Search results for: modular ready-wall element
2921 Improvement of Buckling Behavior of Cold Formed Steel Uprights with Open Cross Section Used in Storage Rack Systems
Authors: Yasar Pala, Safa Senaysoy, Emre Calis
Abstract:
In this paper, structural behavior and improvement of buckling behavior of cold formed steel uprights with open cross-section used storage rack system are studied. As a first step, in the case of a stiffener having an inclined part on the flange, experimental and nonlinear finite element analysis are carried out for three different upright lengths. In the uprights with long length, global buckling is observed while distortional buckling and local buckling are observed in the uprights with medium length and those with short length, respectively. After this point, the study is divided into two groups. One of these groups is the case where the stiffener on the flange is folded at 90°. For this case, four different distances of the stiffener from the web are taken into account. In the other group, the case where different depth of stiffener on the web is considered. Combining experimental and finite element results, the cross-section giving the ultimate critical buckling load is selected.Keywords: steel, upright, buckling, modes, nonlinear finite element analysis, optimization
Procedia PDF Downloads 2602920 Nonlinear Finite Element Modeling of Reinforced Concrete Flat Plate-Inclined Column Connection
Authors: Rabab Allouzi, Amer Alkloub
Abstract:
As the complex shaped buildings become a popular trend for architects, this paper is presented to investigate the performance of reinforced concrete flat plate-inclined column connection. The studies on the inclined column and flat plate connections are not sufficient in comparison to those on the conventional structures. The effect of column angle of inclination on the punching shear strength is found significant and studied herein. This paper presents a non-linear finite element based modeling approach to estimate behavior of RC flat plate inclined column connection. Results from simulations of RC flat plate-straight column connection show good agreement with experimental response of specimens tested by other researchers. The model is further used to study the response of inclined columns to punching at various ranges of inclination angles. The inclination angle can be included in the punching shear strength provisions provided by ACI 318-14 to account for the effect of column inclination.Keywords: punching shear, non-linear finite element, inclined columns, reinforced concrete connection
Procedia PDF Downloads 2442919 Investigation of Gas Tungsten Arc Welding Parameters on Residual Stress of Heat Affected Zone in Inconel X750 Super Alloy Welding Using Finite Element Method
Authors: Kimia Khoshdel Vajari, Saber Saffar
Abstract:
Reducing the residual stresses caused by welding is desirable for the industry. The effect of welding sequence, as well as the effect of yield stress on the number of residual stresses generated in Inconel X750 superalloy sheets and beams, have been investigated. The finite element model used in this research is a three-dimensional thermal and mechanical model, and the type of analysis is indirect coupling. This analysis is done in two stages. First, thermal analysis is performed, and then the thermal changes of the first analysis are used as the applied load in the second analysis. ABAQUS has been used for modeling, and the Dflux subroutine has been used in the Fortran programming environment to move the arc and the molten pool. The results of this study show that the amount of tensile residual stress in symmetric, discontinuous, and symmetric-discontinuous welds is reduced to a maximum of 27%, 54%, and 37% compared to direct welding, respectively. The results also show that the amount of residual stresses created by welding increases linearly with increasing yield stress with a slope of 40%.Keywords: residual stress, X750 superalloy, finite element, welding, thermal analysis
Procedia PDF Downloads 1182918 The Analysis of Thermal Conductivity in Porcine Meat Due to Electricity by Finite Element Method
Authors: Orose Rugchati, Sarawut Wattanawongpitak
Abstract:
This research studied the analysis of the thermal conductivity and heat transfer in porcine meat due to the electric current flowing between the electrode plates in parallel. Hot-boned pork sample was prepared in 2*1*1 cubic centimeter. The finite element method with ANSYS workbench program was applied to simulate this heat transfer problem. In the thermal simulation, the input thermoelectric energy was calculated from measured current that flowing through the pork and the input voltage from the dc voltage source. The comparison of heat transfer in pork according to two voltage sources: DC voltage 30 volts and dc pulsed voltage 60 volts (pulse width 50 milliseconds and 50 % duty cycle) were demonstrated. From the result, it shown that the thermal conductivity trends to be steady at temperature 40C and 60C around 1.39 W/mC and 2.65 W/mC for dc voltage source 30 volts and dc pulsed voltage 60 volts, respectively. For temperature increased to 50C at 5 minutes, the appearance color of porcine meat at the exposer point has become to fade. This technique could be used for predicting of thermal conductivity caused by some meat’s characteristics.Keywords: thermal conductivity, porcine meat, electricity, finite element method
