Search results for: pathfinder element
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1919

Search results for: pathfinder element

1589 Transient Response of Elastic Structures Subjected to a Fluid Medium

Authors: Helnaz Soltani, J. N. Reddy

Abstract:

Presence of fluid medium interacting with a structure can lead to failure of the structure. Since developing efficient computational model for fluid-structure interaction (FSI) problems has broader impact to realistic problems encountered in aerospace industry, ship industry, oil and gas industry, and so on, one can find an increasing need to find a method in order to investigate the effect of fluid domain on structural response. A coupled finite element formulation of problems involving FSI issue is an accurate method to predict the response of structures in contact with a fluid medium. This study proposes a finite element approach in order to study the transient response of the structures interacting with a fluid medium. Since beam and plate are considered to be the fundamental elements of almost any structure, the developed method is applied to beams and plates benchmark problems in order to demonstrate its efficiency. The formulation is a combination of the various structure theories and the solid-fluid interface boundary condition, which is used to represent the interaction between the solid and fluid regimes. Here, three different beam theories as well as three different plate theories are considered to model the solid medium, and the Navier-Stokes equation is used as the theoretical equation governed the fluid domain. For each theory, a coupled set of equations is derived where the element matrices of both regimes are calculated by Gaussian quadrature integration. The main feature of the proposed methodology is to model the fluid domain as an added mass; the external distributed force due to the presence of the fluid. We validate the accuracy of such formulation by means of some numerical examples. Since the formulation presented in this study covers several theories in literature, the applicability of our proposed approach is independent of any structure geometry. The effect of varying parameters such as structure thickness ratio, fluid density and immersion depth, are studied using numerical simulations. The results indicate that maximum vertical deflection of the structure is affected considerably in the presence of a fluid medium.

Keywords: beam and plate, finite element analysis, fluid-structure interaction, transient response

Procedia PDF Downloads 568
1588 Stress Analysis of Buried Pipes from Soil and Traffic Loads

Authors: A. Mohamed, A. El-Hamalawi, M. Frost, A. Connell

Abstract:

Often design standards do not provide guidance or formulae for the calculation of stresses on buried pipelines caused by external loads. Frequently engineers rely on other methods and published sources of information to calculate such imposed stresses and a variety of methods can be used. This paper reviews three current approaches to soil pipeline interaction modelling to predict stresses on buried pipelines subjected to soil overburden and traffic loading. The traditional approach to use empirical stress formulas to calculate circumferential bending stresses on pipelines. The alternative approaches considered are the use of a finite element package to compute an estimate of circumferential bending stress and a proprietary stress analysis system (SURFLOAD) to estimate the circumferential bending stress. The results from analysis using the methods are presented and compared to experimental results in terms of predicted and measured circumferential stresses. This study shows that the approach used to assess externally generated stress is important and can lead to an over-conservative analysis. Using FE analysis either through SURFLOAD or a general FE package to predict circumferential stress is the most accurate way to undertake stress analysis due to traffic and soil loads. Although conservative, classical empirical methods will continue to be applied to the analysis of buried pipelines, an opportunity exists, therefore, in many circumstances, to use applied numerical techniques, made possible by advances in finite element analysis.

Keywords: buried pipelines, circumferential bending stress, finite element analysis, soil overburden, soil pipeline interaction analysis (SPIA), traffic loadings

Procedia PDF Downloads 441
1587 Heat Source Temperature for Centered Heat Source on Isotropic Plate with Lower Surface Forced Cooling Using Neural Network and Three Different Materials

Authors: Fadwa Haraka, Ahmad Elouatouati, Mourad Taha Janan

Abstract:

In this study, we propose a neural network based method in order to calculate the heat source temperature of isotropic plate with lower surface forced cooling. To validate the proposed model, the heat source temperatures values will be compared to the analytical method -variables separation- and finite element model. The mathematical simulation is done through 3D numerical simulation by COMSOL software considering three different materials: Aluminum, Copper, and Graphite. The proposed method will lead to a formulation of the heat source temperature based on the thermal and geometric properties of the base plate.

Keywords: thermal model, thermal resistance, finite element simulation, neural network

Procedia PDF Downloads 358
1586 Behavior of the RC Slab Subjected to Impact Loading According to the DIF

Authors: Yong Jae Yu, Jae-Yeol Cho

Abstract:

In the design of structural concrete for impact loading, design or model codes often employ a dynamic increase factor (DIF) to impose dynamic effect on static response. Dynamic increase factors that are obtained from laboratory material test results and that are commonly given as a function of strain rate only are quite different from each other depending on the design concept of design codes like ACI 349M-06, fib Model Code 2010 and ACI 370R-14. Because the dynamic increase factors currently adopted in the codes are too simple and limited to consider a variety of strength of materials, their application in practical design is questionable. In this study, the dynamic increase factors used in the three codes were validated through the finite element analysis of reinforced concrete slab elements which were tested and reported by other researcher. The test was intended to simulate a wall element of the containment building in nuclear power plants that is assumed to be subject to impact scenario that the Pentagon experienced on September 11, 2001. The finite element analysis was performed using the ABAQAUS 6.10 and the plasticity models were employed for the concrete, reinforcement. The dynamic increase factors given in the three codes were applied to the stress-strain curves of the materials. To estimate the dynamic increase factors, strain rate was adopted as a parameter. Comparison of the test and analysis was done with regard to perforation depth, maximum deflection, and surface crack area of the slab. Consequently, it was found that DIF has so great an effect on the behavior of the reinforced concrete structures that selection of DIF should be very careful. The result implies that DIF should be provided in design codes in more delicate format considering various influence factors.

