract:

Contamination of aqueous environment by heavy metal ions is a serious and complex problem, owing to their hazards to human being and ecological systems. The treatment methods utilized for removing metal ions from aqueous solution include membrane separation, ion exchange and chemical precipitation. However, these methods are limited by high operational cost. Recently, biobased beads are considered as promising biosorbent to remove heavy metal ions from water. The aim of present study was to characterize the alginate/perlite composite beads and to investigate the adsorption performance of obtained beads for removing Pb (II) from aqueous solution. Alginate beads were synthesized by ionic gelation methods and different amount of perlite (aljinate:perlite=1, 2, 3, 4, 5 wt./wt.) was incorporated into alginate beads. Samples were characterized by means of X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM). The effects of perlite level, the initial concentration of Pb (II), initial pH value of Pb(II) solution and effect of contact time on the adsorption capacity of beads were investigated by using batch method. XRD analysis indicated that perlite includes silicon or silicon and aluminum bearing crystalline phase. The diffraction pattern of perlite containing beads is similar to that of that perlite powder with reduced intensity. SEM analysis revealed that perlite was embedded into alginate polymer and SEM-EDX (Energy-Dispersive X-ray) showed that composite beads (aljinate:perlite=1) composed of C (41.93 wt.%,), O (43.64 wt.%), Na (10.20 wt.%), Al (0.74 wt.%), Si (2.72 wt.%) ve K (0.77 wt.%). According to TGA analysis, incorporation of perlite into beads significantly improved the thermal stability of the samples. Batch experiment indicated that optimum pH value for Pb (II) adsorption was found at pH=7 with 1 hour contact time. It was also found that the adsorption capacity of beads decreased with increases in perlite concentration. The results implied that alginate/perlite composite beads could be used as promising adsorbents for the removal of Pb (II) from wastewater. Acknowledgement: This study was supported by TUBITAK (Project No: 214Z146).

Keywords: alginate, adsorption, beads, perlite

Procedia PDF Downloads 266
1300 Efficiency of a Molecularly Imprinted Polymer for Selective Removal of Chlorpyrifos from Water Samples

Authors: Oya A. Urucu, Aslı B. Çiğil, Hatice Birtane, Ece K. Yetimoğlu, Memet Vezir Kahraman

Abstract:

Chlorpyrifos is an organophosphorus pesticide which can be found in environmental water samples. The efficiency and reuse of a molecularly imprinted polymer (chlorpyrifos - MIP) were investigated for the selective removal of chlorpyrifos residues. MIP was prepared with UV curing thiol-ene polymerization technology by using multifunctional thiol and ene monomers. The thiol-ene curing reaction is a radical induced process, however unlike other photoinitiated polymerization processes, this polymerization process is a free-radical reaction that proceeds by a step-growth mechanism, involving two main steps; a free-radical addition followed by a chain transfer reaction. It assures a very rapidly formation of a uniform crosslinked network with low shrinkage, reduced oxygen inhibition during curing and excellent adhesion. In this study, thiol-ene based UV-curable polymeric materials were prepared by mixing pentaerythritol tetrakis(3-mercaptopropionate), glyoxal bis diallyl acetal, polyethylene glycol diacrylate (PEGDA) and photoinitiator. Chlorpyrifos was added at a definite ratio to the prepared formulation. Chemical structure and thermal properties were characterized by FTIR and thermogravimetric analysis (TGA), respectively. The pesticide analysis was performed by gas chromatography-mass spectrometry (GC-MS). The influences of some analytical parameters such as pH, sample volume, amounts of analyte concentration were studied for the quantitative recoveries of the analyte. The proposed MIP method was applied to the determination of chlorpyrifos in river and tap water samples. The use of the MIP provided a selective and easy solution for removing chlorpyrifos from the water.