Procedia PDF Downloads 1402917 Numerical Analysis of the Effect of Geocell Reinforcement above Buried Pipes on Surface Settlement and Vertical Pressure
Authors: Waqed H. Almohammed, Mohammed Y. Fattah, Sajjad E. Rasheed
Abstract:
Dynamic traffic loads cause deformation of underground pipes, resulting in vehicle discomfort. This makes it necessary to reinforce the layers of soil above underground pipes. In this study, the subbase layer was reinforced. Finite element software (PLAXIS 3D) was used to in the simulation, which includes geocell reinforcement, vehicle loading, soil layers and Glass Fiber Reinforced Plastic (GRP) pipe. Geocell reinforcement was modeled using a geogrid element, which was defined as a slender structure element that has the ability to withstand axial stresses but not to resist bending. Geogrids cannot withstand compression but they can withstand tensile forces. Comparisons have been made between the numerical models and experimental works, and a good agreement was obtained. Using the mathematical model, the performance of three different pipes of diameter 600 mm, 800 mm, and 1000 mm, and three different vehicular speeds of 20 km/h, 40 km/h, and 60 km/h, was examined to determine their impact on surface settlement and vertical pressure at the pipe crown for two cases: with and without geocell reinforcement. The results showed that, for a pipe diameter of 600 mm under geocell reinforcement, surface settlement decreases by 94 % when the speed of the vehicle is 20 km/h and by 98% when the speed of the vehicle is 60 km/h. Vertical pressure decreases by 81 % when the diameter of the pipe is 600 mm, while the value decreases to 58 % for a pipe with diameter 1000 mm. The results show that geocell reinforcement causes a significant and positive reduction in surface settlement and vertical stress above the pipe crown, leading to an increase in pipe safety.Keywords: dynamic loading, finite element, geocell-reinforcement, GRP pipe, PLAXIS 3D, surface settlement
Procedia PDF Downloads 2482916 Cold Flow Investigation of Silicon Carbide Cylindrical Filter Element
Authors: Mohammad Alhajeri
Abstract:
This paper reports a computational fluid dynamics (CFD) investigation of cylindrical filter. Silicon carbide cylindrical filter elements have proven to be an effective mean of removing particulates to levels exceeding the new source performance standard. The CFD code is used here to understand the deposition process and the factors that affect the particles distribution over the filter element surface. Different approach cross flow velocity to filter face velocity ratios and different face velocities (ranging from 2 to 5 cm/s) are used in this study. Particles in the diameter range 1 to 100 microns are tracked through the domain. The radius of convergence (or the critical trajectory) is compared and plotted as a function of many parameters.Keywords: filtration, CFD, CCF, hot gas filtration
Procedia PDF Downloads 4612915 Stabilization of Fly Ash Slope Using Plastic Recycled Polymer and Finite Element Analysis Using Plaxis 3D
Authors: Tushar Vasant Salunkhe, Sariput M. Nawghare, Maheboobsab B. Nadaf, Sushovan Dutta, J. N. Mandal
Abstract:
The model tests were conducted in the laboratory without and with plastic recycled polymer in fly ash steep slopes overlaying soft foundation soils like fly ash and power soil in order to check the stability of steep slope. In this experiment, fly ash is used as a filling material, and Plastic Recycled Polymers of diameter = 3mm and length = 4mm were made from the waste plastic product (lower grade plastic product). The properties of fly ash and plastic recycled polymers are determined. From the experiments, load and settlement have measured. From these data, load–settlement curves have been reported. It has been observed from test results that the load carrying capacity of mixture fly ash with Plastic Recycled Polymers slope is more than that of fly ash slope. The deformation of Plastic Recycled Polymers slope is slightly more than that of fly ash slope. A Finite Element Method (F.E.M.) was also evaluated using PLAXIS 3D version. The failure pattern, deformations and factor of safety are reported based on analytical programme. The results from experimental data and analytical programme are compared and reported.Keywords: factor of safety, finite element method (FEM), fly ash, plastic recycled polymer
Procedia PDF Downloads 4282914 Research on Configuration of Large-Scale Linear Array Feeder Truss Parabolic Cylindrical Antenna of Satellite
Authors: Chen Chuanzhi, Guo Yunyun
Abstract:
The large linear array feeding parabolic cylindrical antenna of the satellite has the ability of large-area line focusing, multi-directional beam clusters simultaneously in a certain azimuth plane and elevation plane, corresponding quickly to different orientations and different directions in a wide frequency range, dual aiming of frequency and direction, and combining space power. Therefore, the large-diameter parabolic cylindrical antenna has become one of the new development directions of spaceborne antennas. Limited by the size of the rocked fairing, the large-diameter spaceborne antenna is required to be small mass and have a deployment function. After being orbited, the antenna can be deployed by expanding and be stabilized. However, few types of structures can be used to construct large cylindrical shell structures in existing structures, which greatly limits the development and application of such antennas. Aiming at high structural efficiency, the geometrical characteristics of parabolic cylinders and mechanism topological mapping law to the expandable truss are studied, and the basic configuration of deployable truss with cylindrical shell is structured. Then a modular truss parabolic cylindrical antenna is designed in this paper. The antenna has the characteristics of stable structure, high precision of reflecting surface formation, controllable motion process, high storage rate, and lightweight, etc. On the basis of the overall configuration comprehensive theory and optimization method, the structural stiffness of the modular truss parabolic cylindrical antenna is improved. And the bearing density and impact resistance of support structure are improved based on the internal tension optimal distribution method of reflector forming. Finally, a truss-type cylindrical deployable support structure with high constriction-deployment ratio, high stiffness, controllable deployment, and low mass is successfully developed, laying the foundation for the application of large-diameter parabolic cylindrical antennas in satellite antennas.Keywords: linear array feed antenna, truss type, parabolic cylindrical antenna, spaceborne antenna
Procedia PDF Downloads 1572913 Drastic Increase of Wave Dissipation within Metastructures Having Negative Stiffness Inclusions
Authors: D. Chronopoulos, I. Antoniadis, V. Spitas, D. Koulocheris, V. Polenta
Abstract:
A concept of a simple linear oscillator, incorporating a negative stiffness element is demonstrated to exhibit extraordinary damping properties. This oscillator shares the same overall (static) stiffness, the same mass and the same damping element with a reference classical linear SDOF oscillator. However, it differs from the original SDOF oscillator by appropriately redistributing the component spring stiffness elements and by re-allocating the damping element. Despite the fact that the proposed oscillator incorporates a negative stiffness element, it is designed to be both statically and dynamically stable. Once such an oscillator is optimally designed, it is shown to exhibit an extraordinary apparent damping ratio, which is even several orders of magnitude higher than that of the original SDOF system, especially in cases where the original damping of the SDOF system is low. This damping behavior is not a result of a novel additional extraordinary energy dissipation mechanism, but a result of the phase difference between the positive and the negative stiffness elastic forces, which is in turn a consequence of the proper re-distribution of the stiffness and the damper elements. This fact ensures that an adequate level of elastic forces exists throughout the entire frequency range, able to counteract the inertial and the excitation forces. Next, Acoustic or Phononic Meta-materials are considered, in which one atom is replaced by the concept of the above simple linear oscillator. The results indicate that not only the damping of the meta-material verifies and exceeds the one expected from the so-called "meta-damping" behavior, but also that the band gap of the meta-material can be significantly increased.Keywords: wave propagation, periodic structures, wave damping, mechanical engineering
Procedia PDF Downloads 3562912 Securing Mobile Ad-Hoc Network Utilizing OPNET Simulator
Authors: Tariq A. El Shheibia, Halima Mohamed Belhamad
Abstract:
This paper is considered securing data based on multi-path protocol (SDMP) in mobile ad hoc network utilizing OPNET simulator modular 14.5, including the AODV routing protocol at the network as based multi-path algorithm for message security in MANETs. The main idea of this work is to present a way that is able to detect the attacker inside the MANETs. The detection for this attacker will be performed by adding some effective parameters to the network.Keywords: MANET, AODV, malicious node, OPNET
Procedia PDF Downloads 2942911 Numerical Simulation for Self-Loosening Phenomenon Analysis of Bolt Joint under Vibration
Authors: Long Kim Vu, Ban Dang Nguyen
Abstract:
In this paper, the finite element method (FEM) is utilized to simulate the comprehensive process including tightening, releasing and self-loosening of a bolt joint under transverse vibration. Following to the accurate geometry of helical threads, an absolutely hexahedral meshing is implemented. The accuracy of simulation process is verified and validated by comparison with the experimental results on clamping force-vibration relationship, which shows the sufficient correlation. Further analysis with different amplitude and frequency of transverse vibration is done to determine the dominant factor inducing the failure.Keywords: bolt self-loosening, contact state, finite element method, FEM, helical thread modeling
Procedia PDF Downloads 2022910 Finite Element Analysis of Cold Formed Steel Screwed Connections
Authors: Jikhil Joseph, S. R. Satish Kumar
Abstract:
Steel Structures are commonly used for rapid erections and multistory constructions due to its inherent advantages. However, the high accuracy required in detailing and heavier sections, make it difficult to erect in place and transport. Cold Formed steel which are specially made by reducing carbon and other alloys are used nowadays to make thin-walled structures. Various types of connections are being reported as well as practiced for the thin-walled members such as bolting, riveting, welding and other mechanical connections. Commonly self-drilling screw connections are used for cold-formed purlin sheeting connection. In this paper an attempt is made to develop a moment resting frame which can be rapidly and remotely constructed with thin walled sections and self-drilling screws. Semi-rigid Moment connections are developed with Rectangular thin-walled tubes and the screws. The Finite Element Analysis programme ABAQUS is used for modelling the screwed connections. The various modelling procedures for simulating the connection behavior such as tie-constraint model, oriented spring model and solid interaction modelling are compared and are critically reviewed. From the experimental validations the solid-interaction modelling identified to be the most accurate one and are used for predicting the connection behaviors. From the finite element analysis, hysteresis curves and the modes of failure were identified. Parametric studies were done on the connection model to optimize the connection configurations to get desired connection characteristics.Keywords: buckling, cold formed steel, finite element analysis, screwed connections
Procedia PDF Downloads 1872909 A Numerical Study on Micromechanical Aspects in Short Fiber Composites
Authors: I. Ioannou, I. M. Gitman
Abstract:
This study focused on the contribution of micro-mechanical parameters on the macro-mechanical response of short fiber composites, namely polypropylene matrix reinforced by glass fibers. In the framework of this paper, an attention has been given to the glass fibers length, as micromechanical parameter influences the overall macroscopic material’s behavior. Three dimensional numerical models were developed and analyzed through the concept of a Representative Volume Element (RVE). Results of the RVE-based approach were compared with analytical Halpin-Tsai’s model.Keywords: effective properties, homogenization, representative volume element, short fiber reinforced composites
Procedia PDF Downloads 2682908 Investigating The Effect Of Convection On The Rating Of Buried Cables Using The Finite Element Method
Authors: Sandy J. M. Balla, Jerry J. Walker, Isaac K. Kyere
Abstract:
The heat transfer coefficient at the soil–air interface is important in calculating underground cable ampacity when convection occurs. Calculating the heat transfer coefficient accurately is complex because of the temperature variations at the earth's surface. This paper presents the effect of convection heat flow across the ground surface on the rating of three single-core, 132kV, XLPE cables buried underground. The Finite element method (FEM) is a numerical analysis technique used to determine the cable rating of buried cables under installation conditions that are difficult to support when using the analytical method. This study demonstrates the use of FEM to investigate the effect of convection on the rating ofburied cables in flat formation using QuickField finite element simulation software. As a result, developing a model to simulate this type of situation necessitates important considerations such as the following boundary conditions: burial depth, soil thermal resistivity, and soil temperature, which play an important role in the simulation's accuracy and reliability. The results show that when the ground surface is taken as a convection interface, the conductor temperature rises and may exceed the maximum permissible temperature when rated current flows. This is because the ground surface acts as a convection interface between the soil and the air (fluid). This result correlates and is compared with the rating obtained using the IEC60287 analytical method, which is based on the condition that the ground surface is an isotherm.Keywords: finite element method, convection, buried cables, steady-state rating
Procedia PDF Downloads 1312907 Flange/Web Distortional Buckling of Cold-Formed Steel Beams with Web Holes under Pure Bending
Authors: Nan-Ting Yu, Boksun Kim, Long-Yuan Li
Abstract:
The cold-formed steel beams with web holes are widely used as the load-carrying members in structural engineering. The perforations can release the space of the building and let the pipes go through. However, the perforated cold-formed steel (PCFS) beams may fail by distortional buckling more easily than beams with plain web; this is because the rotational stiffness from the web decreases. It is well known that the distortional buckling can be described as the buckling of the compressed flange-lip system. In fact, near the ultimate failure, the flange/web corner would move laterally, which indicates the bending of the web should be taken account. The purpose of this study is to give a specific solution for the critical stress of flange/web distortional buckling of PCFS beams. The new model is deduced based on classical energy method, and the deflection of the web is represented by the shape function of the plane beam element. The finite element analyses have been performed to validate the accuracy of the proposed model. The comparison of the critical stress calculated from Hancock's model, FEA, and present model, shows that the present model can provide a splendid prediction for the flange/web distortional buckling of PCFS beams.Keywords: cold-formed steel, beams, perforations, flange-web distortional buckling, finite element analysis
