Search results for: pool fire
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 835

Search results for: pool fire

505 Methodology for the Integration of Object Identification Processes in Handling and Logistic Systems

Authors: L. Kiefer, C. Richter, G. Reinhart

Abstract:

The uprising complexity in production systems due to an increasing amount of variants up to customer innovated products leads to requirements that hierarchical control systems are not able to fulfil. Therefore, factory planners can install autonomous manufacturing systems. The fundamental requirement for an autonomous control is the identification of objects within production systems. In this approach an attribute-based identification is focused for avoiding dose-dependent identification costs. Instead of using an identification mark (ID) like a radio frequency identification (RFID)-Tag, an object type is directly identified by its attributes. To facilitate that it’s recommended to include the identification and the corresponding sensors within handling processes, which connect all manufacturing processes and therefore ensure a high identification rate and reduce blind spots. The presented methodology reduces the individual effort to integrate identification processes in handling systems. First, suitable object attributes and sensor systems for object identification in a production environment are defined. By categorising these sensor systems as well as handling systems, it is possible to match them universal within a compatibility matrix. Based on that compatibility further requirements like identification time are analysed, which decide whether the combination of handling and sensor system is well suited for parallel handling and identification within an autonomous control. By analysing a list of more than thousand possible attributes, first investigations have shown, that five main characteristics (weight, form, colour, amount, and position of subattributes as drillings) are sufficient for an integrable identification. This knowledge limits the variety of identification systems and leads to a manageable complexity within the selection process. Besides the procedure, several tools, as an example a sensor pool are presented. These tools include the generated specific expert knowledge and simplify the selection. The primary tool is a pool of preconfigured identification processes depending on the chosen combination of sensor and handling device. By following the defined procedure and using the created tools, even laypeople out of other scientific fields can choose an appropriate combination of handling devices and sensors which enable parallel handling and identification.

Keywords: agent systems, autonomous control, handling systems, identification

Procedia PDF Downloads 155
504 The Effects of Wood Ash on Ignition Point of Wood

Authors: K. A. Ibe, J. I. Mbonu, G. K. Umukoro

Abstract:

The effects of wood ash on the ignition point of five common tropical woods in Nigeria were investigated. The ash and moisture contents of the wood saw dust from Mahogany (Khaya ivorensis), Opepe (Sarcocephalus latifolius), Abura (Hallealedermannii verdc), Rubber (Heavea brasilensis) and Poroporo (Sorghum bicolour) were determined using a furnace (Vecstar furnaces, model ECF2, serial no. f3077) and oven (Genlab laboratory oven, model MINO/040) respectively. The metal contents of the five wood sawdust ash samples were determined using a Perkin Elmer optima 3000 dv atomic absorption spectrometer while the ignition points were determined using Vecstar furnaces model ECF2. Poroporo had the highest ash content, 2.263 g while rubber had the least, 0.710 g. The results for the moisture content range from 2.971 g to 0.903 g. Magnesium metal had the highest concentration of all the metals, in all the wood ash samples; with mahogany ash having the highest concentration, 9.196 ppm while rubber ash had the least concentration of magnesium metal, 2.196 ppm. The ignition point results showed that the wood ashes from mahogany and opepe increased the ignition points of the test wood samples when coated on them while the ashes from poroporo, rubber and abura decreased the ignition points of the test wood samples when coated on them. However, Opepe saw dust ash decreased the ignition point in one of the test wood samples, suggesting that the metal content of the test wood sample was more than that of the Opepe saw dust ash. Therefore, Mahogany and Opepe saw dust ashes could be used in the surface treatment of wood to enhance their fire resistance or retardancy. However, the caution to be exercised in this application is that the metal content of the test wood samples should be evaluated as well.

Keywords: ash, fire, ignition point, retardant, wood saw dust

Procedia PDF Downloads 361
503 Relationship of Entrepreneurial Ecosystem Factors and Entrepreneurial Cognition: An Exploratory Study Applied to Regional and Metropolitan Ecosystems in New South Wales, Australia

Authors: Sumedha Weerasekara, Morgan Miles, Mark Morrison, Branka Krivokapic-Skoko

Abstract:

This paper is aimed at exploring the interrelationships among entrepreneurial ecosystem factors and entrepreneurial cognition in regional and metropolitan ecosystems. Entrepreneurial ecosystem factors examined include: culture, infrastructure, access to finance, informal networks, support services, access to universities, and the depth and breadth of the talent pool. Using a multivariate approach we explore the impact of these ecosystem factors or elements on entrepreneurial cognition. In doing so, the existing body of knowledge from the literature on entrepreneurial ecosystem and cognition have been blended to explore the relationship between entrepreneurial ecosystem factors and cognition in a way not hitherto investigated. The concept of the entrepreneurial ecosystem has received increased attention as governments, universities and communities have started to recognize the potential of integrated policies, structures, programs and processes that foster entrepreneurship activities by supporting innovation, productivity and employment growth. The notion of entrepreneurial ecosystems has evolved and grown with the advancement of theoretical research and empirical studies. Importance of incorporating external factors like culture, political environment, and the economic environment within a single framework will enhance the capacity of examining the whole systems functionality to better understand the interaction of the entrepreneurial actors and factors within a single framework. The literature on clusters underplays the role of entrepreneurs and entrepreneurial management in creating and co-creating organizations, markets, and supporting ecosystems. Entrepreneurs are only one actor following a limited set of roles and dependent upon many other factors to thrive. As a consequence, entrepreneurs and relevant authorities should be aware of the other actors and factors with which they engage and rely, and make strategic choices to achieve both self and also collective objectives. The study uses stratified random sampling method to collect survey data from 12 different regions in regional and metropolitan regions of NSW, Australia. A questionnaire was administered online among 512 Small and medium enterprise owners operating their business in selected 12 regions in NSW, Australia. Data were analyzed using descriptive analyzing techniques and partial least squares - structural equation modeling. The findings show that even though there is a significant relationship between each and every entrepreneurial ecosystem factors, there is a weak relationship between most entrepreneurial ecosystem factors and entrepreneurial cognition. In the metropolitan context, the availability of finance and informal networks have the largest impact on entrepreneurial cognition while culture, infrastructure, and support services having the smallest impact and the talent pool and universities having a moderate impact on entrepreneurial cognition. Interestingly, in a regional context, culture, availability of finance, and the talent pool have the highest impact on entrepreneurial cognition, while informal networks having the smallest impact and the remaining factors – infrastructure, universities, and support services have a moderate impact on entrepreneurial cognition. These findings suggest the need for a location-specific strategy for supporting the development of entrepreneurial cognition.