Keywords: impact, strain rate, DIF, slab elements

Procedia PDF Downloads 294
1585 Evaluation of Initial Graft Tension during ACL Reconstruction Using a Three-Dimensional Computational Finite Element Simulation: Effect of the Combination of a Band of Gracilis with the Former Graft

Authors: S. Alireza Mirghasemi, Javad Parvizi, Narges R. Gabaran, Shervin Rashidinia, Mahdi M. Bijanabadi, Dariush G. Savadkoohi

Abstract:

Background: The anterior cruciate ligament is one of the most frequent ligament to be disrupted. Surgical reconstruction of the anterior cruciate ligament is a common practice to treat the disability or chronic instability of the knee. Several factors associated with success or failure of the ACL reconstruction including preoperative laxity of the knee, selection of the graft material, surgical technique, graft tension, and postoperative rehabilitation. We aimed to examine the biomechanical properties of any graft type and initial graft tensioning during ACL reconstruction using 3-dimensional computational finite element simulation. Methods: In this paper, 3-dimensional model of the knee was constructed to investigate the effect of graft tensioning on the knee joint biomechanics. Four different grafts were compared: 1) Bone-patellar tendon-bone graft (BPTB) 2) Hamstring tendon 3) BPTB and a band of gracilis4) Hamstring and a band of gracilis. The initial graft tension was set as “0, 20, 40, or 60N”. The anterior loading was set to 134 N. Findings: The resulting stress pattern and deflection in any of these models were compared to that of the intact knee. The obtained results showed that the combination of a band of gracilis with the former graft (BPTB or Hamstring) increases the structural stiffness of the knee. Conclusion: Required pretension during surgery decreases significantly by adding a band of gracilis to the proper graft.

Keywords: ACL reconstruction, deflection, finite element simulation, stress pattern

Procedia PDF Downloads 300
1584 Efficient Fuzzy Classified Cryptographic Model for Intelligent Encryption Technique towards E-Banking XML Transactions

Authors: Maher Aburrous, Adel Khelifi, Manar Abu Talib

Abstract:

Transactions performed by financial institutions on daily basis require XML encryption on large scale. Encrypting large volume of message fully will result both performance and resource issues. In this paper a novel approach is presented for securing financial XML transactions using classification data mining (DM) algorithms. Our strategy defines the complete process of classifying XML transactions by using set of classification algorithms, classified XML documents processed at later stage using element-wise encryption. Classification algorithms were used to identify the XML transaction rules and factors in order to classify the message content fetching important elements within. We have implemented four classification algorithms to fetch the importance level value within each XML document. Classified content is processed using element-wise encryption for selected parts with "High", "Medium" or “Low” importance level values. Element-wise encryption is performed using AES symmetric encryption algorithm and proposed modified algorithm for AES to overcome the problem of computational overhead, in which substitute byte, shift row will remain as in the original AES while mix column operation is replaced by 128 permutation operation followed by add round key operation. An implementation has been conducted using data set fetched from e-banking service to present system functionality and efficiency. Results from our implementation showed a clear improvement in processing time encrypting XML documents.

Keywords: XML transaction, encryption, Advanced Encryption Standard (AES), XML classification, e-banking security, fuzzy classification, cryptography, intelligent encryption

Procedia PDF Downloads 411
1583 Iron Response Element-mRNA Binding to Iron Response Protein: Metal Ion Sensing

Authors: Mateen A. Khan, Elizabeth J. Theil, Dixie J. Goss

Abstract:

Cellular iron homeostasis is accomplished by the coordinated regulated expression of iron uptake, storage, and export. Iron regulate the translation of ferritin and mitochondrial aconitase iron responsive element (IRE)-mRNA by interaction with an iron regulatory protein (IRPs). Iron increases protein biosynthesis encoded in iron responsive element. The noncoding structure IRE-mRNA, approximately 30-nt, folds into a stem loop to control synthesis of proteins in iron trafficking, cell cycling, and nervous system function. Fluorescence anisotropy measurements showed the presence of one binding site on IRP1 for ferritin and mitochondrial aconitase IRE-mRNA. Scatchard analysis revealed the binding affinity (Kₐ) and average binding sites (n) for ferritin and mitochondrial aconitase IRE-mRNA were 68.7 x 10⁶ M⁻¹ and 9.2 x 10⁶ M⁻¹, respectively. In order to understand the relative importance of equilibrium and stability, we further report the contribution of electrostatic interactions in the overall binding of two IRE-mRNA with IRP1. The fluorescence quenching of IRP1 protein was measured at different ionic strengths. The binding affinity of IRE-mRNA to IRP1 decreases with increasing ionic strength, but the number of binding sites was independent of ionic strength. Such results indicate a differential contribution of electrostatics to the interaction of IRE-mRNA with IRP1, possibly related to helix bending or stem interactions and an overall conformational change. Selective destabilization of ferritin and mitochondrial aconitase RNA/protein complexes as reported here explain in part the quantitative differences in signal response to iron in vivo and indicate possible new regulatory interactions.

Keywords: IRE-mRNA, IRP1, binding, ionic strength

Procedia PDF Downloads 128
1582 Numerical Computation of Sturm-Liouville Problem with Robin Boundary Condition

Authors: Theddeus T. Akano, Omotayo A. Fakinlede

Abstract:

The modelling of physical phenomena, such as the earth’s free oscillations, the vibration of strings, the interaction of atomic particles, or the steady state flow in a bar give rise to Sturm-Liouville (SL) eigenvalue problems. The boundary applications of some systems like the convection-diffusion equation, electromagnetic and heat transfer problems requires the combination of Dirichlet and Neumann boundary conditions. Hence, the incorporation of Robin boundary condition in the analyses of Sturm-Liouville problem. This paper deals with the computation of the eigenvalues and eigenfunction of generalized Sturm-Liouville problems with Robin boundary condition using the finite element method. Numerical solutions of classical Sturm–Liouville problems are presented. The results show an agreement with the exact solution. High results precision is achieved with higher number of elements.

Keywords: Sturm-Liouville problem, Robin boundary condition, finite element method, eigenvalue problems

Procedia PDF Downloads 362
1581 Vibration Propagation in Body-in-White Structures Through Structural Intensity Analysis

Authors: Jamal Takhchi

Abstract:

The understanding of vibration propagation in complex structures such as automotive body in white remains a challenging issue in car design regarding NVH performances. The current analysis is limited to the low frequency range where modal concepts are dominant. Higher frequencies, between 200 and 1000 Hz, will become critical With the rise of electrification. EVs annoying sounds are mostly whines created by either Gears or e-motors between 300 Hz and 2 kHz. Structural intensity analysis was Experienced a few years ago on finite element models. The application was promising but limited by the fact that the propagating 3D intensity vector field is masked by a rotational Intensity field. This rotational field should be filtered using a differential operator. The expression of this operator in the framework of finite element modeling is not yet known. The aim of the proposed work is to implement this operator in the current dynamic solver (NASTRAN) of Stellantis and develop the Expected methodology for the mid-frequency structural analysis of electrified vehicles.

Keywords: structural intensity, NVH, body in white, irrotatational intensity

Procedia PDF Downloads 155
1580 Effect of Stiffeners on the Behavior of Slender Built up Steel I-Beams

Authors: M. E. Abou-Hashem El Dib, M. K. Swailem, M. M. Metwally, A. I. El Awady

Abstract:

This paper presents the effect of stiffeners on the behavior of slender steel I-beams. Nonlinear three dimensional finite element models are developed to represent the stiffened steel I-beams. The well established finite element (ANSYS 13.0) program is used to simulate the geometric and material nonlinear nature of the problem. Verification is achieved by comparing the obtained numerical results with the results of previous published experimental work. The parameters considered in the analysis are the horizontal stiffener's position and the horizontal stiffener's dimensions as well as the number of vertical stiffeners. The studied dimensions of the horizontal stiffeners include the stiffener width, the stiffener thickness and the stiffener length. The results of the achieved numerical parametric study for slender steel I-beams show the significant effect of stiffeners on the beam behavior and its failure load.

Keywords: beams, local buckling, slender, stiffener, thin walled section

Procedia PDF Downloads 279
1579 The Effect of Opening on Mode Shapes and Frequencies of Composite Shear Wall

Authors: A. Arabzadeh, H. R. Kazemi Nia Korrani

Abstract:

Composite steel plate shear wall is a lateral loading resistance system, which is used especially in tall buildings. This wall is made of a thin steel plate with reinforced a concrete cover, which is attached to one or both sides of the steel plate. This system is similar to stiffened steel plate shear wall, in which reinforced concrete replaces the steel stiffeners. Composite shear wall have in-plane and out-plane significant strength. Also, they have appropriate ductility. The present numerical investigations were focused on the effects of opening on wall mode shapes. In addition, frequencies of composite shear wall with and without opening are compared. For analyzing composite shear wall, a new program will be developed using of finite element theory and the effects of shape, size and position openings on the behavior of composite shear wall will be studied. Results indicated that the existence of opening decreases wall frequency.

