Search results for: pore closing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 636

Search results for: pore closing

306 Long-Term Mechanical and Structural Properties of Metakaolin-Based Geopolymers

Authors: Lenka Matulova

Abstract:

Geopolymers are alumosilicate materials that have long been studied. Despite this fact, little is known about the long-term stability of geopolymer mechanical and structural properties, so crucial for their successful industrial application. To improve understanding, we investigated the effect of four different types of environments on the mechanical and structural properties of a metakaolin-based geopolymer (MK GP). The MK GP samples were stored in laboratory conditions (control samples), in water at 20 °C, in water at 80 °C, and outside exposed to the weather. Compressive and tensile strengths were measured after 28, 56, 90, and 360 days. In parallel, structural properties were analyzed using XRD, SEM, and mercury intrusion porosimetry. Whereas the mechanical properties of the samples in laboratory conditions and in 20 °C water were stable, the mechanical properties of the outdoor samples and the samples 80 °C water decreased noticeably after 360 days. Structural analyses were focused on changes in sample microstructure (developing microcrack network, porosity) and identifying zeolites, the presence of which would indicate detrimental processes in the structure that can change it from amorphous to crystalline. No zeolites were found during the 360-day period in MK GP samples, but the reduction in mechanical properties coincided with a developing network of microcracks and changes in pore size distribution.

Keywords: geopolymer, long-term properties, mechanical properties, metakaolin, structural properties

Procedia PDF Downloads 211
305 Cryptocurrency as a Payment Method in the Tourism Industry: A Comparison of Volatility, Correlation and Portfolio Performance

Authors: Shu-Han Hsu, Jiho Yoon, Chwen Sheu

Abstract:

With the rapidly growing of blockchain technology and cryptocurrency, various industries which include tourism has added in cryptocurrency as the payment method of their transaction. More and more tourism companies accept payments in digital currency for flights, hotel reservations, transportation, and more. For travellers and tourists, using cryptocurrency as a payment method has become a way to circumvent costs and prevent risks. Understanding volatility dynamics and interdependencies between standard currency and cryptocurrency is important for appropriate financial risk management to assist policy-makers and investors in marking more informed decisions. The purpose of this paper has been to understand and explain the risk spillover effects between six major cryptocurrencies and the top ten most traded standard currencies. Using data for the daily closing price of cryptocurrencies and currency exchange rates from 7 August 2015 to 10 December 2019, with 1,133 observations. The diagonal BEKK model was used to analyze the co-volatility spillover effects between cryptocurrency returns and exchange rate returns, which are measures of how the shocks to returns in different assets affect each other’s subsequent volatility. The empirical results show there are co-volatility spillover effects between the cryptocurrency returns and GBP/USD, CNY/USD and MXN/USD exchange rate returns. Therefore, currencies (British Pound, Chinese Yuan and Mexican Peso) and cryptocurrencies (Bitcoin, Ethereum, Ripple, Tether, Litecoin and Stellar) are suitable for constructing a financial portfolio from an optimal risk management perspective and also for dynamic hedging purposes.

Keywords: blockchain, co-volatility effects, cryptocurrencies, diagonal BEKK model, exchange rates, risk spillovers

Procedia PDF Downloads 118
304 Removal of Heavy Metal Using Continous Mode

Authors: M. Abd elfattah, M. Ossman, Nahla A. Taha

Abstract:

The present work explored the use of Egyptian rice straw, an agricultural waste that leads to global warming problem through brown cloud, as a potential feedstock for the preparation of activated carbon by physical and chemical activation. The results of this study showed that it is feasible to prepare activated carbons with relatively high surface areas and pore volumes from the Egyptian rice straw by direct chemical and physical activation. The produced activated carbon from the two methods (AC1 and AC2) could be used as potential adsorbent for the removal of Fe(III) from aqueous solution contains heavy metals and polluted water. The adsorption of Fe(III) was depended on the pH of the solution. The optimal Fe(III) removal efficiency occurs at pH 5. Based on the results, the optimum contact time is 60 minutes and adsorbent dosage is 3 g/L. The adsorption breakthrough curves obtained at different bed depths indicated increase of breakthrough time with increase in bed depths. A rise in inlet Fe(III) concentration reduces the throughput volume before the packed bed gets saturated. AC1 showed higher affinity for Fe(III) as compared to Raw rice husk.

Keywords: rice straw, activated carbon, Fe(III), fixed bed column, pyrolysis

Procedia PDF Downloads 222
303 Ordered Mesoporous WO₃-TiO₂ Nanocomposites for Enhanced Xylene Gas Detection

Authors: Vijay K. Tomer, Ritu Malik, Satya P. Nehra, Anshu Sharma

Abstract:

Highly ordered mesoporous WO₃-TiO₂ nanohybrids with large intrinsic surface area and highly ordered pore channels were synthesized using mesoporous silica, KIT-6 as hard template using a nanocasting strategy. The nanohybrid samples were characterized by a variety of physico-chemical techniques including X-ray diffraction, Nitrogen adsorption-desorption isotherms, and high resolution transmission electron microscope. The nanohybrids were tested for detection of important indoor Volatile Organic Compounds (VOCs) including acetone, ethanol, n-butanol, toluene, and xylene. The sensing result illustrates that the nanocomposite sensor was highly responsive towards xylene gas at relatively lower operating temperature. A rapid response and recovery time, highly linear response and excellent stability in the concentration ranges from 1 to 100 ppm was observed for xylene gas. It is believed that the promising results of this study can be utilized in the synthesis of ordered mesoporous nanostructures which can extend its configuration for the development of new age e-nose type sensors with enhanced gas-sensing performance.