Procedia PDF Downloads 1302906 Buckling Performance of Irregular Section Cold-Formed Steel Columns under Axially Concentric Loading
Authors: Chayanon Hansapinyo
Abstract:
This paper presents experimental investigation and finite element analysis on buckling behavior of irregular section cold-formed steel columns under axially concentric loading. For the experimental study, four different sections of columns were tested to investigate effect of stiffening and width-to-thickness ratio on buckling behavior. For each of the section, three lengths of 230, 950 and 1900 mm. were studied representing short, intermediate long and long columns, respectively. Then, nonlinear finite element analyses of the tested columns were performed. The comparisons in terms of load-deformation response and buckling mode show good agreement and hence the FEM models were validated. Parametric study of stiffening element and thickness of 1.0, 1.15, 1.2, 1.5, 1.6 and 2.0 mm. were analyzed. The test results showed that stiffening effect pays a large contribution to prevent distortional mode. The increase in wall thickness enhanced buckling stress beyond the yielding strength in short and intermediate columns, but not for the long columns.Keywords: buckling behavior, irregular section, cold-formed steel, concentric loading
Procedia PDF Downloads 2752905 Numerical Study on Pretensioned Bridge Girder Using Thermal Strain Technique
Authors: Prashant Motwani, Arghadeep Laskar
Abstract:
The transfer of prestress force from prestressing strands to the surrounding concrete is dependent on the bond between the two materials. It is essential to understand the actual bond stress distribution along the transfer length to determine the transfer zone in pre-tensioned concrete. A 3-D nonlinear finite element model has been developed to simulate the transfer of prestress force from steel to concrete in pre-tensioned bridge girders through thermal strain technique using commercially available package ABAQUS. Full-scale bridge girder has been analyzed with thermal strain approach where the damage plasticity constitutive model has been used to model concrete. Parameters such as concrete strain, effective prestress, upward camber and longitudinal stress have been compared with analytical results. The discrepancy between numerical and analytical values was within 20%. The paper also presents a convergence study on mesh density and aspect ratio of the elements to perform the finite element study.Keywords: aspect ratio, bridge girder, centre of gravity of strand, mesh density, finite element model, pretensioned bridge girder
Procedia PDF Downloads 2422904 Accuracy of VCCT for Calculating Stress Intensity Factor in Metal Specimens Subjected to Bending Load
Authors: Sanjin Kršćanski, Josip Brnić
Abstract:
Virtual Crack Closure Technique (VCCT) is a method used for calculating stress intensity factor (SIF) of a cracked body that is easily implemented on top of basic finite element (FE) codes and as such can be applied on the various component geometries. It is a relatively simple method that does not require any special finite elements to be used and is usually used for calculating stress intensity factors at the crack tip for components made of brittle materials. This paper studies applicability and accuracy of VCCT applied on standard metal specimens containing trough thickness crack, subjected to an in-plane bending load. Finite element analyses were performed using regular 4-node, regular 8-node and a modified quarter-point 8-node 2D elements. Stress intensity factor was calculated from the FE model results for a given crack length, using data available from FE analysis and a custom programmed algorithm based on virtual crack closure technique. Influence of the finite element size on the accuracy of calculated SIF was also studied. The final part of this paper includes a comparison of calculated stress intensity factors with results obtained from analytical expressions found in available literature and in ASTM standard. Results calculated by this algorithm based on VCCT were found to be in good correlation with results obtained with mentioned analytical expressions.Keywords: VCCT, stress intensity factor, finite element analysis, 2D finite elements, bending
Procedia PDF Downloads 3052903 Human-Induced Vibration and Degree of Human Comfortability Analysis of Intersection Pedestrian Bridge
Authors: Yaowen Sheng, Jiuxian Liu
Abstract:
In order to analyze the pedestrian bridge dynamic characteristics and degree of comfortability, the finite element method and live load time history method is used to calculate the dynamic response of the bridge. The example bridge’s dynamic characteristics and degree of human comfortability need to be analyzed. The project background is a three-way intersection. The intersection has three side blocks. An intersection bridge is designed to help people cross the streets. The finite element model of the bridge is established by the Midas/Civil software, and the analysis of the model is done. The strength, stiffness, and stability checks are also completed. Apart from the static analysis of the bridge, the dynamic analysis of the bridge is also completed to avoid the problems resulted from vibrations. The results show that the pedestrian bridge has different dynamic characteristics compared to other normal bridges. The degree of human comfortability satisfies the requirements of Chinese and British specifications. The live load time history method can be used to calculate the dynamic response of the bridge.Keywords: pedestrian bridge, steel box girder, human-induced vibration, finite element analysis, degree of human comfortability
