Search results for: information signals
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11283

Search results for: information signals

10953 Investigation of Information Security Incident Management Based on International Standard ISO/IEC 27002 in Educational Hospitals in 2014

Authors: Nahid Tavakoli, Asghar Ehteshami, Akbar Hassanzadeh, Fatemeh Amini

Abstract:

Introduction: The Information security incident management guidelines was been developed to help hospitals to meet their information security event and incident management requirements. The purpose of this Study was to investigate on Information Security Incident Management in Isfahan’s educational hospitals in accordance to ISO/IEC 27002 standards. Methods: This was a cross-sectional study to investigate on Information Security Incident Management of educational hospitals in 2014. Based on ISO/IEC 27002 standards, two checklists were applied to check the compliance with standards on Reporting Information Security Events and Weakness and Management of Information Security Incidents and Improvements. One inspector was trained to carry out the assessments in the hospitals. The data was analyzed by SPSS. Findings: In general the score of compliance Information Security Incident Management requirements in two steps; Reporting Information Security Events and Weakness and Management of Information Security Incidents and Improvements was %60. There was the significant difference in various compliance levels among the hospitals (p-valueKeywords: information security incident management, information security management, standards, hospitals

Procedia PDF Downloads 558
10952 Decoding Kinematic Characteristics of Finger Movement from Electrocorticography Using Classical Methods and Deep Convolutional Neural Networks

Authors: Ksenia Volkova, Artur Petrosyan, Ignatii Dubyshkin, Alexei Ossadtchi

Abstract:

Brain-computer interfaces are a growing research field producing many implementations that find use in different fields and are used for research and practical purposes. Despite the popularity of the implementations using non-invasive neuroimaging methods, radical improvement of the state channel bandwidth and, thus, decoding accuracy is only possible by using invasive techniques. Electrocorticography (ECoG) is a minimally invasive neuroimaging method that provides highly informative brain activity signals, effective analysis of which requires the use of machine learning methods that are able to learn representations of complex patterns. Deep learning is a family of machine learning algorithms that allow learning representations of data with multiple levels of abstraction. This study explores the potential of deep learning approaches for ECoG processing, decoding movement intentions and the perception of proprioceptive information. To obtain synchronous recording of kinematic movement characteristics and corresponding electrical brain activity, a series of experiments were carried out, during which subjects performed finger movements at their own pace. Finger movements were recorded with a three-axis accelerometer, while ECoG was synchronously registered from the electrode strips that were implanted over the contralateral sensorimotor cortex. Then, multichannel ECoG signals were used to track finger movement trajectory characterized by accelerometer signal. This process was carried out both causally and non-causally, using different position of the ECoG data segment with respect to the accelerometer data stream. The recorded data was split into training and testing sets, containing continuous non-overlapping fragments of the multichannel ECoG. A deep convolutional neural network was implemented and trained, using 1-second segments of ECoG data from the training dataset as input. To assess the decoding accuracy, correlation coefficient r between the output of the model and the accelerometer readings was computed. After optimization of hyperparameters and training, the deep learning model allowed reasonably accurate causal decoding of finger movement with correlation coefficient r = 0.8. In contrast, the classical Wiener-filter like approach was able to achieve only 0.56 in the causal decoding mode. In the noncausal case, the traditional approach reached the accuracy of r = 0.69, which may be due to the presence of additional proprioceptive information. This result demonstrates that the deep neural network was able to effectively find a representation of the complex top-down information related to the actual movement rather than proprioception. The sensitivity analysis shows physiologically plausible pictures of the extent to which individual features (channel, wavelet subband) are utilized during the decoding procedure. In conclusion, the results of this study have demonstrated that a combination of a minimally invasive neuroimaging technique such as ECoG and advanced machine learning approaches allows decoding motion with high accuracy. Such setup provides means for control of devices with a large number of degrees of freedom as well as exploratory studies of the complex neural processes underlying movement execution.