Keywords: nanohybrids, response, sensor, VOCs, xylene

Procedia PDF Downloads 304
302 Identifying Issues of Corporate Governance and the Effect on Organizational Performance

Authors: Abiodun Oluwaseun Ibude

Abstract:

Every now and then we hear of companies closing down their operations due to unethical practices like an overstatement of company’s balance sheet, concealing company’s debt, embezzlement of company’s fund, declaring false profit and so on. This has led to the liquidation of companies and the loss of investments of shareholders as well as the interest of other stakeholders. As a result of these ugly trends, there is need to put in place a formidable mechanism that will ensure that business activities are conducted in a healthy manner. It should also promote good ethics as well as ensure that the interest of stakeholders and the objectives of any organization is achieved within the confines of the law; wherein law exists to provide criminal penalties for falsification of documents and for conducting other irregularities. Based on the foregoing, it becomes imperative to ensure that steps are taken to stop this menace and face the challenges ahead. This calls for the practice of good governance. The purpose of this study is to identify various components of corporate governance and determine the impact of it on the performance of established organizations. A survey method with the use of questionnaire was applied in collecting data useful for this study which were later analyzed using correlation co-efficiency statistical tools in generating finding, making a conclusion, and necessary recommendation. From the research conducted, it was discovered that there are systems within organizations apart from regulatory agencies that ensure effective control of activities, promote accountability, and operational efficiency. However, some members of organizations fail to explore the usage of corporate governance and impact negatively of an organization’s performance. In conclusion, good corporate governance will not be achieved unless there is openness, honesty, transparency, accountability, and fairness.

Keywords: corporate governance, formidable mechanism, company’s balance sheet, stakeholders

Procedia PDF Downloads 92
301 The Influence of Water and Salt Crystals Content on Thermal Conductivity Coefficient of Red Clay Brick

Authors: Dalia Bednarska, Marcin Koniorczyk

Abstract:

This paper presents results of experiments aimed at studying hygro-thermal properties of red clay brick. The main objective of research was to investigate the relation between thermal conductivity coefficient of brick and its water or Na2SO4 solution content. The research was conducted using stationary technique for the totally dried specimens, as well as the ones 25%, 50%, 75% and 100% imbued with water or sodium sulfate solution. Additionally, a sorption isotherm test was conducted for seven relative humidity levels. Furthermore the change of red clay brick pore structure before and after imbuing with water and salt solution was investigated by multi-cycle mercury intrusion test. The experimental results confirm negative influence of water or sodium sulphate on thermal properties of material. The value of thermal conductivity coefficient increases along with growth of water or Na₂SO₄ solution content. The study shows that the presence of Na₂SO₄ solution has less negative influence on brick’s thermal conductivity coefficient than water.

Keywords: building materials, red clay brick, sodium sulfate, thermal conductivity coefficient

Procedia PDF Downloads 379
300 Durability of Wood Shavel Composites with Environmental Friendly Based Binder

Authors: Jul Endawati

Abstract:

The composite element of 20 mm in thickness were manufactured using high volume fly ash, silica fume as alternative hydraulic binders and Portland cement Type II. Pine wood shavel as by product of local small wood working industries were used as the composite filler. The elements were given in situ wet and dry treatment for 9 months. Visually there is no fiber degradation as a result of the interaction of the environment. The assessment were done to the elements bending strength and dimensional properties. Increase in MoR after 180 days of exposure shown that mechanically this degradation is not seen yet. The increment of MoR (213%) compare to that of 28 days might be affected by the formation of calcium hydroxide (CH) or ettringite in the transition zone. The use of pozzolan showed also a delay or minimize degradation of composites while improving the pore structure, and minimize the mineralization of the fiber bond with the cement matrix. The water absorption is 4,22% at 180 days, 7,94% at 120 days and 12,38% at 28 days, in line with the 68% decrease in Thickness Swelling (TS). This unoccured degradation could also be affected by the presence of silica fume in the binder matrix. After 270 days of exposure under tropical condition, the flexural strength started to decrease.

Keywords: durability, fly ash, natural fibre, silica fume

Procedia PDF Downloads 241
299 Simulation-Based Control Module for Offshore Single Point Mooring System

Authors: Daehyun Baek, Seungmin Lee, Minju Kim Jangik Park, Hyeong-Soon Moon

Abstract:

SPM (Single Point Mooring) is one of the mooring buoy facilities installed on a coast near oil and gas terminal which is not able to berth FPSO or large oil tankers under the condition of high draft due to geometrical limitation. Loading and unloading of crude oil and gas through a subsea pipeline can be carried out between the mooring buoy, ships and onshore facilities. SPM is an offshore-standalone system which has to withstand the harsh marine environment with harsh conditions such as high wind, current and so on. Therefore, SPM is required to have high stability, reliability and durability. Also, SPM is comprised to be integrated systems which consist of power management, high pressure valve control, sophisticated hardware/software and a long distance communication system. In order to secure required functions of SPM system, a simulation model for the integrated system of SPM using MATLAB Simulink and State flow tool has been developed. The developed model consists of configuration of hydraulic system for opening and closing of PLEM (Pipeline End Manifold) valves and control system logic. To verify functions of the model, an integrated simulation model for overall systems of SPM was also developed by considering handshaking variables between individual systems. In addition to the dynamic model, a self-diagnostic function to determine failure of the system was configured, which enables the SPM system itself to alert users about the failure once a failure signal comes to arise. Controlling and monitoring the SPM system is able to be done by a HMI system which is capable of managing the SPM system remotely, which was carried out by building a communication environment between the SPM system and the HMI system.