Keywords: composite shear wall, opening, finite element method, modal analysis

Procedia PDF Downloads 540
1578 Voxel Models as Input for Heat Transfer Simulations with Siemens NX Based on X-Ray Microtomography Images of Random Fibre Reinforced Composites

Authors: Steven Latré, Frederik Desplentere, Ilya Straumit, Stepan V. Lomov

Abstract:

A method is proposed in order to create a three-dimensional finite element model representing fibre reinforced insulation materials for the simulation software Siemens NX. VoxTex software, a tool for quantification of µCT images of fibrous materials, is used for the transformation of microtomography images of random fibre reinforced composites into finite element models. An automatic tool was developed to execute the import of the models to the thermal solver module of Siemens NX. The paper describes the numerical tools used for the image quantification and the transformation and illustrates them on several thermal simulations of fibre reinforced insulation blankets filled with low thermal conductive fillers. The calculation of thermal conductivity is validated by comparison with the experimental data.

Keywords: analysis, modelling, thermal, voxel

Procedia PDF Downloads 287
1577 Dynamic Response of Structure-Raft-Pile-Soil with Respect to System Frequency

Authors: B. Razmi, F. Rafiee, M. Baziar, A. Saeedi Azizkandi

Abstract:

In the present research, a series of 3-D finite element numerical modeling was performed to study the effect of system frequency and excitation specifications on the internal forces of the piled raft (PR) system in a dry sand layer. The results of numerical simulations were first compared with those associated with centrifuge tests. The natural frequency of superstructure, modeled on the piled raft foundation, was smaller than the natural frequency of the fixed-base super-structure. This difference was greater for super-structures with higher frequencies. In PR systems, the excitation with a frequency close to the system frequency produced the largest responses. Furthermore, based on the results of presented numerical analyses, ignoring the interactions and characteristics of all components of a pile-raft-structure, may lead to highly uneconomical design.

Keywords: centrifuge test, excitation frequency, natural frequency of super-structure, piled raft foundation, 3-D finite element model

Procedia PDF Downloads 117
1576 Numerical Analysis and Design of Dielectric to Plasmonic Waveguides Couplers

Authors: Emanuela Paranhos Lima, Vitaly Félix Rodríguez Esquerre

Abstract:

In this work, efficient directional coupler composed of dielectric waveguides and metallic film has been analyzed in details by simulations using finite element method (FEM). The structure consists of a step-index fiber with dielectric core, silica cladding, and a metal nanowire parallel to the core. The results show that an efficient conversion of optical dielectric modes to long range plasmonic is possible. Low insertion losses in conjunction with short coupling length and a broadband operation can be achieved under certain conditions. This kind of couplers has potential applications for the design of photonic integrated circuits for signal routing between dielectric/plasmonic waveguides, sensing, lithography, and optical storage systems. A high efficient focusing of light in a very small region can be obtained.

Keywords: directional coupler, finite element method, metallic nanowire, plasmonic, surface plasmon polariton, superfocusing

Procedia PDF Downloads 273
1575 Optimization of Process Parameters and Modeling of Mass Transport during Hybrid Solar Drying of Paddy

Authors: Aprajeeta Jha, Punyadarshini P. Tripathy

Abstract:

Drying is one of the most critical unit operations for prolonging the shelf-life of food grains in order to ensure global food security. Photovoltaic integrated solar dryers can be a sustainable solution for replacing energy intensive thermal dryers as it is capable of drying in off-sunshine hours and provide better control over drying conditions. But, performance and reliability of PV based solar dryers depend hugely on climatic conditions thereby, drastically affecting process parameters. Therefore, to ensure quality and prolonged shelf-life of paddy, optimization of process parameters for solar dryers is critical. Proper moisture distribution within the grains is most detrimental factor to enhance the shelf-life of paddy therefore; modeling of mass transport can help in providing a better insight of moisture migration. Hence, present work aims at optimizing the process parameters and to develop a 3D finite element model (FEM) for predicting moisture profile in paddy during solar drying. Optimization of process parameters (power level, air velocity and moisture content) was done using box Behnken model in Design expert software. Furthermore, COMSOL Multiphysics was employed to develop a 3D finite element model for predicting moisture profile. Optimized model for drying paddy was found to be 700W, 2.75 m/s and 13% wb with optimum temperature, milling yield and drying time of 42˚C, 62%, 86 min respectively, having desirability of 0.905. Furthermore, 3D finite element model (FEM) for predicting moisture migration in single kernel for every time step has been developed. The mean absolute error (MAE), mean relative error (MRE) and standard error (SE) were found to be 0.003, 0.0531 and 0.0007, respectively, indicating close agreement of model with experimental results. Above optimized conditions can be successfully used to dry paddy in PV integrated solar dryer in order to attain maximum uniformity, quality and yield of product to achieve global food and energy security

Keywords: finite element modeling, hybrid solar drying, mass transport, paddy, process optimization