Keywords: molecularly imprinted polymers, selective removal, thilol-ene, uv-curable polymer

Procedia PDF Downloads 281
1299 Adsorptive Desulfurization of Using Cu(I) – Y Zeolite via π-Complexation

Authors: Moshe Mello, Hilary Rutto, Tumisang Seodigeng, Itumeleng Kohitlhetse

Abstract:

The accelerating requirement to reach 0% sulfur content in liquid fuels demand researchers to seek efficient alternative technologies to challenge the predicament. In this current study, the adsorption capabilities of modified Cu(I)-Y zeolite were tested for the removal of organosulfur compounds (OSC) present in tire pyrolytic oil (TPO). The π-complexation-based adsorbent was obtained by ion exchanging Y-zeolite with Cu+ cation using liquid phase ion exchange (LPIE). Preparation of the adsorbent involved firstly ion exchange between Na-Y zeolite with a Cu(NO₃)₂ aqueous solution of 0.5M for 48 hours followed by reduction of Cu²⁺ to Cu+. Fixed-bed breakthrough studies for TPO in comparison with model diesel comprising of sulfur compounds such as thiophene, benzothiophenes (BT), and dibenzothiophenes (DBT) showed that modified Cu(I)-Y zeolite is an effective adsorbent for removal of OSC in liquid fuels. The effect of operating conditions such as adsorbent dosage and reaction time were studied to optimize the adsorptive desulfurization process. For model diesel fuel, the selectivity for adsorption of sulfur compounds followed the order DBT> BT> Thiophene. The Cu(I)-Y zeolite is fully regeneratable and this is achieved by a simple procedure of blowing the adsorbent with air at 350 °C, followed by reactivation at 450 °C in a rich helium surrounding.

Keywords: adsorption, desulfurization, TPO, zeolite

Procedia PDF Downloads 93
1298 Application of Functionalized Magnetic Particles as Demulsifier for Oil‐in‐Water Emulsions

Authors: Hamideh Hamedi, Nima Rezaei, Sohrab Zendehboudi

Abstract:

Separating emulsified oil contaminations from waste- or produced water is of interest to various industries. Magnetic particles (MPs) application for separating dispersed and emulsified oil from wastewater is becoming more popular. Stabilization of MPs is required through developing a coating layer on their surfaces to prevent their agglomeration and enhance their dispersibility. In this research, we study the effects of coating material, size, and concentration of iron oxide MPs on oil separation efficiency, using oil adsorption capacity measurements. We functionalize both micro-and nanoparticles of Fe3O4 using sodium dodecyl sulfate (SDS) as an anionic surfactant, cetyltrimethylammonium bromide (CTAB) as a cationic surfactant, and stearic acid (SA). The chemical structures and morphologies of these particles are characterized using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Energy Dispersive X-ray (EDX). The oil-water separation results indicate that a low dosage of the coated magnetic nanoparticle with CTAB (0.5 g/L MNP-CTAB) results the highest oil adsorption capacity (nearly 100%) for 1000 ppm dodecane-in-water emulsion, containing ultra-small droplets (250–300 nm). While separation efficiency of the same dosage of bare MNPs is around 57.5%. Demulsification results of magnetic microparticles (MMPs) also reveal that the functionalizing particles with CTAB increase oil removal efficiency from 86.3% for bare MMP to 92% for MMP-CTAB. Comparing the results of different coating materials implies that the major interaction reaction is an electrostatic attraction between negatively charged oil droplets and positively charged MNP-CTAB and MMP-CTAB. Furthermore, the synthesized nanoparticles could be recycled and reused; after ten cycles the oil adsorption capacity slightly decreases to near 95%. In conclusion, functionalized magnetic particles with high oil separation efficiency could be used effectively in treatment of oily wastewater. Finally, optimization of the adsorption process is required by considering the effective system variables, and fluid properties.