Keywords: HMI system, mooring buoy, simulink simulation model, single point mooring, stateflow

Procedia PDF Downloads 400
298 Exploring Utility and Intrinsic Value among UAE Arabic Teachers in Integrating M-Learning

Authors: Dina Tareq Ismail, Alexandria A. Proff

Abstract:

The United Arab Emirates (UAE) is a nation seeking to advance in all fields, particularly education. One area of focus for UAE 2021 agenda is to restructure UAE schools and universities by equipping them with highly developed technology. The agenda also advises educational institutions to prepare students with applicable and transferrable Information and Communication Technology (ICT) skills. Despite the emphasis on ICT and computer literacy skills, there exists limited empirical data on the use of M-Learning in the literature. This qualitative study explores the motivation of higher primary Arabic teachers in private schools toward implementing and integrating M-Learning apps in their classrooms. This research employs a phenomenological approach through the use of semistructured interviews with nine purposefully selected Arabic teachers. The data were analyzed using a content analysis via multiple stages of coding: open, axial, and thematic. Findings reveal three primary themes: (1) Arabic teachers with high levels of procedural knowledge in ICT are more motivated to implement M-Learning; (2) Arabic teachers' perceptions of self-efficacy influence their motivation toward implementation of M-Learning; (3) Arabic teachers implement M-Learning when they possess high utility and/or intrinsic value in these applications. These findings indicate a strong need for further training, equipping, and creating buy-in among Arabic teachers to enhance their ICT skills in implementing M-Learning. Further, given the limited availability of M-Learning apps designed for use in the Arabic language on the market, it is imperative that developers consider designing M-Learning tools that Arabic teachers, and Arabic-speaking students, can use and access more readily. This study contributes to closing the knowledge gap on teacher-motivation for implementing M-Learning in their classrooms in the UAE.

Keywords: ICT skills, m-learning, self-efficacy, teacher-motivation

Procedia PDF Downloads 86
297 Technical Aspects of Closing the Loop in Depth-of-Anesthesia Control

Authors: Gorazd Karer

Abstract:

When performing a diagnostic procedure or surgery in general anesthesia (GA), a proper introduction and dosing of anesthetic agents are one of the main tasks of the anesthesiologist. However, depth of anesthesia (DoA) also seems to be a suitable process for closed-loop control implementation. To implement such a system, one must be able to acquire the relevant signals online and in real-time, as well as stream the calculated control signal to the infusion pump. However, during a procedure, patient monitors and infusion pumps are purposely unable to connect to an external (possibly medically unapproved) device for safety reasons, thus preventing closed-loop control. The paper proposes a conceptual solution to the aforementioned problem. First, it presents some important aspects of contemporary clinical practice. Next, it introduces the closed-loop-control-system structure and the relevant information flow. Focusing on transferring the data from the patient to the computer, it presents a non-invasive image-based system for signal acquisition from a patient monitor for online depth-of-anesthesia assessment. Furthermore, it introduces a UDP-based communication method that can be used for transmitting the calculated anesthetic inflow to the infusion pump. The proposed system is independent of a medical device manufacturer and is implemented in Matlab-Simulink, which can be conveniently used for DoA control implementation. The proposed scheme has been tested in a simulated GA setting and is ready to be evaluated in an operating theatre. However, the proposed system is only a step towards a proper closed-loop control system for DoA, which could routinely be used in clinical practice.

Keywords: closed-loop control, depth of anesthesia (DoA), modeling, optical signal acquisition, patient state index (PSi), UDP communication protocol

Procedia PDF Downloads 195
296 Understanding the Role of Gas Hydrate Morphology on the Producibility of a Hydrate-Bearing Reservoir

Authors: David Lall, Vikram Vishal, P. G. Ranjith

Abstract:

Numerical modeling of gas production from hydrate-bearing reservoirs requires the solution of various thermal, hydrological, chemical, and mechanical phenomena in a coupled manner. Among the various reservoir properties that influence gas production estimates, the distribution of permeability across the domain is one of the most crucial parameters since it determines both heat transfer and mass transfer. The aspect of permeability in hydrate-bearing reservoirs is particularly complex compared to conventional reservoirs since it depends on the saturation of gas hydrates and hence, is dynamic during production. The dependence of permeability on hydrate saturation is mathematically represented using permeability-reduction models, which are specific to the expected morphology of hydrate accumulations (such as grain-coating or pore-filling hydrates). In this study, we demonstrate the impact of various permeability-reduction models, and consequently, different morphologies of hydrate deposits on the estimates of gas production using depressurization at the reservoir scale. We observe significant differences in produced water volumes and cumulative mass of produced gas between the models, thereby highlighting the uncertainty in production behavior arising from the ambiguity in the prevalent gas hydrate morphology.

Keywords: gas hydrate morphology, multi-scale modeling, THMC, fluid flow in porous media

Procedia PDF Downloads 200
295 Angiopermissive Foamed and Fibrillar Scaffolds for Vascular Graft Applications

Authors: Deon Bezuidenhout

Abstract:

Pre-seeding with autologous endothelial cells improves the long-term patency of synthetic vascular grafts levels obtained with autografts, but is limited to a single centre due to resource, time and other constraints. Spontaneous in vivo endothelialization would obviate the need for pre-seeding, but has been shown to be absent in man due to limited transanastomotic and fallout healing, and the lack of transmural ingrowth due to insufficient porosity. Two types of graft scaffolds with increased interconnected porosity for improved tissue ingrowth and healing are thus proposed and described. Foam-type polyurethane (PU) scaffolds with small, medium and large, interconnected pores were made by phase inversion and spherical porogen extraction, with and without additional surface modification with covalently attached heparin and subsequent loading with and delivery of growth factors. Fibrillar scaffolds were made either by standard electrospinning using degradable PU (Degrapol®), or by dual electrospinning using non-degradable PU. The latter process involves sacrificial fibres that are co-spun with structural fibres and subsequently removed to increased porosity and pore size. Degrapol samples were subjected to in vitro degradation, and all scaffold types were evaluated in vivo for tissue ingrowth and vascularization using rat subcutaneous model. The foam scaffolds were additionally evaluated in a circulatory (rat infrarenal aortic interposition) model that allows for the grafts to be anastomotically and/or ablumenally isolated to discern and determine endothelialization mode. Foam-type grafts with large (150 µm) pores showed improved subcutaneous healing in terms of vascularization and inflammatory response over smaller pore sizes (60 and 90µm), and vascularization of the large porosity scaffolds was significantly increased by more than 70% by heparin modification alone, and by 150% to 400% when combined with growth factors. In the circulatory model, extensive transmural endothelialization (95±10% at 12 w) was achieved. Fallout healing was shown to be sporadic and limited in groups that were ablumenally isolated to prevent transmural ingrowth (16±30% wrapped vs. 80±20% control; p<0.002). Heparinization and GF delivery improved both mural vascularization and lumenal endothelialization. Degrapol electrospun scaffolds showed decrease in molecular mass and corresponding tensile strength over the first 2 weeks, but very little decrease in mass over the 4w test period. Studies on the effect of tissue ingrowth with and without concomitant degradation of the scaffolds, are being used to develop material models for the finite element modelling. In the case of the dual-spun scaffolds, the PU fibre fraction could be controlled shown to vary linearly with porosity (P = −0.18FF +93.5, r2=0.91), which in turn showed inverse linear correlation with tensile strength and elastic modulus (r2 > 0.96). Calculated compliance and burst pressures of the scaffolds increased with fibre fraction, and compliances matching the human popliteal artery (5-10 %/100 mmHg), and high burst pressures (> 2000 mmHg) could be achieved. Increasing porosity (76 to 82 and 90%) resulted in increased tissue ingrowth from 33±7 to 77±20 and 98±1% after 28d. Transmural endothelialization of highly porous foamed grafts is achievable in a circulatory model, and the enhancement of porosity and tissue ingrowth may hold the key the development of spontaneously endothelializing electrospun grafts.

Keywords: electrospinning, endothelialization, porosity, scaffold, vascular graft

Procedia PDF Downloads 269
294 Valorization of the Waste Generated in Building Energy-Efficiency Rehabilitation Works as Raw Materials for Gypsum Composites

Authors: Paola Villoria Saez, Mercedes Del Rio Merino, Jaime Santacruz Astorqui, Cesar Porras Amores

Abstract:

In construction the Circular Economy covers the whole cycle of the building construction: from production and consumption to waste management and the market for secondary raw materials. The circular economy will definitely contribute to 'closing the loop' of construction product lifecycles through greater recycling and re-use, helping to build a market for reused construction materials salvaged from demolition sites, boosting global competitiveness and fostering sustainable economic growth. In this context, this paper presents the latest research of 'Waste to resources (W2R)' project funded by the Spanish Government, which seeks new solutions to improve energy efficiency in buildings by developing new building materials and products that are less expensive, more durable, with higher quality and more environmentally friendly. This project differs from others as its main objective is to reduce to almost zero the Construction and Demolition Waste (CDW) generated in building rehabilitation works. In order to achieve this objective, the group is looking for new ways of CDW recycling as raw materials for new conglomerate materials. With these new materials, construction elements reducing building energy consumption will be proposed. In this paper, the results obtained in the project are presented. Several tests were performed to gypsum samples containing different percentages of CDW waste generated in Spanish building retroffiting works. Results were further analyzed and one of the gypsum composites was highlighted and discussed. Acknowledgements: This research was supported by the Spanish State Secretariat for Research, Development and Innovation of the Ministry of Economy and Competitiveness under 'Waste 2 Resources' Project (BIA2013-43061-R).

Keywords: building waste, CDW, gypsum, recycling, resources

Procedia PDF Downloads 306
293 Rare Earth Metal Ion-Doped SiO2 Nanocomposite Membranes for Gas Separation in Steam Atmosphere

Authors: Md. Hasan Zahir

Abstract:

Y2O3-doped silica membranes were synthesized with the sol-gel method by using a tetraethyl orthosilicate-derived sol mixed with yttrium nitrate hexahydrate. These solutions were used to fabricate hydrogen separation microporous membranes with a sandwich-type structure on γ-Al2O3 supported by tubular α-Al2O3. Pore size distribution measurements were conducted directly on the membranes before and after hydrothermal treatment with a nano-permporometer. The gas permeance properties of the membranes were measured in the temperature range 100–500°C. The Y-doped SiO2 membrane (Si/Y = 3/1) was found to exhibit asymptotically stable permeances of 2.39×10-7 mol m-2 s -1 Pa-1 for He and 6.19 ×10-10 mol m-2 s -1 Pa-1 for CO2, with a high selectivity of 386 (He/CO2) at 500°C for 20 h in the presence of steam. The Y-doped silica membranes exhibit very high gas permeances for molecules with smaller kinetic diameters. The apparent activation energies of the H2 permeance at 400°C were 24.2±0.2 and 21.3±0.7 kJ mol−1 for SiO2 and Si/Y, respectively. Very high permeances were obtained for N2 and O2, 2.2 and 5 × 10-8 mol m-2 s -1 Pa-1 respectively, which demonstrates that these materials are promising air purification and/or separation systems that block larger impurity molecules by molecular sieving effects. Y-doped SiO2 exhibits greater hydrothermal stability at high temperatures and higher selectivity than SiO2 membranes.