Keywords: brain-computer interface, deep learning, ECoG, movement decoding, sensorimotor cortex

Procedia PDF Downloads 150
10951 The Implementation of Information Security Audits in Public Sector: Perspective from Indonesia

Authors: Nur Imroatun Sholihat, Gresika Bunga Sylvana

Abstract:

Currently, cyber attack became an incredibly serious problem due to its increasing trend all over the world. Therefore, information security becomes prominent for every organization including public sector organization. In Indonesia, unfortunately, Ministry of Finance (MoF) is the only public sector organization that has already formally established procedure to assess its information security adequacy by performing information security audits (November 2017). We assess the implementation of information security audits in the MoF using qualitative data obtained by interviewing IT auditors and by analysis of related documents. For this reason, information security audit practice in the MoF could become the acceptable benchmark for all other public sector organizations in Indonesia. This study is important because, to the best of the author’s knowledge, our research into information security audits practice in Indonesia’s public sector have not been found yet. Results showed that information security audits performed mostly by doing pentest (penetration testing) to MoF’s critical applications.

Keywords: information security audit, information technology, Ministry of Finance of Indonesia, public sector organization

Procedia PDF Downloads 208
10950 High Responsivity of Zirconium boride/Chromium Alloy Heterostructure for Deep and Near UV Photodetector

Authors: Sanjida Akter, Ambali Alade Odebowale, Andrey E. Miroshnichenko, Haroldo T. Hattori

Abstract:

Photodetectors (PDs) play a pivotal role in optoelectronics and optical devices, serving as fundamental components that convert light signals into electrical signals. As the field progresses, the integration of advanced materials with unique optical properties has become a focal point, paving the way for the innovation of novel PDs. This study delves into the exploration of a cutting-edge photodetector designed for deep and near ultraviolet (UV) applications. The photodetector is constructed with a composite of Zirconium Boride (ZrB2) and Chromium (Cr) alloy, deposited onto a 6H nitrogen-doped silicon carbide substrate. The determination of the optimal alloy thickness is achieved through Finite-Difference Time-Domain (FDTD) simulation, and the synthesis of the alloy is accomplished using radio frequency (RF) sputtering. Remarkably, the resulting photodetector exhibits an exceptional responsivity of 3.5 A/W under an applied voltage of -2 V, at wavelengths of 405 nm and 280 nm. This heterostructure not only exemplifies high performance but also provides a versatile platform for the development of near UV photodetectors capable of operating effectively in challenging conditions, such as environments characterized by high power and elevated temperatures. This study contributes to the expanding landscape of photodetector technology, offering a promising avenue for the advancement of optoelectronic devices in demanding applications.

Keywords: responsivity, silicon carbide, ultraviolet photodetector, zirconium boride

Procedia PDF Downloads 33
10949 Promoting Authenticity in Employer Brands to Address the Global-Local Problem in Complex Organisations: The Case of a Developing Country

Authors: Saud Al Taj

Abstract:

Employer branding is considered as a useful tool for addressing the global-local problem facing complex organisations that have operations scattered across the globe and face challenges of dealing with the local environment alongside. Despite being an established field of study within the Western developed world, there is little empirical evidence concerning the relevance of employer branding to global companies that operate in the under-developed economies. This paper fills this gap by gaining rich insight into the implementation of employer branding programs in a foreign multinational operating in Pakistan dealing with the global-local problem. The study is qualitative in nature and employs semi-structured and focus group interviews with senior/middle managers and local frontline employees to deeply examine the phenomenon in case organisation. Findings suggest that authenticity is required in employer brands to enable them to respond to the local needs thereby leading to the resolution of the global-local problem. However, the role of signaling theory is key to the development of authentic employer brands as it stresses on the need to establish an efficient and effective signaling environment wherein signals travel in both directions (from signal designers to receivers and backwards) and facilitate firms with the global-local problem. The paper also identifies future avenues of research for the employer branding field.