Procedia PDF Downloads 1572902 Derivation of Technology Element for Automation in Table Formwork in a Tall Building Construction
Authors: Junehyuck Lee, Dongmin Lee, Hunhee Cho, Kyung-In Kang
Abstract:
A table formwork method has recently been widely applied in reinforced concrete structures in a tall building construction to improve safety and productivity. However, this method still depended mainly on manpower. Therefore, this study aimed at derivation of technology element to apply the automation in table formwork in a tall building construction. These results will contribute to improve productivity and labor saving in table formwork in tall building construction.Keywords: table form, tall building, automation, productivity
Procedia PDF Downloads 4002901 Micromechanical Investigation on the Influence of Thermal Stress on Elastic Properties of Fiber-Reinforced Composites
Authors: Arber Sejdiji, Jan Schmitz-Huebsch, Christian Mittelstedt
Abstract:
Due to its use in a broad range of temperatures, the prediction of elastic properties of fiber composite materials under thermal load is significant. Especially the transversal stiffness dominates the potential of use for fiber-reinforced composites (FRC). A numerical study on the influence of thermal stress on transversal stiffness of fiber-reinforced composites is presented. In the numerical study, a representative volume element (RVE) is used to estimate the elastic properties of a unidirectional ply with finite element method (FEM). For the investigation, periodic boundary conditions are applied to the RVE. Firstly, the elastic properties under pure mechanical load are derived numerically and compared to results, which are obtained by analytical methods. Thereupon thermo-mechanical load is implemented into the model to investigate the influence of temperature change with low temperature as a key aspect. Regarding low temperatures, the transversal stiffness increases intensely, especially when thermal stress is dominant over mechanical stress. This paper outlines the employed numerical methods as well as the derived results.Keywords: elastic properties, micromechanics, thermal stress, representative volume element
Procedia PDF Downloads 1062900 E-Bike FE Model Analysis: Connection Stiffness of Elements with Different DOFs
Authors: Lele Zhang, Hui Leng Choo, Alexander Konyukhov, Shuguang Li
Abstract:
Finite Element (FE) model of simplified e-bike structure was generated by main frame with two tiers, which consisted of pipe, mass, beam, and shell elements (pipe 289, beam188, shell 181, shell 281, combin14, link11, mass21). These elements would be introduced and demonstrated using mathematical formulas. Based on coupling theory, constrain equations was proposed. Exporting all the parameters obtained from theory part, the connection stiffness matrix of the whole e-bike structure between each of these elements was detected.Keywords: coupling theory, stiffness matrix, e-bike, finite element model
Procedia PDF Downloads 3752899 Effect of Springback Analysis on Influences of the Steel Demoulding Using FEM
Authors: Byeong-Sam Kim, Jongmin Park
Abstract:
The present work is motivated by the industrial challenge to produce complex composite shapes cost-effectively. The model used an anisotropical thermoviscoelastic is analyzed by an implemented finite element solver. The stress relaxation can be constructed by Prony series for the nonlinear thermoviscoelastic model. The calculation of process induced internal stresses relaxation during the cooling stage of the manufacturing cycle was carried out by the spring back phenomena observed from the part containing a cylindrical segment. The finite element results obtained from the present formulation are compared with experimental data, and the results show good correlations.Keywords: thermoviscoelastic, springback phenomena, FEM analysis, thermoplastic composite structures
Procedia PDF Downloads 3582898 Parasitic Capacitance Modeling in Pulse Transformer Using FEA
Authors: D. Habibinia, M. R. Feyzi
Abstract:
Nowadays, specialized software is vastly used to verify the performance of an electric machine prototype by evaluating a model of the system. These models mainly consist of electrical parameters such as inductances and resistances. However, when the operating frequency of the device is above one kHz, the effect of parasitic capacitances grows significantly. In this paper, a software-based procedure is introduced to model these capacitances within the electromagnetic simulation of the device. The case study is a high-frequency high-voltage pulse transformer. The Finite Element Analysis (FEA) software with coupled field analysis is used in this method.Keywords: finite element analysis, parasitic capacitance, pulse transformer, high frequency
Procedia PDF Downloads 5152897 A Review: Role of Chromium in Broiler
Authors: Naveed Zahra, Zahid Kamran, Shakeel Ahmad
Abstract:
Heat stress is one of the most important environmental stressors challenging poultry production worldwide. The detrimental effect of heat stress results in reduction in the productive performance of poultry with high incidences of mortality. Researchers have made efforts to prevent such damage to poultry production through dietary manipulation. Supplementation with Chromium (Cr) might have some positive effects on some aspect of blood parameters and broilers performance. Chromium (Cr) the element whose trivalent Cr (III) organic state is present in trace amounts in animal feed and water is found to be a key element in evading heat stress and thus cutting down the heavy expenditure on air conditioning in broiler sheds. Chromium, along with other essential minerals is lost due to increased excretion during heat stress and thus its inclusion in broiler diet is kind of mandatory in areas of hot climate. Chromium picolinate in broiler diet has shown a hike in growth rate including muscle gain with body fat reduction under environmental stress. Fat reduction is probably linked to the ability of chromium to increase the sensitivity of the insulin receptors on tissues and thus the uptake of sugar from blood increases which decreases the amount of glucose to be converted to amino acids and stored in adipose tissue as triglycerides. Organic chromium has also shown to increase lymphocyte proliferation rate and antioxidant levels. So, the immune competency, muscle gain and fat reduction along with evasion of heat stress are good enough signs that indicate the fruitful inclusion of dietary chromium for broiler. This promising element may bring the much needed break in the local poultry industry. The task is now to set the exact dose of the element in the diet that would be useful enough and still not toxic to broiler. In conclusion there is a growing body of evidence which suggest that chromium may be an essential trace element for livestock and poultry. The nutritional requirement for chromium may vary with different species and physiological state within a species.Keywords: broiler, chromium, heat stress, performance
Procedia PDF Downloads 2842896 On Cold Roll Bonding of Polymeric Films
Authors: Nikhil Padhye
Abstract:
Recently a new phenomenon for bonding of polymeric films in solid-state, at ambient temperatures well below the glass transition temperature of the polymer, has been reported. This is achieved by bulk plastic compression of polymeric films held in contact. Here we analyze the process of cold-rolling of polymeric films via finite element simulations and illustrate a flexible and modular experimental rolling-apparatus that can achieve bonding of polymeric films through cold-rolling. Firstly, the classical theory of rolling a rigid-plastic thin-strip is utilized to estimate various deformation fields such as strain-rates, velocities, loads etc. in rolling the polymeric films at the specified feed-rates and desired levels of thickness-reduction(s). Predicted magnitudes of slow strain-rates, particularly at ambient temperatures during rolling, and moderate levels of plastic deformation (at which Bauschinger effect can be neglected for the particular class of polymeric materials studied here), greatly simplifies the task of material modeling and allows us to deploy a computationally efficient, yet accurate, finite deformation rate-independent elastic-plastic material behavior model (with inclusion of isotropic-hardening) for analyzing the rolling of these polymeric films. The interfacial behavior between the roller and polymer surfaces is modeled using Coulombic friction; consistent with the rate-independent behavior. The finite deformation elastic-plastic material behavior based on (i) the additive decomposition of stretching tensor (D = De + Dp, i.e. a hypoelastic formulation) with incrementally objective time integration and, (ii) multiplicative decomposition of deformation gradient (F = FeFp) into elastic and plastic parts, are programmed and carried out for cold-rolling within ABAQUS Explicit. Predictions from both the formulations, i.e., hypoelastic and multiplicative decomposition, exhibit a close match. We find that no specialized hyperlastic/visco-plastic model is required to describe the behavior of the blend of polymeric films, under the conditions described here, thereby speeding up the computation process .Keywords: Polymer Plasticity, Bonding, Deformation Induced Mobility, Rolling
Procedia PDF Downloads 1892895 Optimum of Offshore Structures Lifting Padeyes Using Finite Element Method
Authors: Abdelrahim Hamadelnil
Abstract:
Padeye design and analysis plays important roles during the lifting, load out and installation of heavy structures. This paper explains the disadvantages of limiting the effective thickness of the cheek plate to 75% of the main plate thickness. In addition, a sensitivity study about the impact of the out of plane force on the padeye design is discussed. This study also explains the fabrication requirements to ensure that the designed strength is achieved. The objective of this study is to elaborate and discuss the philosophy of padeye design and to propose the suitable effective cheek plate thickness to be considered in the analysis of padeye. A finite element analysis using London University Structure Analysis System (LUSAS), is conducted and compared with the hand calculation. The benefits and advantage of using FE analysis is addressed in this paper. At the end of this paper, a guideline elaborating the philosophy of the design of the padeye is developed and the suitable effective thickness of cheek plate to be considered in the design is recommended. In addition, a comparison between the finite element result and the hand calculation using beam theory is discussed as well.Keywords: cheek plate, effective thickness, out of plane force, Padeye