Keywords: ceramic membrane, gas separation, hydrothermal stability, rare earth doped-Silica

Procedia PDF Downloads 237
292 Role of Speech Articulation in English Language Learning

Authors: Khadija Rafi, Neha Jamil, Laiba Khalid, Meerub Nawaz, Mahwish Farooq

Abstract:

Speech articulation is a complex process to produce intelligible sounds with the help of precise movements of various structures within the vocal tract. All these structures in the vocal tract are named as articulators, which comprise lips, teeth, tongue, and palate. These articulators work together to produce a range of distinct phonemes, which happen to be the basis of language. It starts with the airstream from the lungs passing through the trachea and into oral and nasal cavities. When the air passes through the mouth, the tongue and the muscles around it form such coordination it creates certain sounds. It can be seen when the tongue is placed in different positions- sometimes near the alveolar ridge, soft palate, roof of the mouth or the back of the teeth which end up creating unique qualities of each phoneme. We can articulate vowels with open vocal tracts, but the height and position of the tongue is different every time depending upon each vowel, while consonants can be pronounced when we create obstructions in the airflow. For instance, the alphabet ‘b’ is a plosive and can be produced only by briefly closing the lips. Articulation disorders can not only affect communication but can also be a hurdle in speech production. To improve articulation skills for such individuals, doctors often recommend speech therapy, which involves various kinds of exercises like jaw exercises and tongue twisters. However, this disorder is more common in children who are going through developmental articulation issues right after birth, but in adults, it can be caused by injury, neurological conditions, or other speech-related disorders. In short, speech articulation is an essential aspect of productive communication, which also includes coordination of the specific articulators to produce different intelligible sounds, which are a vital part of spoken language.

Keywords: linguistics, speech articulation, speech therapy, language learning

Procedia PDF Downloads 39
291 The Effects of Alkalization to the Mechanical Properties of Biocomposite PLA reinforced the Ijuk Fibers

Authors: Mochamad Chalid, Imam Prabowo

Abstract:

The pollution due to non-degradable material such as plastics, has led to studies about the development of environmental-friendly material. Because of biodegradability obtained from natural sources, polylactid acid (PLA) and ijuk fiber are interesting to modify into a composite. This material is also expected to reduce the impact of environmental pollution. Surface modification of ijuk fiber through alkalinization with 0.25 M NaOH solution for 30 minutes, was aimed to enhance it’s compatibility to PLA, in order to improve properties of the composite such as the mechanical properties. Alkalinization of the ijuk fibers annihilates some surface components such as lignin, wax and hemicelloluse, so the pore on the surface clearly appeared, decreasing of the density and diameter of the ijuk fibers. The change of the ijuk fiber properties leads to increase the mechanical properties of PLA composites reinforced the ijuk fibers through strengthening of the mechanical interlocking with the PLA matrix. An addition to enhance the distribution of the fibers in the PLA matrix, the stirring during DCM solvent evaporation from the mixture of the ijuk fibers and the dissolved-PLA can reduce amount of the trapped-voids and fibers pull-out phenomena, which can decrease the mechanical properties of the composite.

Keywords: polylactic acid, Arenga pinnata, alkalinization, compatibility, adhesion, morphology, mechanical properties, volume fraction, distributiom

Procedia PDF Downloads 345
290 A Qualitative Evidence of the Markedness of Code Switching during Commercial Bank Service Encounters in Ìbàdàn Metropolis

Authors: A. Robbin

Abstract:

In a multilingual setting like Nigeria, the success of service encounters is enhanced by the use of a language that ensures the linguistic and persuasive demands of the interlocutors. This study examined motivations for code switching as a negotiation strategy in bank-hall desk service encounters in Ìbàdàn metropolis using Myers-Scotton’s exploration on markedness in language use. The data consisted of transcribed audio recording of bank-hall service encounters, and direct observation of bank interactions in two purposively sampled commercial banks in Ìbàdàn metropolis. The data was subjected to descriptive linguistic analysis using Myers Scotton’s Markedness Model.  Findings reveal that code switching is frequently employed during different stages of service encounter: greeting, transaction and closing to fulfil relational, bargaining and referential functions. Bank staff and customers code switch to make unmarked, marked and explanatory choices. A strategy used to identify with customer’s cultural affiliation, close status gap, and appeal to begrudged customer; or as an explanatory choice with non-literate customers for ease of communication. Bankers select English to maintain customers’ perceptions of prestige which is retained or diverged from depending on their linguistic preference or ability.  Yoruba is seen as an efficient negotiation strategy with both bankers and their customers, making choices within conversation to achieve desired conversational and functional aims.

Keywords: banking, bilingualism, code-switching, markedness, service encounter

Procedia PDF Downloads 187
289 The Reality of the Digital Inequality and Its Negative Impact on Virtual Learning during the COVID-19 Pandemic: The South African Perspective

Authors: Jacob Medupe

Abstract:

Life as we know it has changed since the global outbreak of Coronavirus Disease 2019 (COVID-19) and business as usual will not continue. The human impact of the COVID-19 crisis is already immeasurable. Moreover, COVID-19 has already negatively impacted economies, livelihoods and disrupted food systems around the world. The disruptive nature of the Corona virus has affected every sphere of life including the culture and teaching and learning. Right now the majority of education research is based around classroom management techniques that are no longer necessary with digital delivery. Instead there is a great need for new data about how to make the best use of the one-on-one attention that is now becoming possible (Diamandis & Kotler, 2014). The COVID-19 pandemic has necessitated an environment where the South African learners are focused to adhere to social distancing in order to minimise the wild spread of the Corona virus. This arrangement forces the student to utilise the online classroom technologies to continue with the lessons. The historical reality is that the country has not made much strides on the closing of the digital divide and this is particularly a common status quo in the deep rural areas. This will prove to be a toll order for most of the learners affected by the Corona Virus to be able to have a seamless access to the online learning facilities. The paper will seek to look deeply into this reality and how the Corona virus has brought us to the reality that South Africa remains a deeply unequal society in every sphere of life. The study will also explore the state of readiness for education system around the online classroom environment.