Keywords: authenticity, counter-signals, employer branding, global-local problem, signaling theory

Procedia PDF Downloads 347
10948 Control Configuration System as a Key Element in Distributed Control System

Authors: Goodarz Sabetian, Sajjad Moshfe

Abstract:

Control system for hi-tech industries could be realized generally and deeply by a special document. Vast heavy industries such as power plants with a large number of I/O signals are controlled by a distributed control system (DCS). This system comprises of so many parts from field level to high control level, and junior instrument engineers may be confused by this enormous information. The key document which can solve this problem is “control configuration system diagram” for each type of DCS. This is a road map that covers all of activities respect to control system in each industrial plant and inevitable to be studied by whom corresponded. It plays an important role from designing control system start point until the end; deliver the system to operate. This should be inserted in bid documents, contracts, purchasing specification and used in different periods of project EPC (engineering, procurement, and construction). Separate parts of DCS are categorized here in order of importance and a brief description and some practical plan is offered. This article could be useful for all instrument and control engineers who worked is EPC projects.

Keywords: control, configuration, DCS, power plant, bus

Procedia PDF Downloads 472
10947 A Secure System for Handling Information from Heterogeous Sources

Authors: Shoohira Aftab, Hammad Afzal

Abstract:

Information integration is a well known procedure to provide consolidated view on sets of heterogeneous information sources. It not only provides better statistical analysis of information but also facilitates users to query without any knowledge on the underlying heterogeneous information sources The problem of providing a consolidated view of information can be handled using Semantic data (information stored in such a way that is understandable by machines and integrate-able without manual human intervention). However, integrating information using semantic web technology without any access management enforced, will results in increase of privacy and confidentiality concerns. In this research we have designed and developed a framework that would allow information from heterogeneous formats to be consolidated, thus resolving the issue of interoperability. We have also devised an access control system for defining explicit privacy constraints. We designed and applied our framework on both semantic and non-semantic data from heterogeneous resources. Our approach is validated using scenario based testing.

Keywords: information integration, semantic data, interoperability, security, access control system

Procedia PDF Downloads 326
10946 Frequency Recognition Models for Steady State Visual Evoked Potential Based Brain Computer Interfaces (BCIs)

Authors: Zeki Oralhan, Mahmut Tokmakçı

Abstract:

SSVEP based brain computer interface (BCI) systems have been preferred, because of high information transfer rate (ITR) and practical use. ITR is the parameter of BCI overall performance. For high ITR value, one of specification BCI system is that has high accuracy. In this study, we investigated to recognize SSVEP with shorter time and lower error rate. In the experiment, there were 8 flickers on light crystal display (LCD). Participants gazed to flicker which had 12 Hz frequency and 50% duty cycle ratio on the LCD during 10 seconds. During the experiment, EEG signals were acquired via EEG device. The EEG data was filtered in preprocessing session. After that Canonical Correlation Analysis (CCA), Multiset CCA (MsetCCA), phase constrained CCA (PCCA), and Multiway CCA (MwayCCA) methods were applied on data. The highest average accuracy value was reached when MsetCCA was applied.

Keywords: brain computer interface, canonical correlation analysis, human computer interaction, SSVEP

Procedia PDF Downloads 248
10945 Unstructured-Data Content Search Based on Optimized EEG Signal Processing and Multi-Objective Feature Extraction

Authors: Qais M. Yousef, Yasmeen A. Alshaer

Abstract:

Over the last few years, the amount of data available on the globe has been increased rapidly. This came up with the emergence of recent concepts, such as the big data and the Internet of Things, which have furnished a suitable solution for the availability of data all over the world. However, managing this massive amount of data remains a challenge due to their large verity of types and distribution. Therefore, locating the required file particularly from the first trial turned to be a not easy task, due to the large similarities of names for different files distributed on the web. Consequently, the accuracy and speed of search have been negatively affected. This work presents a method using Electroencephalography signals to locate the files based on their contents. Giving the concept of natural mind waves processing, this work analyses the mind wave signals of different people, analyzing them and extracting their most appropriate features using multi-objective metaheuristic algorithm, and then classifying them using artificial neural network to distinguish among files with similar names. The aim of this work is to provide the ability to find the files based on their contents using human thoughts only. Implementing this approach and testing it on real people proved its ability to find the desired files accurately within noticeably shorter time and retrieve them as a first choice for the user.