Keywords: oily wastewater treatment, emulsions, oil-water separation, adsorption, magnetic nanoparticles

Procedia PDF Downloads 80
1297 Isotherm Study of Modified Zeolite in Sorption of Naphthalene from Water Sample

Authors: Homayon Ahmad Panahi, Amir Hesam Hassani, Akram Torki, Elham Moniri

Abstract:

A new sorbent was synthesized through chemical modification of clinoptilolite zeolite using 2-naphtol, and characterized with fourier transform infrared spectroscopy and elemental analysis methods and applied for the removal and elimination of trace naphthalene from water samples. The optimum pH value for sorption of the naphthalene by modified zeolite was in acidic pH. The sorption capacity of modified zeolite was 142 mg. g−1. Isotherm models, Langmuir, Frendlich and Temkin were employed to analyze the adsorption capacity of modified zeolite, which revealed that naphthalene adsorption by this zeolite follows Langmuir model.

Keywords: zeolite, clinoptilolite, modification, naphthalene

Procedia PDF Downloads 465
1296 Corrosion Inhibition of Mild Steel in 20% Sulfuric Acid

Authors: M. Dekmouche, M. Hadjada, Z. Rahmani, M. Saidi

Abstract:

The effect of iodide ions on the corrosion inhibition of mild steel in 20% sulfuric acid in the presence of 3-méthylthio-5-p-méthoxyphényl-1,2-dithiolylium against anion (I-) A1 synthesized in our laboratory,was studied by different electrochemical techniques such as electrochemical impedance spectroscopy, potentiodynamic polarization. The obtained results showed that A1 effectively reduces the corrosion rate of steel. The adsorption of 3-méthylthio-5-p-méthoxyphényl-1,2-dithiolylium against anion (I-) followed Langmuir and temkin adsorption isotherm.

Keywords: steel XC52, corrosion, inhibition, 3-méthylthio-5-p-méthoxyphényl-1, 2-dithiolylium against anion (I-) , sulfuric acid

Procedia PDF Downloads 306
1295 Use of Magnetically Separable Molecular Imprinted Polymers for Determination of Pesticides in Food Samples

Authors: Sabir Khan, Sajjad Hussain, Ademar Wong, Maria Del Pilar Taboada Sotomayor

Abstract:

The present work aims to develop magnetic molecularly imprinted polymers (MMIPs) for determination of a selected pesticide (ametryne) using high-performance liquid chromatography (HPLC). Computational simulation can assist the choice of the most suitable monomer for the synthesis of polymers. The (MMIPs) were polymerized at the surface of Fe3O4@SiO2 magnetic nanoparticles (MNPs) using 2-vinylpyradine as functional monomer, ethylene-glycol-dimethacrylate (EGDMA) is a cross-linking agent and 2,2-Azobisisobutyronitrile (AIBN) used as radical initiator. Magnetic non-molecularly imprinted polymer (MNIPs) was also prepared under the same conditions without analyte. The MMIPs were characterized by scanning electron microscopy (SEM), Brunauer, Emmett and Teller (BET) and Fourier transform infrared spectroscopy (FTIR). Pseudo first-order and pseudo second order model were applied to study kinetics of adsorption and it was found that adsorption process followed the pseudo-first-order kinetic model. Adsorption equilibrium data was fitted to Freundlich and Langmuir isotherms and the sorption equilibrium process was well described by Langmuir isotherm mode. The selectivity coefficients (α) of MMIPs for ametryne with respect to atrazine, ciprofloxacin and folic acid were 4.28, 12.32 and 14.53 respectively. The spiked recoveries ranged between 91.33 and 106.80% were obtained. The results showed high affinity and selectivity of MMIPs for pesticide ametryne in the food samples.