Keywords: academic achievement, colour response card, feedback

Procedia PDF Downloads 116
502 Localization of Pyrolysis and Burning of Ground Forest Fires

Authors: Pavel A. Strizhak, Geniy V. Kuznetsov, Ivan S. Voytkov, Dmitri V. Antonov

Abstract:

This paper presents the results of experiments carried out at a specialized test site for establishing macroscopic patterns of heat and mass transfer processes at localizing model combustion sources of ground forest fires with the use of barrier lines in the form of a wetted lay of material in front of the zone of flame burning and thermal decomposition. The experiments were performed using needles, leaves, twigs, and mixtures thereof. The dimensions of the model combustion source and the ranges of heat release correspond well to the real conditions of ground forest fires. The main attention is paid to the complex analysis of the effect of dispersion of water aerosol (concentration and size of droplets) used to form the barrier line. It is shown that effective conditions for localization and subsequent suppression of flame combustion and thermal decomposition of forest fuel can be achieved by creating a group of barrier lines with different wetting width and depth of the material. Relative indicators of the effectiveness of one and combined barrier lines were established, taking into account all the main characteristics of the processes of suppressing burning and thermal decomposition of forest combustible materials. We performed the prediction of the necessary and sufficient parameters of barrier lines (water volume, width, and depth of the wetted lay of the material, specific irrigation density) for combustion sources with different dimensions, corresponding to the real fire extinguishing practice.

Keywords: forest fire, barrier water lines, pyrolysis front, flame front

Procedia PDF Downloads 105
501 Developing a Framework for Online Auction Effectiveness

Authors: Chechen Liao, Pui-Lai To, Chiao-Ying Chen

Abstract:

An introduction of internet auction has significantly widened the pool of consumers who participate in auctions and increased the number of companies attempting to sell their products in an auction format. Previous research on auctions has focused almost exclusively on the behavior of professional bidders. In this study, we focus on the characteristic of seller, auction parameter and the effect of supply and demand, and examine these impacts on auction effectiveness. In particular, a framework for online auction effectiveness was developed. The framework will help researchers and practitioner to find ways to improve online auction effectiveness.

Keywords: Auction Effectiveness, Framework Developing, Online Auction, Selling Strategy

Procedia PDF Downloads 304
500 DIF-JACKET: a Thermal Protective Jacket for Firefighters

Authors: Gilda Santos, Rita Marques, Francisca Marques, João Ribeiro, André Fonseca, João M. Miranda, João B. L. M. Campos, Soraia F. Neves

Abstract:

Every year, an unacceptable number of firefighters are seriously burned during firefighting operations, with some of them eventually losing their life. Although thermal protective clothing research and development has been searching solutions to minimize firefighters heat load and skin burns, currently commercially available solutions focus in solving isolated problems, for example, radiant heat or water-vapor resistance. Therefore, episodes of severe burns and heat strokes are still frequent. Taking this into account, a consortium composed by Portuguese entities has joined synergies to develop an innovative protective clothing system by following a procedure based on the application of numerical models to optimize the design and using a combinationof protective clothing components disposed in different layers. Recently, it has been shown that Phase Change Materials (PCMs) can contribute to the reduction of potential heat hazards in fire extinguish operations, and consequently, their incorporation into firefighting protective clothing has advantages. The greatest challenge is to integrate these materials without compromising garments ergonomics and, at the same time, accomplishing the International Standard of protective clothing for firefighters – laboratory test methods and performance requirements for wildland firefighting clothing. The incorporation of PCMs into the firefighter's protective jacket will result in the absorption of heat from the fire and consequently increase the time that the firefighter can be exposed to it. According to the project studies and developments, to favor a higher use of the PCM storage capacityand to take advantage of its high thermal inertia more efficiently, the PCM layer should be closer to the external heat source. Therefore, in this stage, to integrate PCMs in firefighting clothing, a mock-up of a vest specially designed to protect the torso (back, chest and abdomen) and to be worn over a fire-resistant jacketwas envisaged. Different configurations of PCMs, as well as multilayer approaches, were studied using suitable joining technologies such as bonding, ultrasound, and radiofrequency. Concerning firefighter’s protective clothing, it is important to balance heat protection and flame resistance with comfort parameters, namely, thermaland water-vapor resistances. The impact of the most promising solutions regarding thermal comfort was evaluated to refine the performance of the global solutions. Results obtained with experimental bench scale model and numerical simulation regarding the integration of PCMs in a vest designed as protective clothing for firefighters will be presented.

Keywords: firefighters, multilayer system, phase change material, thermal protective clothing

Procedia PDF Downloads 127
499 Cross-Sectional Study of Critical Parameters on RSET and Decision-Making of At-Risk Groups in Fire Evacuation

Authors: Naser Kazemi Eilaki, Ilona Heldal, Carolyn Ahmer, Bjarne Christian Hagen

Abstract:

Elderly people and people with disabilities are recognized as at-risk groups when it comes to egress and travel from hazard zone to a safe place. One's disability can negatively influence her or his escape time, and this becomes even more important when people from this target group live alone. While earlier studies have frequently addressed quantitative measurements regarding at-risk groups' physical characteristics (e.g., their speed of travel), this paper considers the influence of at-risk groups’ characteristics on their decision and determining better escape routes. Most of evacuation models are based on mapping people's movement and their behaviour to summation times for common activity types on a timeline. Usually, timeline models estimate required safe egress time (RSET) as a sum of four timespans: detection, alarm, premovement, and movement time, and compare this with the available safe egress time (ASET) to determine what is influencing the margin of safety.This paper presents a cross-sectional study for identifying the most critical items on RSET and people's decision-making and with possibilities to include safety knowledge regarding people with physical or cognitive functional impairments. The result will contribute to increased knowledge on considering at-risk groups and disabilities for designing and developing safe escape routes. The expected results can be an asset to predict the probabilistic behavioural pattern of at-risk groups and necessary components for defining a framework for understanding how stakeholders can consider various disabilities when determining the margin of safety for a safe escape route.