Keywords: artificial intelligence, data contents search, human active memory, mind wave, multi-objective optimization

Procedia PDF Downloads 153
10944 Proposing Smart Clothing for Addressing Criminal Acts Against Women in South Africa

Authors: Anne Mastamet-Mason

Abstract:

Crimes against women is a global concern, and South Africa, in particular, is in a dilemma of dealing with constant criminal acts that face the country. Debates on violence against women in South Africa cannot be overemphasised any longer as crimes continue to rise year by year. The recent death of a university student at the University of Cape Town, as well as many other cases, continues to strengthen the need to find solutions from all the spheres of South African society. The advanced textiles market contains a high number and variety of technologies, many of which have protected status and constitute a relatively small portion of the textiles used for the consumer market. Examples of advanced textiles include nanomaterials, such as silver, titanium dioxide and zinc oxide, designed to create an anti-microbial and self-cleaning layer on top of the fibers, thereby reducing body smell and soiling. Smart textiles propose materials and fabrics versatile and adaptive to different situations and functions. Integrating textiles and computing technologies offer an opportunity to come up with differentiated characteristics and functionality. This paper presents a proposal to design a smart camisole/Yoga sports brazier and a smart Yoga sports pant garment to be worn by women while alone and while in purported danger zones. The smart garments are to be worn under normal clothing and cannot be detected or seen, or suspected by perpetrators. The garments are imbued with devices to sense any physical aggression and any abnormal or accelerated heartbeat that may be exhibited by the victim of violence. The signals created during the attack can be transmitted to the police and family members who own a mobile application system that accepts signals emitted. The signals direct the receiver to the exact location of the offence, and the victim can be rescued before major violations are committed. The design of the Yoga sports garments will be done by Professor Mason, who is a fashion designer by profession, while the mobile phone application system will be developed by Mr. Amos Yegon, who is an independent software developer.

Keywords: smart clothing, wearable technology, south africa, 4th industrial revolution

Procedia PDF Downloads 177
10943 A Posteriori Trading-Inspired Model-Free Time Series Segmentation

Authors: Plessen Mogens Graf

Abstract:

Within the context of multivariate time series segmentation, this paper proposes a method inspired by a posteriori optimal trading. After a normalization step, time series are treated channelwise as surrogate stock prices that can be traded optimally a posteriori in a virtual portfolio holding either stock or cash. Linear transaction costs are interpreted as hyperparameters for noise filtering. Trading signals, as well as trading signals obtained on the reversed time series, are used for unsupervised channelwise labeling before a consensus over all channels is reached that determines the final segmentation time instants. The method is model-free such that no model prescriptions for segments are made. Benefits of proposed approach include simplicity, computational efficiency, and adaptability to a wide range of different shapes of time series. Performance is demonstrated on synthetic and real-world data, including a large-scale dataset comprising a multivariate time series of dimension 1000 and length 2709. Proposed method is compared to a popular model-based bottom-up approach fitting piecewise affine models and to a recent model-based top-down approach fitting Gaussian models and found to be consistently faster while producing more intuitive results in the sense of segmenting time series at peaks and valleys.

Keywords: time series segmentation, model-free, trading-inspired, multivariate data

Procedia PDF Downloads 111
10942 The Role of Online Videos in Undergraduate Casual-Leisure Information Behaviors

Authors: Nei-Ching Yeh

Abstract:

This study describes undergraduate casual-leisure information behaviors relevant to online videos. Diaries and in-depth interviews were used to collect data. Twenty-four undergraduates participated in this study (9 men, 15 women; all were aged 18–22 years). This study presents a model of casual-leisure information behaviors and contributes new insights into user experience in casual-leisure settings, such as online video programs, with implications for other information domains.

Keywords: casual-leisure information behaviors, information behavior, online videos, role

Procedia PDF Downloads 289
10941 Interoperable Design Coordination Method for Sharing Communication Information Using Building Information Model Collaboration Format

Authors: Jin Gang Lee, Hyun-Soo Lee, Moonseo Park

Abstract:

The utilization of BIM and IFC allows project participants to collaborate across different areas by consistently sharing interoperable product information represented in a model. Comments or markups generated during the coordination process can be categorized as communication information, which can be shared in less standardized manner. It can be difficult to manage and reuse such information compared to the product information in a model. The present study proposes an interoperable coordination method using BCF (the BIM Collaboration Format) for managing and sharing the communication information during BIM based coordination process. A management function for coordination in the BIM collaboration system is developed to assess its ability to share the communication information in BIM collaboration projects. This approach systematically links communication information during the coordination process to the building model and serves as a type of storage system for retrieving knowledge created during BIM collaboration projects.