Procedia PDF Downloads 139
1574 Formulating the Stochastic Finite Elements for Free Vibration Analysis of Plates with Variable Elastic Modulus

Authors: Mojtaba Aghamiri Esfahani, Mohammad Karkon, Seyed Majid Hosseini Nezhad, Reza Hosseini-Ara

Abstract:

In this study, the effect of uncertainty in elastic modulus of a plate on free vibration response is investigated. For this purpose, the elastic modulus of the plate is modeled as stochastic variable with normal distribution. Moreover, the distance autocorrelation function is used for stochastic field. Then, by applying the finite element method and Monte Carlo simulation, stochastic finite element relations are extracted. Finally, with a numerical test, the effect of uncertainty in the elastic modulus on free vibration response of a plate is studied. The results show that the effect of uncertainty in elastic modulus of the plate cannot play an important role on the free vibration response.

Keywords: stochastic finite elements, plate bending, free vibration, Monte Carlo, Neumann expansion method.

Procedia PDF Downloads 395
1573 Simulation of Wave Propagation in Multiphase Medium

Authors: Edip Kemal, Sheshov Vlatko, Bojadjieva Julijana, Bogdanovic ALeksandra, Gjorgjeska Irena

Abstract:

The wave propagation phenomenon in porous domains is of great importance in the field of geotechnical earthquake engineering. In these kinds of problems, the elastic waves propagate from the interior to the exterior domain and require special treatment at the computational level since apart from displacement in the solid-state there is a p-wave that takes place in the pore water phase. In this paper, a study on the implementation of multiphase finite elements is presented. The proposed algorithm is implemented in the ANSYS finite element software and tested on one-dimensional wave propagation considering both pore pressure wave propagation and displacement fields. In the simulation of porous media such as soils, the behavior is governed largely by the interaction of the solid skeleton with water and/or air in the pores. Therefore, coupled problems of fluid flow and deformation of the solid skeleton are considered in a detailed way.

Keywords: wave propagation, multiphase model, numerical methods, finite element method

Procedia PDF Downloads 164
1572 Comparative Analysis of DTC Based Switched Reluctance Motor Drive Using Torque Equation and FEA Models

Authors: P. Srinivas, P. V. N. Prasad

Abstract:

Since torque ripple is the main cause of noise and vibrations, the performance of Switched Reluctance Motor (SRM) can be improved by minimizing its torque ripple using a novel control technique called Direct Torque Control (DTC). In DTC technique, torque is controlled directly through control of magnitude of the flux and change in speed of the stator flux vector. The flux and torque are maintained within set hysteresis bands. The DTC of SRM is analysed by two methods. In one of the methods, the actual torque is computed by conducting Finite Element Analysis (FEA) on the design specifications of the motor. In the other method, the torque is computed by Simplified Torque Equation. The variation of peak current, average current, torque ripple and speed settling time with Simplified Torque Equation model is compared with FEA based model.

Keywords: direct toque control, simplified torque equation, finite element analysis, torque ripple

Procedia PDF Downloads 479
1571 Experimental and Numerical Analysis of Mustafa Paşa Mosque in Skopje

Authors: Ozden Saygili, Eser Cakti

Abstract:

The masonry building stock in Istanbul and in other cities of Turkey are exposed to significant earthquake hazard. Determination of the safety of masonry structures against earthquakes is a complex challenge. This study deals with experimental tests and non-linear dynamic analysis of masonry structures modeled through discrete element method. The 1:10 scale model of Mustafa Paşa Mosque was constructed and the data were obtained from the sensors on it during its testing on the shake table. The results were used in the calibration/validation of the numerical model created on the basis of the 1:10 scale model built for shake table testing. 3D distinct element model was developed that represents the linear and nonlinear behavior of the shake table model as closely as possible during experimental tests. Results of numerical analyses with those from the experimental program were compared and discussed.

Keywords: dynamic analysis, non-linear modeling, shake table tests, masonry

Procedia PDF Downloads 426
1570 Thermo-Hydro-Mechanical Modeling of Landfill Behavior

Authors: Mahtab Delfan Azari, Ali Noorzad, Ahmadreza Mahboubi Ardakani

Abstract:

Municipal solid waste landfills have relatively high temperature which is caused by anaerobic and aerobic degradation. The temperature that is produced is almost 40-70°C. Since this temperature will remain for many years, considering it for studying landfill behavior and its soil is so important. By considering the temperature of landfill, the obtained results will become more logical and more realistic. Vertical displacement and differential settlement are two important values which are studied here. Differential displacements could expand cracks in liner and cover. If cracks appear in the liner, the leachate and gases will propagate to media and hence should be noticed carefully. The present research is focused on the thermo-hydro-mechanical modeling of landfill with finite element method. First, the heat transfer of the landfill is modeled and the temperature is estimated. Then, the results of thermo-hydro-mechanical results are presented to investigate landfill behavior more accurately.