Keywords: fire safety, evacuation, decision-making, at-risk groups

Procedia PDF Downloads 82
498 Development of Highly Repellent Silica Nanoparticles Treatment for Protection of Bio-Based Insulation Composite Material

Authors: Nadia Sid, Alan Taylor, Marion Bourebrab

Abstract:

The construction sector is on the critical path to decarbonise the European economy by 2050. In order to achieve this objective it must enable reducing its CO2 emission by 90% and its energy consumption by as much as 50%. For this reason, a new class of low environmental impact construction materials named “eco-material” are becoming increasingly important in the struggle against climate change. A European funded collaborative project ISOBIO coordinated by TWI is aimed at taking a radical approach to the use of bio-based aggregates to create novel construction materials that are usable in high volume in using traditional methods, as well as developing markets such as exterior insulation of existing house stocks. The approach taken for this project is to use finely chopped material protected from bio-degradation through the use of functionalized silica nanoparticles. TWI is exploring the development of novel inorganic-organic hybrid nano-materials, to be applied as a surface treatment onto bio-based aggregates. These nanoparticles are synthesized by sol-gel processing and then functionalised with silanes to impart multifunctionality e.g. hydrophobicity, fire resistance and chemical bonding between the silica nanoparticles and the bio-based aggregates. This talk will illustrate the approach taken by TWI to design the functionalized silica nanoparticles by using a material-by-design approach. The formulation and synthesize process will be presented together with the challenges addressed by those hybrid nano-materials. The results obtained with regards to the water repellence and fire resistance will be displayed together with preliminary public results of the ISOBIO project. (This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 641927).

Keywords: bio-sourced material, composite material, durable insulation panel, water repellent material

Procedia PDF Downloads 213
497 Assessing Prescribed Burn Severity in the Wetlands of the Paraná River -Argentina

Authors: Virginia Venturini, Elisabet Walker, Aylen Carrasco-Millan

Abstract:

Latin America stands at the front of climate change impacts, with forecasts projecting accelerated temperature and sea level rises compared to the global average. These changes are set to trigger a cascade of effects, including coastal retreat, intensified droughts in some nations, and heightened flood risks in others. In Argentina, wildfires historically affected forests, but since 2004, wetland fires have emerged as a pressing concern. By 2021, the wetlands of the Paraná River faced a dangerous situation. In fact, during the year 2021, a high-risk scenario was naturally formed in the wetlands of the Paraná River, in Argentina. Very low water levels in the rivers, and excessive standing dead plant material (fuel), triggered most of the fires recorded in the vast wetland region of the Paraná during 2020-2021. During 2008 fire events devastated nearly 15% of the Paraná Delta, and by late 2021 new fires burned more than 300,000 ha of these same wetlands. Therefore, the goal of this work is to explore remote sensing tools to monitor environmental conditions and the severity of prescribed burns in the Paraná River wetlands. Thus, two prescribed burning experiments were carried out in the study area (31°40’ 05’’ S, 60° 34’ 40’’ W) during September 2023. The first experiment was carried out on Sept. 13th, in a plot of 0.5 ha which dominant vegetation were Echinochloa sp., and Thalia, while the second trial was done on Sept 29th in a plot of 0.7 ha, next to the first burned parcel; here the dominant vegetation species were Echinochloa sp. and Solanum glaucophyllum. Field campaigns were conducted between September 8th and November 8th to assess the severity of the prescribed burns. Flight surveys were conducted utilizing a DJI® Inspire II drone equipped with a Sentera® NDVI camera. Then, burn severity was quantified by analyzing images captured by the Sentera camera along with data from the Sentinel 2 satellite mission. This involved subtracting the NDVI images obtained before and after the burn experiments. The results from both data sources demonstrate a highly heterogeneous impact of fire within the patch. Mean severity values obtained with drone NDVI images of the first experience were about 0.16 and 0.18 with Sentinel images. For the second experiment, mean values obtained with the drone were approximately 0.17 and 0.16 with Sentinel images. Thus, most of the pixels showed low fire severity and only a few pixels presented moderated burn severity, based on the wildfire scale. The undisturbed plots maintained consistent mean NDVI values throughout the experiments. Moreover, the severity assessment of each experiment revealed that the vegetation was not completely dry, despite experiencing extreme drought conditions.

Keywords: prescribed-burn, severity, NDVI, wetlands

Procedia PDF Downloads 32
496 Spherical Organic Particle (SOP) Emissions from Fixed-Bed Residential Coal-Burning Devices

Authors: Tafadzwa Makonese, Harold Annegarn, Patricia Forbes

Abstract:

Residential coal combustion is one of the largest sources of carbonaceous aerosols in the Highveld region of South Africa, significantly affecting the local and regional climate. In this study, we investigated single coal burning particles emitted when using different fire-ignition techniques (top-lit up-draft vs bottom-lit up-draft) and air ventilation rates (defined by the number of air holes above and below the fire grate) in selected informal braziers. Aerosol samples were collected on nucleopore filters at the SeTAR Centre Laboratory, University of Johannesburg. Individual particles (~700) were investigated using a scanning electron microscope equipped with an energy-dispersive X-ray spectroscopy (EDS). Two distinct forms of spherical organic particles (SOPs) were identified, one less oxidized than the other. The particles were further classified into "electronically" dark and bright, according to China et al. [2014]. EDS analysis showed that 70% of the dark spherical organic particles balls had higher (~60%) relative oxygen content than in the bright SOPs. We quantify the morphology of spherical organic particles and classify them into four categories: ~50% are bare single particles; ~35% particles are aggregated and form diffusion accretion chains; 10% have inclusions; and 5% are deformed due to impaction on filter material during sampling. We conclude that there are two distinct kinds of coal burning spherical organic particles and that dark SOPs are less volatile than bright SOPs. We also show that these spherical organic particles are similar in nature and characteristics to tar balls observed in biomass combustion, and that they have the potential to absorb sunlight thereby affecting the earth’s radiative budget and climate. This study provides insights on the mixing states, morphology, and possible formation mechanisms of these organic particles from residential coal combustion in informal stoves.