Keywords: design coordination, building information model, BIM collaboration format, industry foundation classes

Procedia PDF Downloads 402
10940 Impact Location From Instrumented Mouthguard Kinematic Data In Rugby

Authors: Jazim Sohail, Filipe Teixeira-Dias

Abstract:

Mild traumatic brain injury (mTBI) within non-helmeted contact sports is a growing concern due to the serious risk of potential injury. Extensive research is being conducted looking into head kinematics in non-helmeted contact sports utilizing instrumented mouthguards that allow researchers to record accelerations and velocities of the head during and after an impact. This does not, however, allow the location of the impact on the head, and its magnitude and orientation, to be determined. This research proposes and validates two methods to quantify impact locations from instrumented mouthguard kinematic data, one using rigid body dynamics, the other utilizing machine learning. The rigid body dynamics technique focuses on establishing and matching moments from Euler’s and torque equations in order to find the impact location on the head. The methodology is validated with impact data collected from a lab test with the dummy head fitted with an instrumented mouthguard. Additionally, a Hybrid III Dummy head finite element model was utilized to create synthetic kinematic data sets for impacts from varying locations to validate the impact location algorithm. The algorithm calculates accurate impact locations; however, it will require preprocessing of live data, which is currently being done by cross-referencing data timestamps to video footage. The machine learning technique focuses on eliminating the preprocessing aspect by establishing trends within time-series signals from instrumented mouthguards to determine the impact location on the head. An unsupervised learning technique is used to cluster together impacts within similar regions from an entire time-series signal. The kinematic signals established from mouthguards are converted to the frequency domain before using a clustering algorithm to cluster together similar signals within a time series that may span the length of a game. Impacts are clustered within predetermined location bins. The same Hybrid III Dummy finite element model is used to create impacts that closely replicate on-field impacts in order to create synthetic time-series datasets consisting of impacts in varying locations. These time-series data sets are used to validate the machine learning technique. The rigid body dynamics technique provides a good method to establish accurate impact location of impact signals that have already been labeled as true impacts and filtered out of the entire time series. However, the machine learning technique provides a method that can be implemented with long time series signal data but will provide impact location within predetermined regions on the head. Additionally, the machine learning technique can be used to eliminate false impacts captured by sensors saving additional time for data scientists using instrumented mouthguard kinematic data as validating true impacts with video footage would not be required.

Keywords: head impacts, impact location, instrumented mouthguard, machine learning, mTBI

Procedia PDF Downloads 198
10939 Asynchronous Low Duty Cycle Media Access Control Protocol for Body Area Wireless Sensor Networks

Authors: Yasin Ghasemi-Zadeh, Yousef Kavian

Abstract:

Wireless body area networks (WBANs) technology has achieved lots of popularity over the last decade with a wide range of medical applications. This paper presents an asynchronous media access control (MAC) protocol based on B-MAC protocol by giving an application for medical issues. In WBAN applications, there are some serious problems such as energy, latency, link reliability (quality of wireless link) and throughput which are mainly due to size of sensor networks and human body specifications. To overcome these problems and improving link reliability, we concentrated on MAC layer that supports mobility models for medical applications. In the presented protocol, preamble frames are divided into some sub-frames considering the threshold level. Actually, the main reason for creating shorter preambles is the link reliability where due to some reasons such as water, the body signals are affected on some frequency bands and causes fading and shadowing on signals, therefore by increasing the link reliability, these effects are reduced. In case of mobility model, we use MoBAN model and modify that for some more areas. The presented asynchronous MAC protocol is modeled by OMNeT++ simulator. The results demonstrate increasing the link reliability comparing to B-MAC protocol where the packet reception ratio (PRR) is 92% also covers more mobility areas than MoBAN protocol.