Keywords: finite element method, heat transfer, landfill behavior, thermo-hydro-mechanical modeling

Procedia PDF Downloads 348
1569 Statistical Modeling of Constituents in Ash Evolved From Pulverized Coal Combustion

Authors: Esam Jassim

Abstract:

Industries using conventional fossil fuels have an interest in better understanding the mechanism of particulate formation during combustion since such is responsible for emission of undesired inorganic elements that directly impact the atmospheric pollution level. Fine and ultrafine particulates have tendency to escape the flue gas cleaning devices to the atmosphere. They also preferentially collect on surfaces in power systems resulting in ascending in corrosion inclination, descending in the heat transfer thermal unit, and severe impact on human health. This adverseness manifests particularly in the regions of world where coal is the dominated source of energy for consumption. This study highlights the behavior of calcium transformation as mineral grains verses organically associated inorganic components during pulverized coal combustion. The influence of existing type of calcium on the coarse, fine and ultrafine mode formation mechanisms is also presented. The impact of two sub-bituminous coals on particle size and calcium composition evolution during combustion is to be assessed. Three mixed blends named Blends 1, 2, and 3 are selected according to the ration of coal A to coal B by weight. Calcium percentage in original coal increases as going from Blend 1 to 3. A mathematical model and a new approach of describing constituent distribution are proposed. Analysis of experiments of calcium distribution in ash is also modeled using Poisson distribution. A novel parameter, called elemental index λ, is introduced as a measuring factor of element distribution. Results show that calcium in ash that originally in coal as mineral grains has index of 17, whereas organically associated calcium transformed to fly ash shown to be best described when elemental index λ is 7. As an alkaline-earth element, calcium is considered the fundamental element responsible for boiler deficiency since it is the major player in the mechanism of ash slagging process. The mechanism of particle size distribution and mineral species of ash particles are presented using CCSEM and size-segregated ash characteristics. Conclusions are drawn from the analysis of pulverized coal ash generated from a utility-scale boiler.

Keywords: coal combustion, inorganic element, calcium evolution, fluid dynamics

Procedia PDF Downloads 335
1568 Active Flutter Suppression of Sports Aircraft Tailplane by Supplementary Control Surface

Authors: Aleš Kratochvíl, Svatomír Slavík

Abstract:

The paper presents an aircraft flutter suppression by active damping of supplementary control surface at trailing edge. The mathematical model of thin oscillation airfoil with control surface driven by pilot is developed. The supplementary control surface driven by control law is added. Active damping of flutter by several control law is present. The structural model of tailplane with an aerodynamic strip theory based on the airfoil model is developed by a finite element method. The optimization process of stiffens parameters is carried out to match the structural model with results from a ground vibration test of a small sport airplane. The implementation of supplementary control surface driven by control law is present. The active damping of tailplane model is shown.

Keywords: active damping, finite element method, flutter, tailplane model

Procedia PDF Downloads 292
1567 Thorium Resources of Georgia – Is It Its Future Energy ?

Authors: Avtandil Okrostsvaridze, Salome Gogoladze

Abstract:

In the light of exhaustion of hydrocarbon reserves of new energy resources, its search is of vital importance problem for the modern civilization. At the time of energy resource crisis, the radioactive element thorium (232Th) is considered as the main energy resource for the future of our civilization. Modern industry uses thorium in high-temperature and high-tech tools, but the most important property of thorium is that like uranium it can be used as fuel in nuclear reactors. However, thorium has a number of advantages compared to this element: Its concentration in the earth crust is 4-5 times higher than uranium; extraction and enrichment of thorium is much cheaper than of uranium; it is less radioactive; its waste products complete destruction is possible; thorium yields much more energy than uranium. Nowadays, developed countries, among them India and China, have started intensive work for creation of thorium nuclear reactors and intensive search for thorium reserves. It is not excluded that in the next 10 years these reactors will completely replace uranium reactors. Thorium ore mineralization is genetically related to alkaline-acidic magmatism. Thorium accumulations occur as in endogen marked as in exogenous conditions. Unfortunately, little is known about the reserves of this element in Georgia, as planned prospecting-exploration works of thorium have never been carried out here. Although, 3 ore occurrences of this element are detected: 1) In the Greater Caucasus Kakheti segment, in the hydrothermally altered rocks of the Lower Jurassic clay-shales, where thorium concentrations varied between 51 - 3882g/t; 2) In the eastern periphery of the Dzirula massif, in the hydrothermally alteration rocks of the cambrian quartz-diorite gneisses, where thorium concentrations varied between 117-266 g/t; 3) In active contact zone of the Eocene volcanites and syenitic intrusive in Vakijvari ore field of the Guria region, where thorium concentrations varied between 185 – 428 g/t. In addition, geological settings of the areas, where thorium occurrences were fixed, give a theoretical basis on possible accumulation of practical importance thorium ores. Besides, the Black Sea Guria region magnetite sand which is transported from Vakijvari ore field, should contain significant reserves of thorium. As the research shows, monazite (thorium containing mineral) is involved in magnetite in the form of the thinnest inclusions. The world class thorium deposit concentrations of this element vary within the limits of 50-200 g/t. Accordingly, on the basis of these data, thorium resources found in Georgia should be considered as perspective ore deposits. Generally, we consider that complex investigation of thorium should be included into the sphere of strategic interests of the state, because future energy of Georgia, will probably be thorium.