Keywords: spherical organic particles, residential coal combustion, fixed-bed, aerosols, morphology, stoves

Procedia PDF Downloads 443
495 Firm Level Productivity Heterogeneity and Export Behavior: Evidence from UK

Authors: Umut Erksan Senalp

Abstract:

The aim of this study is to examine the link between firm level productivity heterogeneity and firm’s decision to export. Thus, we test the self selection hypothesis which suggests only more productive firms self select themselves to export markets. We analyze UK manufacturing sector by using firm-level data for the period 2003-2011. Although our preliminary results suggest that exporters outperform non-exporters when we pool all manufacturing industries, when we examine each industry individually, we find that self-selection hypothesis does not hold for each industries.

Keywords: total factor productivity, firm heterogeneity, international trade, decision to export

Procedia PDF Downloads 341
494 Improving the Liquid Insulation Performance with Antioxidants

Authors: Helan Gethse J., Dhanya K., Muthuselvi G., Diana Hyden N., Samuel Pakianathan P.

Abstract:

Transformer oil is mostly used to keep the transformer cool. It functions as a cooling agent. Mineral oil has long been used in transformers. Mineral oil has a high dielectric strength, which allows it to withstand high temperatures. Mineral oil's main disadvantage is that it is not environmentally friendly and can be dangerous to the environment. The features of breakdown voltage (BDV), viscosity, flash point, and fire point are measured and reported in this study, and the characteristics of olive oil are compared to the characteristics of mineral oil.

Keywords: antioxidants, transformer oil, mineral oil, olive oil

Procedia PDF Downloads 122
493 A Robust Implementation of a Building Resources Access Rights Management System

Authors: Eugen Neagoe, Victor Balanica

Abstract:

A Smart Building Controller (SBC) is a server software that offers secured access to a pool of building specific resources, executes monitoring tasks and performs automatic administration of a building, thus optimizing the exploitation cost and maximizing comfort. This paper brings to discussion the issues that arise with the secure exploitation of the SBC administered resources and proposes a technical solution to implement a robust secure access system based on roles, individual rights and privileges (special rights).

Keywords: smart building controller, software security, access rights, access authorization

Procedia PDF Downloads 419
492 Sorting Maize Haploids from Hybrids Using Single-Kernel Near-Infrared Spectroscopy

Authors: Paul R Armstrong

Abstract:

Doubled haploids (DHs) have become an important breeding tool for creating maize inbred lines, although several bottlenecks in the DH production process limit wider development, application, and adoption of the technique. DH kernels are typically sorted manually and represent about 10% of the seeds in a much larger pool where the remaining 90% are hybrid siblings. This introduces time constraints on DH production and manual sorting is often not accurate. Automated sorting based on the chemical composition of the kernel can be effective, but devices, namely NMR, have not achieved the sorting speed to be a cost-effective replacement to manual sorting. This study evaluated a single kernel near-infrared reflectance spectroscopy (skNIR) platform to accurately identify DH kernels based on oil content. The skNIR platform is a higher-throughput device, approximately 3 seeds/s, that uses spectra to predict oil content of each kernel from maize crosses intentionally developed to create larger than normal oil differences, 1.5%-2%, between DH and hybrid kernels. Spectra from the skNIR were used to construct a partial least squares regression (PLS) model for oil and for a categorical reference model of 1 (DH kernel) or 2 (hybrid kernel) and then used to sort several crosses to evaluate performance. Two approaches were used for sorting. The first used a general PLS model developed from all crosses to predict oil content and then used for sorting each induction cross, the second was the development of a specific model from a single induction cross where approximately fifty DH and one hundred hybrid kernels used. This second approach used a categorical reference value of 1 and 2, instead of oil content, for the PLS model and kernels selected for the calibration set were manually referenced based on traditional commercial methods using coloration of the tip cap and germ areas. The generalized PLS oil model statistics were R2 = 0.94 and RMSE = .93% for kernels spanning an oil content of 2.7% to 19.3%. Sorting by this model resulted in extracting 55% to 85% of haploid kernels from the four induction crosses. Using the second method of generating a model for each cross yielded model statistics ranging from R2s = 0.96 to 0.98 and RMSEs from 0.08 to 0.10. Sorting in this case resulted in 100% correct classification but required models that were cross. In summary, the first generalized model oil method could be used to sort a significant number of kernels from a kernel pool but was not close to the accuracy of developing a sorting model from a single cross. The penalty for the second method is that a PLS model would need to be developed for each individual cross. In conclusion both methods could find useful application in the sorting of DH from hybrid kernels.

Keywords: NIR, haploids, maize, sorting

Procedia PDF Downloads 281
491 Preliminary Performance of a Liquid Oxygen-Liquid Methane Pintle Injector for Thrust Variations

Authors: Brunno Vasques

Abstract:

Due to the non-toxic nature and high performance in terms of vacuum specific impulse and density specific impulse, the combination of liquid oxygen and liquid methane have been identified as a promising option for future space vehicle systems. Applications requiring throttling capability include specific missions such as rendezvous, planetary landing and de-orbit as well as weapon systems. One key challenge in throttling liquid rocket engines is maintaining an adequate pressure drop across the injection elements, which is necessary to provide good propellant atomization and mixing as well as system stability. The potential scalability of pintle injectors, their great suitability to throttling and inherent combustion stability characteristics led to investigations using a variety of propellant combinations, including liquid oxygen and hydrogen and fluorine-oxygen and methane. Presented here are the preliminary performance and heat transfer information obtained during hot-fire testing of a pintle injector running on liquid oxygen and liquid methane propellants. The specific injector design selected for this purpose is a multi-configuration building block version with replaceable injection elements, providing flexibility to accommodate hardware modifications with minimum difficulty. On the basis of single point runs and the use of a copper/nickel segmented calorimetric combustion chamber and associated transient temperature measurement, the characteristic velocity efficiency, injector footprint and heat fluxes could be established for the first proposed pintle configuration as a function of injection velocity- and momentum-ratios. A description of the test-bench is presented as well as a discussion of irregularities encountered during testing, such as excessive heat flux into the pintle tip resulting from certain operating conditions.