Keywords: wireless body area networks (WBANs), MAC protocol, link reliability, mobility, biomedical

Procedia PDF Downloads 352
10938 Networked Radar System to Increase Safety of Urban Railroad Crossing

Authors: Sergio Saponara, Luca Fanucci, Riccardo Cassettari, Ruggero Piernicola, Marco Righetto

Abstract:

The paper presents an innovative networked radar system for detection of obstacles in a railway level crossing scenario. This Monitoring System (MS) is able to detect moving or still obstacles within the railway level crossing area automatically, avoiding the need of human presence for surveillance. The MS is also connected to the National Railway Information and Signaling System to communicate in real-time the level crossing status. The architecture is compliant with the highest Safety Integrity Level (SIL4) of the CENELEC standard. The number of radar sensors used is configurable at set-up time and depends on how large the level crossing area can be. At least two sensors are expected and up four can be used for larger areas. The whole processing chain that elaborates the output sensor signals, as well as the communication interface, is fully-digital, was designed in VHDL code and implemented onto a Xilinx Virtex 6.

Keywords: radar for safe mobility, railroad crossing, railway, transport safety

Procedia PDF Downloads 458
10937 The Effect of Information Technologies on Business Performance: An Application on Small Hotels

Authors: Abdullah Karaman, Kursad Sayin

Abstract:

In this research, which information technologies are used in small hotel businesses, and the information technologies-performance perception of the managers are pointed out. During the research, the questionnaire was prepared and the small scale hotel managers were interviewed face to face and they filled out the questionnaire and the answers acquired were evaluated. As the result of the research, it was obtained that the managers do not care much about the information technologies usage in practice even though they accepted that the information technologies are important in terms of performance.

Keywords: information technologies, managers, performance, small hotels

Procedia PDF Downloads 466
10936 The SEMONT Monitoring and Risk Assessment of Environmental EMF Pollution

Authors: Dragan Kljajic, Nikola Djuric, Karolina Kasas-Lazetic, Danka Antic

Abstract:

Wireless communications have been expanded very fast in recent decades. This technology relies on an extensive network of base stations and antennas, using radio frequency signals to transmit information. Devices that use wireless communication, while offering various services, basically act as sources of non-ionizing electromagnetic fields (EMF). Such devices are permanently present in the human vicinity and almost constantly radiate, causing EMF pollution of the environment. This fact has initiated development of modern systems for observation of the EMF pollution, as well as for risk assessment. This paper presents the Serbian electromagnetic field monitoring network – SEMONT, designed for automated, remote and continuous broadband monitoring of EMF in the environment. Measurement results of the SEMONT monitoring at one of the test locations, within the main campus of the University of Novi Sad, are presented and discussed, along with corresponding exposure assessment of the general population, regarding the Serbian legislation.

Keywords: EMF monitoring, exposure assessment, sensor nodes, wireless network

Procedia PDF Downloads 251
10935 Exploiting JPEG2000 into Reversible Information

Authors: Te-Jen Chang, I-Hui Pan, Kuang-Hsiung Tan, Shan-Jen Cheng, Chien-Wu Lan, Chih-Chan Hu

Abstract:

With the event of multimedia age in order to protect data not to be tampered, damaged, and faked, information hiding technologies are proposed. Information hiding means important secret information is hidden into cover multimedia and then camouflaged media is produced. This camouflaged media has the characteristic of natural protection. Under the undoubted situation, important secret information is transmitted out.Reversible information hiding technologies for high capacity is proposed in this paper. The gray images are as cover media in this technology. We compress gray images and compare with the original image to produce the estimated differences. By using the estimated differences, expression information hiding is used, and higher information capacity can be achieved. According to experimental results, the proposed technology can be approved. For these experiments, the whole capacity of information payload and image quality can be satisfied.