Keywords: virtual learning, virtual classroom, COVID-19, Corona virus, internet connectivity, blended learning, online learning, distance education, e-learning, self-regulated Learning, pedagogy, digital literacy

Procedia PDF Downloads 102
288 Modeling of the Flow through an Earth Dam and Geotechnical Slope Analyzes

Authors: Ahmed Ferhati, Arezki Adjrad, Ratiba Mitiche-Kettab, Hakim Djafer Khodja

Abstract:

The porous media are omnipresent around us that they are natural as sand, clay, rocks, or manufactured like concretes, cement, and ceramics. The variety of porous environment indicates a wide material range which can be very different from each other. Their common point is to be made up of a solid matrix and a porous space. In our case of study, we made the modeling of the flows in porous environments through the massives as in the case of an earth dam. The computer code used (PLAXIS) offer the possibility of modeling of various structures, in particular, the works in lands because that it deals with the pore water pressure due to the underground flow and the calculation of the plastic deformations. To confirm results obtained by PLAXIS, GeoStudio SEEP/W code was used. This work treats modeling of flows and mechanical and hydraulic behavior of earth dam. A general framework which can fit the calculation of this kind of structures and the coupling of the soil consolidation and free surface flows was defined. In this study; we have confronted a real case modeling of an earth dam. It was shown, in particular, that it is possible to entirely lead the calculation of real dam and to get encouraging results from the hydraulic and mechanical point of view.

Keywords: analyzes, dam, flow, modeling, PLAXIS, seep/w, slope

Procedia PDF Downloads 288
287 Microfiltration of the Sugar Refinery Wastewater Using Ceramic Membrane with Kenics Static Mixer

Authors: Zita Šereš, Ljubica Dokić, Nikola Maravić, Dragana Šoronja Simović, Cecilia Hodur, Ivana Nikolić, Biljana Pajin

Abstract:

New environmental regulations and the increasing market preference for companies that respect the ecosystem had encouraged the industry to look after new treatments for its effluents. The sugar industry, one of the largest emitter of environmental pollutants, follows this tendency. Membrane technology is convenient for separation of suspended solids, colloids and high molecular weight materials that are present in a wastewater from the sugar industry. The idea is to microfilter the wastewater, where the permeate passes through the membrane and becomes available for recycle and re-use in the sugar manufacturing process. For microfiltration of this effluent a tubular ceramic membrane was used with a pore size of 200 nm at transmembrane pressure in range of 1 – 3 bars and in range of flow rate of 50 – 150 l/h. Kenics static mixer was used for permeate flux enhancement. Turbidity and suspended solids were removed and the permeate flux was continuously monitored during the microfiltration process. The flux achieved after 90 minutes of microfiltration was in a range of 50-70 L/m2h. The obtained turbidity decrease was in the range of 50-99% and the total amount of suspended solids was removed.

Keywords: ceramic membrane, microfiltration, permeate flux, sugar industry, wastewater

Procedia PDF Downloads 499
286 Model Studies on Shear Behavior of Reinforced Reconstituted Clay

Authors: B. A. Mir, A. Juneja

Abstract:

In this paper, shear behavior of reconstituted clay reinforced with varying diameter of sand compaction piles with area replacement-ratio (as) of 6.25, 10.24, 16, 20.25 and 64% in 100mm diameter and 200mm long clay specimens is modeled using consolidated drained and undrained triaxial tests under different confining pressures ranging from 50kPa to 575kPa. The test results show that the stress-strain behavior of the clay was highly influenced by the presence of SCP. The insertion of SCPs into soft clay has shown to have a positive effect on the load carrying capacity of the clay, resulting in a composite soil mass that has greater shear strength and improved stiffness compared to the unreinforced clay due to increased reinforcement area ratio. In addition, SCP also acts as vertical drain in the clay thus accelerating the dissipation of excess pore water pressures that are generated during loading by shortening the drainage path and activating radial drainage, thereby reducing post-construction settlement. Thus, sand compaction piles currently stand as one of the most viable and practical techniques for improving the mechanical properties of soft clays.

Keywords: reconstituted clay, SCP, shear strength, stress-strain response, triaxial tests

Procedia PDF Downloads 386
285 Controlling Dimensions and Shape of Carbon Nanotubes Using Nanoporous Anodic Alumina under Different Conditions

Authors: Amine Mezni, Merfat Algethami, Ali Aldalbahi, Arwa Alrooqi, Abel Santos, Dusan Losic, Sarah Alharthi, Tariq Altalhi

Abstract:

In situ synthesis of carbon nanotubes featuring different diameters (10-200 nm), lengths (1 to 100 µm) and periodically nanostructured shape was performed in a custom designed chemical vapor deposition (CVD) system using nanoporous anodic alumina (NAA) under different conditions. The morphology of the resulting CNTs/NAA composites and free-standing CNTs were analyzed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The results confirm that highly ordered arrays of CNTs with precise control of nanotube dimensions in the range 20-200 nm with tube length in the range < 1 µm to > 100 μm and with periodically shaped morphology can be fabricated using nanostructured NAA templates prepared by anodization. This technique allows us to obtain tubes open at one / both ends with a uniform diameter along the pore length without using any metal catalyst. Our finding suggests that this fabrication strategy for designing new CNTs membranes and structures can be significant for emerging applications as molecular separation/transport, optical biosensing, and drug delivery.

Keywords: carbon nanotubes, CVD approach, composites membrane, nanoporous anodic alumina

Procedia PDF Downloads 260
284 Assessing the Effect of Underground Tunnel Diameter on Structure-Foundation-Soil Performance under the Kobe Earthquake

Authors: Masoud Mahdavi

Abstract:

Today, developed and industrial cities have all kinds of sewage and water transfer canals, subway tunnels, infrastructure facilities, etc., which have caused underground cavities to be created under the buildings. The presence of these cavities causes behavioral changes in the structural behavior that must be fully evaluated. In the present study, using Abaqus finite element software, the effect of cavities with 0.5 and 1.5 meters in diameter at a depth of 2.5 meters from the earth's surface (with a circular cross-section) on the performance of the foundation and the ground (soil) has been evaluated. For this purpose, the Kobe earthquake was applied to the models for 10 seconds. Also, pore water pressure and weight were considered on the models to get complete results. The results showed that by creating and increasing the diameter of circular cavities in the soil, three indicators; 1) von Mises stress, 2) displacement and 3) plastic strain have had oscillating, ascending and ascending processes, respectively, which shows the relationship between increasing the diameter index of underground cavities and structural indicators of structure-foundation-soil.