Keywords: green propellants, hot-fire performance, rocket engine throttling, pintle injector

Procedia PDF Downloads 305
490 Hydrotherapy with Dual Sensory Impairment (Dsi)-Deaf and Blind

Authors: M. Warburton

Abstract:

Background: Case study examining hydrotherapy for a person with DSI. A 46 year-old lady completely deaf and blind post congenital rubella syndrome. Touch becomes the primary information gathering sense to optimise function in life. Communication is achieved via tactile finger spelling and signals onto her hand and skin. Hydrotherapy may provide a suitable mobility environment and somato-sensory input to people, and especially DSI persons. Buoyancy, warmth, hydrostatic pressure, viscosity and turbulence are elements of hydrotherapy that may offer a DSI person somato-sensory input to stimulate the mechanoreceptors, thermoreceptors and proprioceptors and offer a unique hydro-therapeutic environment. Purpose: The purpose of this case study was to establish what measurable benefits could be achieved from hydrotherapy with a DSI person. Methods: Hydrotherapy was provided for 8-weeks, 2 x week, 35-minute session duration. Pool temperature 32.5 degrees centigrade. Pool length 25-metres. Each session consisted of mobility encouragement and supervision, and activities to stimulate the somato-sensory system utilising aquatic properties of buoyancy, turbulence, viscosity, warmth and hydrostatic pressure. Somato-sensory activities focused on stimulating touch and tactile exploration including objects of various shape, size, weight, contour, texture, elasticity, pliability, softness and hardness. Outcomes were measured by the Goal Attainment Scale (GAS) and included mobility distance, attendance, and timed tactile responsiveness to varying objects. Results: Mobility distance and attendance exceeded baseline expectations. Timed tactile responsiveness to varying objects also changed positively from baseline. Average scale scores were 1.00 with an overall GAS t-score of 63.69. Conclusions: Hydrotherapy can be a quantifiable physio-therapeutic option for persons with DSI. It provides a relatively safe environment for mobility and allows the somato-sensory system to be fully engaged - important for the DSI population. Implications: Hydrotherapy can be a measurable therapeutic option for a DSI person. Physiotherapists should consider hydrotherapy for DSI people. Hydrotherapy can offer unique physical properties for the DSI population not available on land.

Keywords: chronic, disability, disease, rehabilitation

Procedia PDF Downloads 322
489 Fires in Historic Buildings: Assessment of Evacuation of People by Computational Simulation

Authors: Ivana R. Moser, Joao C. Souza

Abstract:

Building fires are random phenomena that can be extremely violent, and safe evacuation of people is the most guaranteed tactic in saving lives. The correct evacuation of buildings, and other spaces occupied by people, means leaving the place in a short time and by the appropriate way. It depends on the perception of spaces by the individual, the architectural layout and the presence of appropriate routing systems. As historical buildings were constructed in other times, when, as in general, the current security requirements were not available yet, it is necessary to adapt these spaces to make them safe. Computer models of evacuation simulation are widely used tools for assessing the safety of people in a building or agglomeration sites and these are associated with the analysis of human behaviour, makes the results of emergency evacuation more correct and conclusive. The objective of this research is the performance evaluation of historical interest buildings, regarding the safe evacuation of people, through computer simulation, using PTV Viswalk software. The buildings objects of study are the Colégio Catarinense, centennial building, located in the city of Florianópolis, Santa Catarina / Brazil. The software used uses the variables of human behaviour, such as: avoid collision with other pedestrians and avoid obstacles. Scenarios were run on the three-dimensional models and the contribution to safety in risk situations was verified as an alternative measure, especially in the impossibility of applying those measures foreseen by the current fire safety codes in Brazil. The simulations verified the evacuation time in situations of normality and emergency situations, as well as indicate the bottlenecks and critical points of the studied buildings, to seek solutions to prevent and correct these undesirable events. It is understood that adopting an advanced computational performance-based approach promotes greater knowledge of the building and how people behave in these specific environments, in emergency situations.

Keywords: computer simulation, escape routes, fire safety, historic buildings, human behavior

Procedia PDF Downloads 166
488 Intermetallic Phases in the Fusion Weld of CP Ti to Stainless Steel

Authors: Juzar Vohra, Ravish Malhotra, Tim Pasang, Mana Azizi, Yuan Tao, Masami Mizutani

Abstract:

In this paper, dissimilar welding of titanium to stainless steels is reported. Laser Beam Welding (LBW) and Gas Tungsten Arc Welding (GTAW) were employed to join CPTi to SS304. The welds were examined using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). FeTi, Ti2Cr and Fe2Ti dendrites are formed along with beta phase titanium matrix. The hardness values of these phases are high which makes them brittle and leading to cracking along the weld pool. However, it is believed that cracking, hence, fracturing of this weld joint is largely due to the difference in thermal properties of the two alloys.

Keywords: dissimilar metals, fusion welding, intermetallics, brittle

Procedia PDF Downloads 474
487 Disaster Management Supported by Unmanned Aerial Systems

Authors: Agoston Restas

Abstract:

Introduction: This paper describes many initiatives and shows also practical examples which happened recently using Unmanned Aerial Systems (UAS) to support disaster management. Since the operation of manned aircraft at disasters is usually not only expensive but often impossible to use as well, in many cases managers fail to use the aerial activity. UAS can be an alternative moreover cost-effective solution for supporting disaster management. Methods: This article uses thematic division of UAS applications; it is based on two key elements, one of them is the time flow of managing disasters, other is its tactical requirements. Logically UAS can be used like pre-disaster activity, activity immediately after the occurrence of a disaster and the activity after the primary disaster elimination. Paper faces different disasters, like dangerous material releases, floods, earthquakes, forest fires and human-induced disasters. Research used function analysis, practical experiments, mathematical formulas, economic analysis and also expert estimation. Author gathered international examples and used own experiences in this field as well. Results and discussion: An earthquake is a rapid escalating disaster, where, many times, there is no other way for a rapid damage assessment than aerial reconnaissance. For special rescue teams, the UAS application can help much in a rapid location selection, where enough place remained to survive for victims. Floods are typical for a slow onset disaster. In contrast, managing floods is a very complex and difficult task. It requires continuous monitoring of dykes, flooded and threatened areas. UAS can help managers largely keeping an area under observation. Forest fires are disasters, where the tactical application of UAS is already well developed. It can be used for fire detection, intervention monitoring and also for post-fire monitoring. In case of nuclear accident or hazardous material leakage, UAS is also a very effective or can be the only one tool for supporting disaster management. Paper shows some efforts using UAS to avoid human-induced disasters in low-income countries as part of health cooperation.