Keywords: cover media, camouflaged media, reversible information hiding, gray image

Procedia PDF Downloads 310
10934 PAPR Reduction of FBMC Using Sliding Window Tone Reservation Active Constellation Extension Technique

Authors: S. Anuradha, V. Sandeep Kumar

Abstract:

The high Peak to Average Power Ratio (PAR) in Filter Bank Multicarrier with Offset Quadrature Amplitude Modulation (FBMC-OQAM) can significantly reduce power efficiency and performance. In this paper, we address the problem of PAPR reduction for FBMC-OQAM systems using Tone Reservation (TR) technique. Due to the overlapping structure of FBMCOQAM signals, directly applying TR schemes of OFDM systems to FBMC-OQAM systems is not effective. We improve the tone reservation (TR) technique by employing sliding window with Active Constellation Extension for the PAPR reduction of FBMC-OQAM signals, called sliding window tone reservation Active Constellation Extension (SW-TRACE) technique. The proposed SW-TRACE technique uses the peak reduction tones (PRTs) of several consecutive data blocks to cancel the peaks of the FBMC-OQAM signal inside a window, with dynamically extending outer constellation points in active(data-carrying) channels, within margin-preserving constraints, in order to minimize the peak magnitude. Analysis and simulation results compared to the existing Tone Reservation (TR) technique for FBMC/OQAM system. The proposed method SW-TRACE has better PAPR performance and lower computational complexity.

Keywords: FBMC-OQAM, peak-to-average power ratio, sliding window, tone reservation Active Constellation Extension

Procedia PDF Downloads 423
10933 Freedom of Information and Freedom of Expression

Authors: Amin Pashaye Amiri

Abstract:

Freedom of information, according to which the public has a right to have access to government-held information, is largely considered as a tool for improving transparency and accountability in governments, and as a requirement of self-governance and good governance. So far, more than ninety countries have recognized citizens’ right to have access to public information. This recognition often took place through the adoption of an act referred to as “freedom of information act”, “access to public records act”, and so on. A freedom of information act typically imposes a positive obligation on a government to initially and regularly release certain public information, and also obliges it to provide individuals with information they request. Such an act usually allows governmental bodies to withhold information only when it falls within a limited number of exemptions enumerated in the act such as exemptions for protecting privacy of individuals and protecting national security. Some steps have been taken at the national and international level towards the recognition of freedom of information as a human right. Freedom of information was recognized in a few countries as a part of freedom of expression, and therefore, as a human right. Freedom of information was also recognized by some international bodies as a human right. The Inter-American Court of Human Rights ruled in 2006 that Article 13 of the American Convention on Human Rights, which concerns the human right to freedom of expression, protects the right of all people to request access to government information. The European Court of Human Rights has recently taken a considerable step towards recognizing freedom of information as a human right. However, in spite of the measures that have been taken, public access to government information is not yet widely accepted as an international human right. The paper will consider the degree to which freedom of information has been recognized as a human right, and study the possibility of widespread recognition of such a human right in the future. It will also examine the possible benefits of such recognition for the development of the human right to free expression.

Keywords: freedom of information, freedom of expression, human rights, government information

Procedia PDF Downloads 527
10932 The Quality of Accounting Information of Private Companies in the Czech Republic

Authors: Kateřina Struhařová

Abstract:

The paper gives the evidence of quality of accounting information of Czech private companies. In general the private companies in the Czech Republic do not see the benefits of providing accounting information of high quality. Based on the research of financial statements of entrepreneurs and companies in Zlin region it was confirmed that the quality of accounting information differs among the private entities and that the major impact on the accounting information quality has the fact if the financial statements are audited as well as the size of the entity. Also the foreign shareholders and lenders have some impact on the accounting information quality.

Keywords: accounting information quality, financial statements, Czech Republic, private companies

Procedia PDF Downloads 282
10931 An Automated Approach to Consolidate Galileo System Availability

Authors: Marie Bieber, Fabrice Cosson, Olivier Schmitt

Abstract:

Europe's Global Navigation Satellite System, Galileo, provides worldwide positioning and navigation services. The satellites in space are only one part of the Galileo system. An extensive ground infrastructure is essential to oversee the satellites and ensure accurate navigation signals. High reliability and availability of the entire Galileo system are crucial to continuously provide positioning information of high quality to users. Outages are tracked, and operational availability is regularly assessed. A highly flexible and adaptive tool has been developed to automate the Galileo system availability analysis. Not only does it enable a quick availability consolidation, but it also provides first steps towards improving the data quality of maintenance tickets used for the analysis. This includes data import and data preparation, with a focus on processing strings used for classification and identifying faulty data. Furthermore, the tool allows to handle a low amount of data, which is a major constraint when the aim is to provide accurate statistics.