Procedia PDF Downloads 3262894 Numerical Modeling of Geogrid Reinforced Soil Bed under Strip Footings Using Finite Element Analysis
Authors: Ahmed M. Gamal, Adel M. Belal, S. A. Elsoud
Abstract:
This article aims to study the effect of reinforcement inclusions (geogrids) on the sand dunes bearing capacity under strip footings. In this research experimental physical model was carried out to study the effect of the first geogrid reinforcement depth (u/B), the spacing between the reinforcement (h/B) and its extension relative to the footing length (L/B) on the mobilized bearing capacity. This paper presents the numerical modeling using the commercial finite element package (PLAXIS version 8.2) to simulate the laboratory physical model, studying the same parameters previously handled in the experimental work (u/B, L/B & h/B) for the purpose of validation. In this study the soil, the geogrid, the interface element and the boundary condition are discussed with a set of finite element results and the validation. Then the validated FEM used for studying real material and dimensions of strip foundation. Based on the experimental and numerical investigation results, a significant increase in the bearing capacity of footings has occurred due to an appropriate location of the inclusions in sand. The optimum embedment depth of the first reinforcement layer (u/B) is equal to 0.25. The optimum spacing between each successive reinforcement layer (h/B) is equal to 0.75 B. The optimum Length of the reinforcement layer (L/B) is equal to 7.5 B. The optimum number of reinforcement is equal to 4 layers. The study showed a directly proportional relation between the number of reinforcement layer and the Bearing Capacity Ratio BCR, and an inversely proportional relation between the footing width and the BCR.Keywords: reinforced soil, geogrid, sand dunes, bearing capacity
Procedia PDF Downloads 4172893 Whole Body Cooling Hypothermia Treatment Modelling Using a Finite Element Thermoregulation Model
Authors: Ana Beatriz C. G. Silva, Luiz Carlos Wrobel, Fernando Luiz B. Ribeiro
Abstract:
This paper presents a thermoregulation model using the finite element method to perform numerical analyses of brain cooling procedures as a contribution to the investigation on the use of therapeutic hypothermia after ischemia in adults. The use of computational methods can aid clinicians to observe body temperature using different cooling methods without the need of invasive techniques, and can thus be a valuable tool to assist clinical trials simulating different cooling options that can be used for treatment. In this work, we developed a FEM package applied to the solution of the continuum bioheat Pennes equation. Blood temperature changes were considered using a blood pool approach and a lumped analysis for intravascular catheter method of blood cooling. Some analyses are performed using a three-dimensional mesh based on a complex geometry obtained from computed tomography medical images, considering a cooling blanket and a intravascular catheter. A comparison is made between the results obtained and the effects of each case in brain temperature reduction in a required time, maintenance of body temperature at moderate hypothermia levels and gradual rewarming.Keywords: brain cooling, finite element method, hypothermia treatment, thermoregulation
Procedia PDF Downloads 3112892 On the Cyclic Property of Groups of Prime Order
Authors: Ying Yi Wu
Abstract:
The study of finite groups is a central topic in algebraic structures, and one of the most fundamental questions in this field is the classification of finite groups up to isomorphism. In this paper, we investigate the cyclic property of groups of prime order, which is a crucial result in the classification of finite abelian groups. We prove the following statement: If p is a prime, then every group G of order p is cyclic. Our proof utilizes the properties of group actions and the class equation, which provide a powerful tool for studying the structure of finite groups. In particular, we first show that any non-identity element of G generates a cyclic subgroup of G. Then, we establish the existence of an element of order p, which implies that G is generated by a single element. Finally, we demonstrate that any two generators of G are conjugate, which shows that G is a cyclic group. Our result has significant implications in the classification of finite groups, as it implies that any group of prime order is isomorphic to the cyclic group of the same order. Moreover, it provides a useful tool for understanding the structure of more complicated finite groups, as any finite abelian group can be decomposed into a direct product of cyclic groups. Our proof technique can also be extended to other areas of group theory, such as the classification of finite p-groups, where p is a prime. Therefore, our work has implications beyond the specific result we prove and can contribute to further research in algebraic structures.Keywords: group theory, finite groups, cyclic groups, prime order, classification.
Procedia PDF Downloads 84