Keywords: disaster management, floods, forest fires, Unmanned Aerial Systems

Procedia PDF Downloads 207
486 Computational Fluid Dynamicsfd Simulations of Air Pollutant Dispersion: Validation of Fire Dynamic Simulator Against the Cute Experiments of the Cost ES1006 Action

Authors: Virginie Hergault, Siham Chebbah, Bertrand Frere

Abstract:

Following in-house objectives, Central laboratory of Paris police Prefecture conducted a general review on models and Computational Fluid Dynamics (CFD) codes used to simulate pollutant dispersion in the atmosphere. Starting from that review and considering main features of Large Eddy Simulation, Central Laboratory Of Paris Police Prefecture (LCPP) postulates that the Fire Dynamics Simulator (FDS) model, from National Institute of Standards and Technology (NIST), should be well suited for air pollutant dispersion modeling. This paper focuses on the implementation and the evaluation of FDS in the frame of the European COST ES1006 Action. This action aimed at quantifying the performance of modeling approaches. In this paper, the CUTE dataset carried out in the city of Hamburg, and its mock-up has been used. We have performed a comparison of FDS results with wind tunnel measurements from CUTE trials on the one hand, and, on the other, with the models results involved in the COST Action. The most time-consuming part of creating input data for simulations is the transfer of obstacle geometry information to the format required by SDS. Thus, we have developed Python codes to convert automatically building and topographic data to the FDS input file. In order to evaluate the predictions of FDS with observations, statistical performance measures have been used. These metrics include the fractional bias (FB), the normalized mean square error (NMSE) and the fraction of predictions within a factor of two of observations (FAC2). As well as the CFD models tested in the COST Action, FDS results demonstrate a good agreement with measured concentrations. Furthermore, the metrics assessment indicate that FB and NMSE meet the tolerance acceptable.

Keywords: numerical simulations, atmospheric dispersion, cost ES1006 action, CFD model, cute experiments, wind tunnel data, numerical results

Procedia PDF Downloads 112
485 Influence Study of the Molar Ratio between Solvent and Initiator on the Reaction Rate of Polyether Polyols Synthesis

Authors: María José Carrero, Ana M. Borreguero, Juan F. Rodríguez, María M. Velencoso, Ángel Serrano, María Jesús Ramos

Abstract:

Flame-retardants are incorporated in different materials in order to reduce the risk of fire, either by providing increased resistance to ignition, or by acting to slow down combustion and thereby delay the spread of flames. In this work, polyether polyols with fire retardant properties were synthesized due to their wide application in the polyurethanes formulation. The combustion of polyurethanes is primarily dependent on the thermal properties of the polymer, the presence of impurities and formulation residue in the polymer as well as the supply of oxygen. There are many types of flame retardants, most of them are phosphorous compounds of different nature and functionality. The addition of these compounds is the most common method for the incorporation of flame retardant properties. The employment of glycerol phosphate sodium salt as initiator for the polyol synthesis allows obtaining polyols with phosphate groups in their structure. However, some of the critical points of the use of glycerol phosphate salt are: the lower reactivity of the salt and the necessity of a solvent (dimethyl sulfoxide, DMSO). Thus, the main aim in the present work was to determine the amount of the solvent needed to get a good solubility of the initiator salt. Although the anionic polymerization mechanism of polyether formation is well known, it seems convenient to clarify the role that DMSO plays at the starting point of the polymerization process. Regarding the fact that the catalyst deprotonizes the hydroxyl groups of the initiator and as a result of this, two water molecules and glycerol phosphate alkoxide are formed. This alkoxide, together with DMSO, has to form a homogeneous mixture where the initiator (solid) and the propylene oxide (PO) are soluble enough to mutually interact. The addition rate of PO increased when the solvent/initiator ratios studied were increased, observing that it also made the initiation step shorter. Furthermore, the molecular weight of the polyol decreased when higher solvent/initiator ratios were used, what revealed that more amount of salt was activated, initiating more chains of lower length but allowing to react more phosphate molecules and to increase the percentage of phosphorous in the final polyol. However, the final phosphorous content was lower than the theoretical one because only a percentage of salt was activated. On the other hand, glycerol phosphate disodium salt was still partially insoluble in DMSO studied proportions, thus, the recovery and reuse of this part of the salt for the synthesis of new flame retardant polyols was evaluated. In the recovered salt case, the rate of addition of PO remained the same than in the commercial salt but a shorter induction period was observed, this is because the recovered salt presents a higher amount of deprotonated hydroxyl groups. Besides, according to molecular weight, polydispersity index, FT-IR spectrum and thermal stability, there were no differences between both synthesized polyols. Thus, it is possible to use the recovered glycerol phosphate disodium salt in the same way that the commercial one.

Keywords: DMSO, fire retardants, glycerol phosphate disodium salt, recovered initiator, solvent

Procedia PDF Downloads 254
484 Secure Multiparty Computations for Privacy Preserving Classifiers

Authors: M. Sumana, K. S. Hareesha

Abstract:

Secure computations are essential while performing privacy preserving data mining. Distributed privacy preserving data mining involve two to more sites that cannot pool in their data to a third party due to the violation of law regarding the individual. Hence in order to model the private data without compromising privacy and information loss, secure multiparty computations are used. Secure computations of product, mean, variance, dot product, sigmoid function using the additive and multiplicative homomorphic property is discussed. The computations are performed on vertically partitioned data with a single site holding the class value.