Keywords: future energy, Georgia, ore field, thorium

Procedia PDF Downloads 492
1566 Investigation of Heat Conduction through Particulate Filled Polymer Composite

Authors: Alok Agrawal, Alok Satapathy

Abstract:

In this paper, an attempt to determine the effective thermal conductivity (keff) of particulate filled polymer composites using finite element method (FEM) a powerful computational technique is made. A commercially available finite element package ANSYS is used for this numerical analysis. Three-dimensional spheres-in-cube lattice array models are constructed to simulate the microstructures of micro-sized particulate filled polymer composites with filler content ranging from 2.35 to 26.8 vol %. Based on the temperature profiles across the composite body, the keff of each composition is estimated theoretically by FEM. Composites with similar filler contents are than fabricated using compression molding technique by reinforcing micro-sized aluminium oxide (Al2O3) in polypropylene (PP) resin. Thermal conductivities of these composite samples are measured according to the ASTM standard E-1530 by using the Unitherm™ Model 2022 tester, which operates on the double guarded heat flow principle. The experimentally measured conductivity values are compared with the numerical values and also with those obtained from existing empirical models. This comparison reveals that the FEM simulated values are found to be in reasonable good agreement with the experimental data. Values obtained from the theoretical model proposed by the authors are also found to be in even closer approximation with the measured values within percolation limit. Further, this study shows that there is gradual enhancement in the conductivity of PP resin with increase in filler percentage and thereby its heat conduction capability is improved. It is noticed that with addition of 26.8 vol % of filler, the keff of composite increases to around 6.3 times that of neat PP. This study validates the proposed model for PP-Al2O3 composite system and proves that finite element analysis can be an excellent methodology for such investigations. With such improved heat conduction ability, these composites can find potential applications in micro-electronics, printed circuit boards, encapsulations etc.

Keywords: analytical modelling, effective thermal conductivity, finite element method, polymer matrix composite

Procedia PDF Downloads 321
1565 Effective Width of Reinforced Concrete U-Shaped Walls Due to Shear Lag Effects

Authors: Ryan D. Hoult

Abstract:

The inherent assumption in the elementary theory of bending that plane sections remain plane is commonly used in the design of reinforced concrete members. However, in reality, a shear flow would develop in non-rectangular sections, where the longitudinal strains in between the web and flanges of the element would lag behind those at the boundary ends. This phenomenon, known as shear lag, can significantly reduce the expected moment capacity of non-rectangular reinforced concrete walls. This study focuses on shear lag effects in reinforced concrete U-shaped walls, which are commonly used as lateral load resisting elements in reinforced concrete buildings. An extensive number of finite element modelling analyses are conducted to estimate the vertical strain distributions across the web and flanges of a U-shaped wall with different axial load ratios and longitudinal reinforcement detailing. The results show that shear lag effects are prominent and sometimes significant in U-shaped walls, particularly for the wall sections perpendicular to the direction of loading.

Keywords: shear lag, walls, U-shaped, moment-curvature

Procedia PDF Downloads 211
1564 Development of a New Method for T-Joint Specimens Testing under Shear Loading

Authors: Radek Doubrava, Roman Ruzek

Abstract:

Nonstandard tests are necessary for analyses and verification of new developed structural and technological solutions with application of composite materials. One of the most critical primary structural parts of a typical aerospace structure is T-joint. This structural element is loaded mainly in shear, bending, peel and tension. The paper is focused on the shear loading simulations. The aim of the work is to obtain a representative uniform distribution of shear loads along T-joint during the mechanical testing is. A new design of T-joint test procedure, numerical simulation and optimization of representative boundary conditions are presented. The different conditions and inaccuracies both in simulations and experiments are discussed. The influence of different parameters on stress and strain distributions is demonstrated on T-joint made of CFRP (carbon fiber reinforced plastic). A special test rig designed by VZLU (Aerospace Research and Test Establishment) for T-shear test procedure is presented.