Keywords: underground excavations, foundation, structural substrates, Abaqus software, Kobe earthquake, time history analysis

Procedia PDF Downloads 94
283 A Semidefinite Model to Quantify Dynamic Forces in the Powertrain of Torque Regulated Bascule Bridge Machineries

Authors: Kodo Sektani, Apostolos Tsouvalas, Andrei Metrikine

Abstract:

The reassessment of existing movable bridges in The Netherlands has created the need for acceptance/rejection criteria to assess whether the machineries are meet certain design demands. However, the existing design code defines a different limit state design, meant for new machineries which is based on a simple linear spring-mass model. Observations show that existing bridges do not confirm the model predictions. In fact, movable bridges are nonlinear systems consisting of mechanical components, such as, gears, electric motors and brakes. Next to that, each movable bridge is characterized by a unique set of parameters. However, in the existing code various variables that describe the physical characteristics of the bridge are neglected or replaced by partial factors. For instance, the damping ratio ζ, which is different for drawbridges compared to bascule bridges, is taken as a constant for all bridge types. In this paper, a model is developed that overcomes some of the limitations of existing modelling approaches to capture the dynamics of the powertrain of a class of bridge machineries First, a semidefinite dynamic model is proposed, which accounts for stiffness, damping, and some additional variables of the physical system, which are neglected by the code, such as nonlinear braking torques. The model gives an upper bound of the peak forces/torques occurring in the powertrain during emergency braking. Second, a discrete nonlinear dynamic model is discussed, with realistic motor torque characteristics during normal operation. This model succeeds to accurately predict the full time history of the occurred stress state of the opening and closing cycle for fatigue purposes.

Keywords: Dynamics of movable bridges, Bridge machinery, Powertrains, Torque measurements

Procedia PDF Downloads 130
282 Access to Higher Education During Covid-19: Challenges and Key Success Factors

Authors: Samia Jamshed Nauman Majeed

Abstract:

Purpose: Globally, the pandemic of COVID -19 has created a massive distraction for educational reforms influencing learning options, education access, and outcomes of students in more than 190 countries which has carved marks in history. To explore the challenges and complications confronted by students and faculty members while ensuring access to online education, qualitative research was conducted. Methodology: For this purpose, a series of focus group discussions were conducted in different regions of Pakistan, which revealed interesting findings shared by Panelists, which include Vice-Chancellors, Rectors, and Deans of different private and public sector universities of Pakistan. The qualitative research aims to explore the challenges and success factors of online educations by students with diverse backgrounds of higher education institutions to maximize student educational outcomes. Findings: The findings revealed several challenges and opportunities when it comes to online education for students of higher education institutions. Simultaneously, the researchers discovered the key success factors necessary for online education. Lastly, the paper presents the research limitations and future research recommendations to streamline online education in a better way ensuring the students' success. Originality: The pandemic has forced the closure of social, business, and educational activities, which has drastically influence the quality of education with its subsequent impact on the economy. In response, numerous universities across the globe are forced to suspend their educational activities by closing the universities. Though online education has been adopted worldwide by the universities, which brought numerous issues for academia, particularly for underdeveloped countries, and Pakistani higher education reforms are no exception to this.

Keywords: online education, higher education institutions, COVID-19, challenges, key success factors

Procedia PDF Downloads 58
281 Evaluating the Topsoil and Subsoil Physical Quality Using Relative Bulk Density in Urmia Plain

Authors: Hossein Asgarzadeh, Ayoub Osmani, Farrokh Asadzadeh, Mohammad Reza Mosaddeghi

Abstract:

This study was conducted to evaluate the topsoil and subsoil physical quality using relative bulk density (RBD) in Urmia plain in Iran. Undisturbed samples were collected from two layers (topsoil and subsoil) of thirty agricultural soils. Categories of 0.72 ≥ RBD (low degree of compactness), 0.82 > RBD > 0.72 (moderate/optimum degree of compactness), and RBD ≥ 0.82 (high degree of compactness) were used to evaluate soil physical quality (SPQ). Two topsoils had a low degree of compactness, fourteen topsoils had an optimum degree of compactness, and the rest (i.e., fourteen topsoils) had a high degree of compactness. Only one subsoil had an optimum degree of compactness, and twenty-eight subsoils (i.e., 93%) had a high degree of compactness, indicating poor SPQ of the subsoil layer in the studied region. It seems that conventional tillage in the past decades destroyed the pore system in the majority of studied subsoils. The high degree of compactness would reduce soil aeration and increase soil penetration resistance which could restrict root and plant growth. Conversely, a low degree of soil compactness is expected to reduce the root-soil contact.

Keywords: compactness, relative bulk density, soil physical quality

Procedia PDF Downloads 91
280 A Psychoanalytic Lens: Unmasked Layers of the Self among Post-Graduate Psychology Students in Surviving the COVID-19 Lockdown

Authors: Sharon Sibanda, Benny Motileng

Abstract:

The World Health Organisation (WHO) identified the Sars-Cov-2 (COVID-19) as a pandemic on the 12ᵗʰ of March 2020, with South Africa recording its first case on the 5ᵗʰ of March 2020. The rapidly spreading virus led the South African government to implement one of the strictest nationwide lockdowns globally, resulting in the closing down of all institutions of higher learning effective March 18ᵗʰ 2020. Thus, this qualitative study primarily aimed to explore whether post-graduate psychology students were in a state of a depleted or cohesive self, post the psychological isolation of COVID-19 risk-adjusted level 5 lockdown. Semi-structured interviews from a qualitative interpretive approach comprising N=6 psychology post-graduate students facilitated a rich understanding of their intra-psychic experiences of the self. Thematic analysis of data gathered from the interviews illuminated how students were forced into the self by the emotional isolation of hard lockdown, with the emergence of core psychic conflict often defended against through external self-object experiences. The findings also suggest that lockdown stripped off this sample of psychology post-graduate students’ defensive escape from the inner self through external self-object distractions. The external self was stripped to the core of the internal self by the isolation of hard lockdown, thereby uncovering the psychic function of roles and defenses amalgamated throughout modern cultural consciousness that dictates self-functioning. The study suggests modelling reflexivity skills in the integration of internal and external self-experience dynamics as part of a training model for continued personal and professional development for psychology students.