Keywords: molecularly imprinted polymer, pesticides, magnetic nanoparticles, adsorption

Procedia PDF Downloads 449
1294 Simulation Study on Effects of Surfactant Properties on Surfactant Enhanced Oil Recovery from Fractured Reservoirs

Authors: Xiaoqian Cheng, Jon Kleppe, Ole Torsaeter

Abstract:

One objective of this work is to analyze the effects of surfactant properties (viscosity, concentration, and adsorption) on surfactant enhanced oil recovery at laboratory scale. The other objective is to obtain the functional relationships between surfactant properties and the ultimate oil recovery and oil recovery rate. A core is cut into two parts from the middle to imitate the matrix with a horizontal fracture. An injector and a producer are at the left and right sides of the fracture separately. The middle slice of the core is used as the model in this paper, whose size is 4cm x 0.1cm x 4.1cm, and the space of the fracture in the middle is 0.1 cm. The original properties of matrix, brine, oil in the base case are from Ekofisk Field. The properties of surfactant are from literature. Eclipse is used as the simulator. The results are followings: 1) The viscosity of surfactant solution has a positive linear relationship with surfactant oil recovery time. And the relationship between viscosity and oil production rate is an inverse function. The viscosity of surfactant solution has no obvious effect on ultimate oil recovery. Since most of the surfactant has no big effect on viscosity of brine, the viscosity of surfactant solution is not a key parameter of surfactant screening for surfactant flooding in fractured reservoirs. 2) The increase of surfactant concentration results a decrease of oil recovery rate and an increase of ultimate oil recovery. However, there are no functions could describe the relationships. Study on economy should be conducted because of the price of surfactant and oil. 3) In the study of surfactant adsorption, assume that the matrix wettability is changed to water-wet when the surfactant adsorption is to the maximum at all cases. And the ratio of surfactant adsorption and surfactant concentration (Cads/Csurf) is used to estimate the functional relationship. The results show that the relationship between ultimate oil recovery and Cads/Csurf is a logarithmic function. The oil production rate has a positive linear relationship with exp(Cads/Csurf). The work here could be used as a reference for the surfactant screening of surfactant enhanced oil recovery from fractured reservoirs. And the functional relationships between surfactant properties and the oil recovery rate and ultimate oil recovery help to improve upscaling methods.

Keywords: fractured reservoirs, surfactant adsorption, surfactant concentration, surfactant EOR, surfactant viscosity

Procedia PDF Downloads 151
1293 Application of Biopolymer for Adsorption of Methylene Blue Dye from Simulated Effluent: A Green Method for Textile Industry Wastewater Treatment

Authors: Rabiya, Ramkrishna Sen

Abstract:

The textile industry releases huge volume of effluent containing reactive dyes in the nearby water bodies. These effluents are significant source of water pollution since most of the dyes are toxic in nature. Moreover, it scavenges the dissolved oxygen essential to the aquatic species. Therefore, it is necessary to treat the dye effluent before it is discharged in the nearby water bodies. The present study focuses on removing the basic dye methylene blue from simulated wastewater using biopolymer. The biopolymer was partially purified from the culture of Bacillus licheniformis by ultrafiltration. Based on the elution profile of the biopolymer from ion exchange column, it was found to be a negatively charged molecule. Its net anionic nature allows the biopolymer to adsorb positively charged molecule, methylene blue. The major factors which influence the removal of dye by the biopolymer such as incubation time, pH, initial dye concentration were evaluated. The methylene blue uptake by the biopolymer is more (14.84 mg/g) near neutral pH than in acidic pH (12.05mg/g) of the water. At low pH, the lower dissociation of the dye molecule as well as the low negative charge available on the biopolymer reduces the interaction between the biopolymer and dye. The optimum incubation time for maximum removal of dye was found to be 60 min. The entire study was done with 25 mL of dye solution in 100 mL flask at 25 °C with an amount of 11g/L of biopolymer. To study the adsorption isotherm, the dye concentration was varied in the range of 25mg/L to 205mg/L. The dye uptake by the biopolymer against the equilibrium concentration was plotted. The plot indicates that the adsorption of dye by biopolymer follows the Freundlich adsorption isotherm (R-square 0.99). Hence, these studies indicate the potential use of biopolymer for the removal of basic dye from textile wastewater in an ecofriendly and sustainable way.