Keywords: homomorphic property, secure product, secure mean and variance, secure dot product, vertically partitioned data

Procedia PDF Downloads 393
483 Intermittent Effect of Coupled Thermal and Acoustic Sources on Combustion: A Spatial Perspective

Authors: Pallavi Gajjar, Vinayak Malhotra

Abstract:

Rockets have been known to have played a predominant role in spacecraft propulsion. The quintessential aspect of combustion-related requirements of a rocket engine is the minimization of the surrounding risks/hazards. Over time, it has become imperative to understand the combustion rate variation in presence of external energy source(s). Rocket propulsion represents a special domain of chemical propulsion assisted by high speed flows in presence of acoustics and thermal source(s). Jet noise leads to a significant loss of resources and every year a huge amount of financial aid is spent to prevent it. External heat source(s) induce high possibility of fire risk/hazards which can sufficiently endanger the operation of a space vehicle. Appreciable work had been done with justifiable simplification and emphasis on the linear variation of external energy source(s), which yields good physical insight but does not cater to accurate predictions. Present work experimentally attempts to understand the correlation between inter-energy conversions with the non-linear placement of external energy source(s). The work is motivated by the need to have better fire safety and enhanced combustion. The specific objectives of the work are a) To interpret the related energy transfer for combustion in presence of alternate external energy source(s) viz., thermal and acoustic, b) To fundamentally understand the role of key controlling parameters viz., separation distance, the number of the source(s), selected configurations and their non-linear variation to resemble real-life cases. An experimental setup was prepared using incense sticks as potential fuel and paraffin wax candles as the external energy source(s). The acoustics was generated using frequency generator, and source(s) were placed at selected locations. Non-equidistant parametric experimentation was carried out, and the effects were noted on regression rate changes. The results are expected to be very helpful in offering a new perspective into futuristic rocket designs and safety.

Keywords: combustion, acoustic energy, external energy sources, regression rate

Procedia PDF Downloads 115
482 A Selective and Fast Hydrogen Sensor Using Doped-LaCrO₃ as Sensing Electrode

Authors: He Zhang, Jianxin Yi

Abstract:

As a clean energy, hydrogen shows many advantages such as renewability, high heat value, and extensive sources and may play an important role in the future society. However, hydrogen is a combustible gas because of its low ignition energy (0.02mJ) and wide explosive limit (4% ~ 74% in air). It is very likely to cause fire hazard or explosion once leakage is happened and not detected in time. Mixed-potential type sensor has attracted much attention in monitoring and detecting hydrogen due to its high response, simple support electronics and long-term stability. Typically, this kind of sensor is consisted of a sensing electrode (SE), a reference electrode (RE) and a solid electrolyte. The SE and RE materials usually display different electrocatalytic abilities to hydrogen. So hydrogen could be detected by measuring the EMF change between the two electrodes. Previous reports indicate that a high-performance sensing electrode is important for improving the sensing characteristics of the sensor. In this report, a planar type mixed-potential hydrogen sensor using La₀.₈Sr₀.₂Cr₀.₅Mn₀.₅O₃₋δ (LSCM) as SE, Pt as RE and yttria-stabilized zirconia (YSZ) as solid electrolyte was developed. The reason for selecting LSCM as sensing electrode is that it shows the high electrocatalytic ability to hydrogen in solid oxide fuel cells. The sensing performance of the fabricated LSCM/YSZ/Pt sensor was tested systemically. The experimental results show that the sensor displays high response to hydrogen. The response values for 100ppm and 1000ppm hydrogen at 450 ºC are -70 mV and -118 mV, respectively. The response time is an important parameter to evaluate a sensor. In this report, the sensor response time decreases with increasing hydrogen concentration and get saturated above 500ppm. The steady response time at 450 ºC is as short as 4s, indicating the sensor shows great potential in practical application to monitor hydrogen. An excellent response repeatability to 100ppm hydrogen at 450 ˚C and a good sensor reproducibility among three sensors were also observed. Meanwhile, the sensor exhibits excellent selectivity to hydrogen compared with several interfering gases such as NO₂, CH₄, CO, C₃H₈ and NH₃. Polarization curves were tested to investigate the sensing mechanism and the results indicated the sensor abide by the mixed-potential mechanism.

Keywords: fire hazard, H₂ sensor, mixed-potential, perovskite

Procedia PDF Downloads 155
481 An Experimental Study on the Thermal Properties of Concrete Aggregates in Relation to Their Mineral Composition

Authors: Kyung Suk Cho, Heung Youl Kim

Abstract:

The analysis of the petrologic characteristics and thermal properties of crushed aggregates for concrete such as granite, gneiss, dolomite, shale and andesite found that rock-forming minerals decided the thermal properties of the aggregates. The thermal expansion coefficients of aggregates containing lots of quartz increased rapidly at 573 degrees due to quartz transition. The mass of aggregate containing carbonate minerals decreased rapidly at 750 degrees due to decarboxylation, while its specific heat capacity increased relatively. The mass of aggregates containing hydrated silicate minerals decreased more significantly, and their specific heat capacities were greater when compared with aggregates containing feldspar or quartz. It is deduced that the hydroxyl group (OH) in hydrated silicate dissolved as its bond became loose at high temperatures. Aggregates containing mafic minerals turned red at high temperatures due to oxidation response. Moreover, the comparison of cooling methods showed that rapid cooling using water resulted in more reduction in aggregate mass than slow cooling at room temperatures. In order to observe the fire resistance performance of concrete composed of the identical but coarse aggregate, mass loss and compressive strength reduction factor at 200, 400, 600 and 800 degrees were measured. It was found from the analysis of granite and gneiss that the difference in thermal expansion coefficients between cement paste and aggregates caused by quartz transit at 573 degrees resulted in thermal stress inside the concrete and thus triggered concrete cracking. The ferromagnesian hydrated silicate in andesite and shale caused greater reduction in both initial stiffness and mass compared with other aggregates. However, the thermal expansion coefficient of andesite and shale was similar to that of cement paste. Since they were low in thermal conductivity and high in specific heat capacity, concrete cracking was relatively less severe. Being slow in heat transfer, they were judged to be materials of high heat capacity.