Keywords: COVID-19, fragmentation, self-object experience, true/false self

Procedia PDF Downloads 33
279 Entrepreneurship Education: The Impact in Today’s World

Authors: Oghenerume V. Edah, Damilola T. Aladejana

Abstract:

Entrepreneurship Education is the process of developing and acquiring entrepreneur skills on how to identify a new business and launching the business with the realization of yielding profit optimally. It’s the process of knowing how to take risk and handle challenges that accompanies a new business without the mindset of closing it when it fails. It includes steps to take when a business is recognized, combined with acquiring resources (e.g. finances, labor, land) in the face of risk and launching the new business. Additionally, Entrepreneurship is defined as the ability and willingness to set a business in the event of making profit. It is the act of starting up a business to solve big problems or present a new life-changing solution in the society to generate profit. It’s a process where a business opportunity is identified; planned, acquired and needful steps are taken to launch a business. This involves taking up financial risk, acquiring natural resources, combined with land, capital and building up a team of people who would individually contribute or add value in order to make the new business a success. Moreover, Education is the learning of new skills or value. It’s the acquiring of knowledge and capability of doing new things. It is been able to differentiate what you know and what you don’t know yet. In this modern world, the emergence of entrepreneurship education has been magnificent. An average of 60 percent humans wants to start a business or become an entrepreneur without knowing the steps on how to startup. Moreover, many of them are good starters and they end up failing when the business is not managed well. The introduction of Entrepreneur Education in our world today would change the face of business phenomenally. It would involve the acquisition of entrepreneur skills, knowledge and attitude towards initiating a business venture. The impact of Entrepreneurship Education in our world today would increase the chances of business success because it would generate better entrepreneurs. The skills, values, concept and processes acquired through learning have changed the face of business to a positive direction globally and the impact can be felt. Entrepreneurship can be taught and also can be learnt. Like any skills it can be known.

Keywords: entrepreneurship, education, business, entrepreneur, skills

Procedia PDF Downloads 117
278 Simulation of Fiber Deposition on Molded Fiber Screen Using Multi-Sphere Discrete Element Method

Authors: Kim Quy Le, Duan Fei, Jia Wei Chew, Jun Zeng, Maria Fabiola Leyva

Abstract:

In line with the sustainable development goal, molded fiber products play important roles in reducing plastic-based packaging. To fabricate molded fiber products, besides using conventional meshing tools, 3D printing is employed to manufacture the molded fiber screen. 3D printing technique allows printing molded fiber screens with complex geometry, flexible in pore size and shape. The 3D printed molded fiber screens are in the progress of investigation to improve the de-watering efficiency, fiber collection, mechanical strength, etc. In addition, the fiber distribution on the screen is also necessary to access the quality of the screen. Besides using experimental methods to capture the fiber distribution on screen, simulation also offers using tools to access the uniformity of fiber. In this study, the fiber was simulated using the multi-sphere model to simulate the fibers. The interaction of the fibers was able to mimic by employing the discrete element method. The fiber distribution was captured and compared to the experiment. The simulation results were able to reveal the fiber deposition layer upon layer and explain the formation of uneven thickness on the tilted area of molded fiber screen.

Keywords: 3D printing, multi-jet fusion, molded fiber screen, discrete element method

Procedia PDF Downloads 84
277 Re-Visiting Rumi and Iqbal on Self-Enhancement for Social Responsibility

Authors: Javed Y. Uppal

Abstract:

The background of this study is the great degree of stress that the world is experiencing today, internationally among the countries, within a community among people, and even individually within one’s own self. The significance of the study is the attempt to find a solution of this stress in the philosophy of the olden times of Jalaluddin Rumi and comparatively recently of that of Allama Iqbal. The methodology adopted in this paper is firstly exploration of the perspectives of these philosophers that are being consolidated by a number of psychic and spiritual experts of today, who are being widely read but less followed. This paper further goes on presenting brief life sketches of Rumi and Iqbal. It expounds the key concepts proposed by them and the social change that was resulted in the times of the two above mentioned metaphysical philosophers. It is further amplified that with the recent advancements, in both metaphysics and the physical sciences, the gap between the two is closing down. Both Rumi and Iqbal emphasized their common essence. The old time's concepts, postulates, and philosophies are hence once again becoming valid. The findings of this paper are that the existence of human empathy, affection and mutual social attraction among humans is still valid. The positive inner belief system that dictates our thoughts and actions is vital. As a conclusion, empathy should enable us solving our problems collectively. We need to strengthen our inner communication system, to listen to the messages that come to our inner-selves. We need to get guidance and strength from them. We need to value common needs and purposes collectively to achieve results. Spiritual energy among us is to be harnessed and utilized. Connectivity is to be recognized to unify and strengthen ties among people. Mutual bonding at small and large group levels is to be employed for the survival of the disadvantaged, and sustainability of the empowering trends. With the above guidelines, hopefully, we can define a framework towards a brave and happy new humane world.

Keywords: belief system, connectivity, human empathy, inner-self, mutual bonding, spiritual energy

Procedia PDF Downloads 133