Keywords: biopolymer, methylene blue dye, textile industry, wastewater

Procedia PDF Downloads 124
1292 Statistical Optimization of Adsorption of a Harmful Dye from Aqueous Solution

Authors: M. Arun, A. Kannan

Abstract:

Textile industries cater to varied customer preferences and contribute substantially to the economy. However, these textile industries also produce a considerable amount of effluents. Prominent among these are the azo dyes which impart considerable color and toxicity even at low concentrations. Azo dyes are also used as coloring agents in food and pharmaceutical industry. Despite their applications, azo dyes are also notorious pollutants and carcinogens. Popular techniques like photo-degradation, biodegradation and the use of oxidizing agents are not applicable for all kinds of dyes, as most of them are stable to these techniques. Chemical coagulation produces a large amount of toxic sludge which is undesirable and is also ineffective towards a number of dyes. Most of the azo dyes are stable to UV-visible light irradiation and may even resist aerobic degradation. Adsorption has been the most preferred technique owing to its less cost, high capacity and process efficiency and the possibility of regenerating and recycling the adsorbent. Adsorption is also most preferred because it may produce high quality of the treated effluent and it is able to remove different kinds of dyes. However, the adsorption process is influenced by many variables whose inter-dependence makes it difficult to identify optimum conditions. The variables include stirring speed, temperature, initial concentration and adsorbent dosage. Further, the internal diffusional resistance inside the adsorbent particle leads to slow uptake of the solute within the adsorbent. Hence, it is necessary to identify optimum conditions that lead to high capacity and uptake rate of these pollutants. In this work, commercially available activated carbon was chosen as the adsorbent owing to its high surface area. A typical azo dye found in textile effluent waters, viz. the monoazo Acid Orange 10 dye (CAS: 1936-15-8) has been chosen as the representative pollutant. Adsorption studies were mainly focused at obtaining equilibrium and kinetic data for the batch adsorption process at different process conditions. Studies were conducted at different stirring speed, temperature, adsorbent dosage and initial dye concentration settings. The Full Factorial Design was the chosen statistical design framework for carrying out the experiments and identifying the important factors and their interactions. The optimum conditions identified from the experimental model were validated with actual experiments at the recommended settings. The equilibrium and kinetic data obtained were fitted to different models and the model parameters were estimated. This gives more details about the nature of adsorption taking place. Critical data required to design batch adsorption systems for removal of Acid Orange 10 dye and identification of factors that critically influence the separation efficiency are the key outcomes from this research.

Keywords: acid orange 10, activated carbon, optimum adsorption conditions, statistical design

Procedia PDF Downloads 154
1291 Comparative Evaluation of Kinetic Model of Chromium and Lead Uptake from Aqueous Solution by Activated Balanitesaegyptiaca Seeds

Authors: Mohammed Umar Manko

Abstract:

A series of batch experiments were conducted in order to investigate the feasibility of Balanitesaegyptiaca seeds based activated carbon as compared with industrial activated carbon for the removal of chromium and lead ions from aqueous solution by the adsorption process within 30 to 150 minutes contact time. The activated samples were prepared using zinc chloride and tetraoxophophate(VI) acid. The results obtained showed that the activated carbon of Balanitesaegyptiaca seeds studied had relatively high adsorption capacities for these heavy metal ions compared with industrial Activated Carbon. The percentage removal of Cr (VI) and lead (II) ions by the three activated carbon samples were 64%, 70% and 71%; 60%, 66% and 60% respectively. Adsorption equilibrium was established in 90 minutes for the heavy metal ions. The equilibrium data fitted the pseudo second order out of the pseudo first, pseudo second, Elovich ,Natarajan and Khalaf models tested. The investigation also showed that the adsorbents can effectively remove metal ions from similar wastewater and aqueous media.

Keywords: activated carbon, pseudo second order, chromium, lead, Elovich model

Procedia PDF Downloads 303