Keywords: T-joint, shear, composite, mechanical testing, finite element analysis, methodology

Procedia PDF Downloads 442
1563 Simulation of Elastic Bodies through Discrete Element Method, Coupled with a Nested Overlapping Grid Fluid Flow Solver

Authors: Paolo Sassi, Jorge Freiria, Gabriel Usera

Abstract:

In this work, a finite volume fluid flow solver is coupled with a discrete element method module for the simulation of the dynamics of free and elastic bodies in interaction with the fluid and between themselves. The open source fluid flow solver, caffa3d.MBRi, includes the capability to work with nested overlapping grids in order to easily refine the grid in the region where the bodies are moving. To do so, it is necessary to implement a recognition function able to identify the specific mesh block in which the device is moving in. The set of overlapping finer grids might be displaced along with the set of bodies being simulated. The interaction between the bodies and the fluid is computed through a two-way coupling. The velocity field of the fluid is first interpolated to determine the drag force on each object. After solving the objects displacements, subject to the elastic bonding among them, the force is applied back onto the fluid through a Gaussian smoothing considering the cells near the position of each object. The fishnet is represented as lumped masses connected by elastic lines. The internal forces are derived from the elasticity of these lines, and the external forces are due to drag, gravity, buoyancy and the load acting on each element of the system. When solving the ordinary differential equations system, that represents the motion of the elastic and flexible bodies, it was found that the Runge Kutta solver of fourth order is the best tool in terms of performance, but requires a finer grid than the fluid solver to make the system converge, which demands greater computing power. The coupled solver is demonstrated by simulating the interaction between the fluid, an elastic fishnet and a set of free bodies being captured by the net as they are dragged by the fluid. The deformation of the net, as well as the wake produced in the fluid stream are well captured by the method, without requiring the fluid solver mesh to adapt for the evolving geometry. Application of the same strategy to the simulation of elastic structures subject to the action of wind is also possible with the method presented, and one such application is currently under development.

Keywords: computational fluid dynamics, discrete element method, fishnets, nested overlapping grids

Procedia PDF Downloads 416
1562 Finite Element Modelling and Analysis of Human Knee Joint

Authors: R. Ranjith Kumar

Abstract:

Computer modeling and simulation of human movement is playing an important role in sports and rehabilitation. Accurate modeling and analysis of human knee join is more complex because of complicated structure whose geometry is not easily to represent by a solid model. As part of this project, from the number of CT scan images of human knee join surface reconstruction is carried out using 3D slicer software, an open source software. From this surface reconstruction model, using mesh lab (another open source software) triangular meshes are created on reconstructed surface. This final triangular mesh model is imported to Solid Works, 3D mechanical CAD modeling software. Finally this CAD model is imported to ABAQUS, finite element analysis software for analyzing the knee joints. The results obtained are encouraging and provides an accurate way of modeling and analysis of biological parts without human intervention.

Keywords: solid works, CATIA, Pro-e, CAD

Procedia PDF Downloads 124
1561 Material Characterization and Numerical Simulation of a Rubber Bumper

Authors: Tamás Mankovits, Dávid Huri, Imre Kállai, Imre Kocsis, Tamás Szabó

Abstract:

Non-linear FEM calculations are indispensable when important technical information like operating performance of a rubber component is desired. Rubber bumpers built into air-spring structures may undergo large deformations under load, which in itself shows non-linear behavior. The changing contact range between the parts and the incompressibility of the rubber increases this non-linear behavior further. The material characterization of an elastomeric component is also a demanding engineering task. In this paper, a comprehensive investigation is introduced including laboratory measurements, mesh density analysis and complex finite element simulations to obtain the load-displacement curve of the chosen rubber bumper. Contact and friction effects are also taken into consideration. The aim of this research is to elaborate an FEM model which is accurate and competitive for a future shape optimization task.

Keywords: rubber bumper, finite element analysis, compression test, Mooney-Rivlin material model

Procedia PDF Downloads 509
1560 Reinforced Concrete Foundation for Turbine Generators

Authors: Siddhartha Bhattacharya

Abstract:

Steam Turbine-Generators (STG) and Combustion Turbine-Generator (CTG) are used in almost all modern petrochemical, LNG plants and power plant facilities. The reinforced concrete table top foundations are required to support these high speed rotating heavy machineries and is one of the most critical and challenging structures on any industrial project. The paper illustrates through a practical example, the step by step procedure adopted in designing a table top foundation supported on piles for a steam turbine generator with operating speed of 60 Hz. Finite element model of a table top foundation is generated in ANSYS. Piles are modeled as springs-damper elements (COMBIN14). Basic loads are adopted in analysis and design of the foundation based on the vendor requirements, industry standards, and relevant ASCE & ACI codal provisions. Static serviceability checks are performed with the help of Misalignment Tolerance Matrix (MTM) method in which the percentage of misalignment at a given bearing due to displacement at another bearing is calculated and kept within the stipulated criteria by the vendor so that the machine rotor can sustain the stresses developed due to this misalignment. Dynamic serviceability checks are performed through modal and forced vibration analysis where the foundation is checked for resonance and allowable amplitudes, as stipulated by the machine manufacturer. Reinforced concrete design of the foundation is performed by calculating the axial force, bending moment and shear at each of the critical sections. These values are calculated through area integral of the element stresses at these critical locations. Design is done as per ACI 318-05.

Keywords: steam turbine generator foundation, finite element, static analysis, dynamic analysis

Procedia PDF Downloads 295