Keywords: crush-aggregates, fire resistance, thermal expansion, heat transfer

Procedia PDF Downloads 210
480 Gassing Tendency of Natural Ester Based Transformer oils: Low Alkane Generation in Stray Gassing Behaviour

Authors: Thummalapalli CSM Gupta, Banti Sidhiwala

Abstract:

Mineral oils of naphthenic and paraffinic type have been traditionally been used as insulating liquids in the transformer applications to protect the solid insulation from moisture and ensures effective heat transfer/cooling. The performance of these type of oils have been proven in the field over many decades and the condition monitoring and diagnosis of transformer performance have been successfully monitored through oil properties and dissolved gas analysis methods successfully. Different type of gases representing various types of faults due to components or operating conditions effectively. While large amount of data base has been generated in the industry on dissolved gas analysis for mineral oil based transformer oils and various models for predicting the fault and analysis, oil specifications and standards have also been modified to include stray gassing limits which cover the low temperature faults and becomes an effective preventative maintenance tool that can benefit greatly to know the reasons for the breakdown of electrical insulating materials and related components. Natural esters have seen a rise in popularity in recent years due to their "green" credentials. Some of its benefits include biodegradability, a higher fire point, improvement in load capability of transformer and improved solid insulation life than mineral oils. However, the Stray gases evolution like hydrogen and hydrocarbons like methane (CH4) and ethane (C2H6) show very high values which are much higher than the limits of mineral oil standards. Though the standards for these type esters are yet to be evolved, the higher values of hydrocarbon gases that are available in the market is of concern which might be interpreted as a fault in transformer operation. The current paper focuses on developing a natural ester based transformer oil which shows very levels of stray gassing by standard test methods show much lower values compared to the products available currently and experimental results on various test conditions and the underlying mechanism explained.

Keywords: biodegadability, fire point, dissolved gassing analysis, stray gassing

Procedia PDF Downloads 70
479 Suitability of Wood Sawdust Waste Reinforced Polymer Composite for Fireproof Doors

Authors: Timine Suoware, Sylvester Edelugo, Charles Amgbari

Abstract:

The susceptibility of natural fibre polymer composites to flame has necessitated research to improve and develop flame retardant (FR) to delay the escape of combustible volatiles. Previous approaches relied mostly on FR such as aluminium tri-hydroxide (ATH) and ammonium polyphosphate (APP) to improve fire performances of wood sawdust polymer composites (WSPC) with emphasis on non-structural building applications. In this paper, APP was modified with gum Arabic powder (GAP) and then hybridized with ATH at 0, 12 and 18% loading ratio to form new FR species; WSPC12%APP-GAP and WSPC18%ATH/APP-GAP. The FR species were incorporated in wood sawdust waste reinforced in polyester resin to form panels for fireproof doors. The panels were produced using hand lay compression moulding technique and cured at room temperature. Specimen cut from panels were then tested for tensile strength (TS), flexural strength (FS) and impact strength (IS) using universal testing machine and impact tester; thermal stability using (TGA/DSC 1: Metler Toledo); time-to-ignition (Tig), heat release rates (HRR); peak HRR (HRRp), average HRR (HRRavg), total HRR (THR), peak mass loss rate (MLRp), average smoke production rate (SPRavg) and carbon monoxide production (COP ) were obtained using the cone calorimeter apparatus. From the mechanical properties obtained, improvements of IS for the panels were not noticeable whereas TS and FS for WSPC12%APP-GAP respectively stood at 12.44 MPa and 85.58 MPa more than those without FR (WSPC0%). For WSC18%ATH/APP-GAP TS and FS respectively stood at 16.45 MPa and 50.49 MPa more compared to (WSPC0%). From the thermal analysis, the panels did not exhibit any significant change as early degradation was observed. At 900 OC, the char residues improved by 15% for WSPC12%APP-GAP and 19% for WSPC18%ATH/APP-GAP more than (WSC0%) at 5%, confirming the APP-GAP to be a good FR. At 50 kW/m2 heat flux (HF), WSPC12%APP-GAP improved better the fire behaviour of the panels when compared to WSC0% as follows; Tig = 46 s, HRRp = 56.1 kW/2, HRRavg = 32.8 kW/m2, THR = 66.6 MJ/m2, MLRp = 0.103 g/s, TSR = 0.04 m2/s and COP = 0.051 kg/kg. These were respectively more than WSC0%. It can be concluded that the new concept of modifying FR with GAP in WSC could meet the requirement of a fireproof door for building applications.

Keywords: composite, flame retardant, wood sawdust, fireproof doors

Procedia PDF Downloads 82
478 HRD Practices in IT Industry – A Study of Select Companies

Authors: Shireesha Devraj, Vishwanath Kokkonda

Abstract:

Information Technology Industry is one of the fastest up-and-coming, knowledge and skill concentrated industries in India. India preserves its position as the world’s notable global sourcing terminus for IT services. The swift progress in the competitive age is possible only through effective human resource development practices. In the IT industry attracting, nurturing talent, retaining and managing human resources have been the principal issues. The sustenance and growth of IT companies worldwide depends on the intellectual capital it possesses. The IT sector cannot be effectively managed through traditional human resource development practices. In order to stay competitive in future, the IT sector in India has to enrich the skilled talent pool through pertinent HRD practices. An attempt is made in this paper to study the trends in Indian IT Industry.

Keywords: HRD practices, IT industry, India, competitive age

Procedia PDF Downloads 330
477 Firefighting Means in Food Industries

Authors: Racim Rifaat Ferdjani, Zineddine Chetoui

Abstract:

The goal of our work is to provide a tool that helps control and ensures a global view of the means of firefighting (MLCI) in a food production plant (for example Hamoud Boualem plant). We divided the site into 4 zones, then we identified the firefighting means (MLCI) present in each zone, taking into account their type, weight, location, and fire class as well as their compliance with respect to the regulations in force while assigning them an alphanumeric reference which makes it possible to deduce everything. Thus, the use of a tool in the form of an Excel table was made concrete, and an average compliance rate of 45% was therefore obtained.

Keywords: MLCI, firefighting means, Hamoud, Boualem

Procedia PDF Downloads 99
476 A Review on Big Data Movement with Different Approaches

Authors: Nay Myo Sandar

Abstract:

With the growth of technologies and applications, a large amount of data has been producing at increasing rate from various resources such as social media networks, sensor devices, and other information serving devices. This large collection of massive, complex and exponential growth of dataset is called big data. The traditional database systems cannot store and process such data due to large and complexity. Consequently, cloud computing is a potential solution for data storage and processing since it can provide a pool of resources for servers and storage. However, moving large amount of data to and from is a challenging issue since it can encounter a high latency due to large data size. With respect to big data movement problem, this paper reviews the literature of previous works, discusses about research issues, finds out approaches for dealing with big data movement problem.

Keywords: Big Data, Cloud Computing, Big Data Movement, Network Techniques

Procedia PDF Downloads 57