Keywords: availability, data quality, system performance, Galileo, aerospace

Procedia PDF Downloads 138
10930 Multiple Approaches for Ultrasonic Cavitation Monitoring of Oxygen-Loaded Nanodroplets

Authors: Simone Galati, Adriano Troia

Abstract:

Ultrasound (US) is widely used in medical field for a variety diagnostic techniques but, in recent years, it has also been creating great interest for therapeutic aims. Regarding drug delivery, the use of US as an activation source provides better spatial delivery confinement and limits the undesired side effects. However, at present there is no complete characterization at a fundamental level of the different signals produced by sono-activated nanocarriers. Therefore, the aim of this study is to obtain a metrological characterization of the cavitation phenomena induced by US through three parallel investigation approaches. US was focused into a channel of a customized phantom in which a solution with oxygen-loaded nanodroplets (OLNDs) was led to flow and the cavitation activity was monitored. Both quantitative and qualitative real-time analysis were performed giving information about the dynamics of bubble formation, oscillation and final implosion with respect to the working acoustic pressure and the type of nanodroplets, compared with pure water. From this analysis a possible interpretation of the observed results is proposed.

Keywords: cavitation, drug delivery, nanodroplets, ultra-sound

Procedia PDF Downloads 89
10929 The Impact of Information and Communication Technology on the Performance of Office Technology Managers

Authors: Sunusi Tijjani

Abstract:

Information and communication technology is an indispensable tool in the performance of office technology managers. Today's offices are automated and equipped with modern office machines that enhances and improve the work of office managers. However, today's office technology managers can process, evaluate, manage and communicate all forms of information using technological devices. Information and Communication Technology is viewed as the process of processing, storing ad dissemination information while office technology managers are trained professional who can effectively operate modern office machines, perform administrative duties and attend meetings to take dawn minute of meetings. This paper examines the importance of information and communication technology toward enhancing the work of office managers. It also stresses the importance of information and communication technology toward proper and accurate record management.

Keywords: communication, information, technology, managers

Procedia PDF Downloads 457
10928 A Communication Signal Recognition Algorithm Based on Holder Coefficient Characteristics

Authors: Hui Zhang, Ye Tian, Fang Ye, Ziming Guo

Abstract:

Communication signal modulation recognition technology is one of the key technologies in the field of modern information warfare. At present, communication signal automatic modulation recognition methods are mainly divided into two major categories. One is the maximum likelihood hypothesis testing method based on decision theory, the other is a statistical pattern recognition method based on feature extraction. Now, the most commonly used is a statistical pattern recognition method, which includes feature extraction and classifier design. With the increasingly complex electromagnetic environment of communications, how to effectively extract the features of various signals at low signal-to-noise ratio (SNR) is a hot topic for scholars in various countries. To solve this problem, this paper proposes a feature extraction algorithm for the communication signal based on the improved Holder cloud feature. And the extreme learning machine (ELM) is used which aims at the problem of the real-time in the modern warfare to classify the extracted features. The algorithm extracts the digital features of the improved cloud model without deterministic information in a low SNR environment, and uses the improved cloud model to obtain more stable Holder cloud features and the performance of the algorithm is improved. This algorithm addresses the problem that a simple feature extraction algorithm based on Holder coefficient feature is difficult to recognize at low SNR, and it also has a better recognition accuracy. The results of simulations show that the approach in this paper still has a good classification result at low SNR, even when the SNR is -15dB, the recognition accuracy still reaches 76%.

Keywords: communication signal, feature extraction, Holder coefficient, improved cloud model

Procedia PDF Downloads 129
10927 Time Estimation of Return to Sports Based on Classification of Health Levels of Anterior Cruciate Ligament Using a Convolutional Neural Network after Reconstruction Surgery

Authors: Zeinab Jafari A., Ali Sharifnezhad B., Mohammad Razi C., Mohammad Haghpanahi D., Arash Maghsoudi

Abstract:

Background and Objective: Sports-related rupture of the anterior cruciate ligament (ACL) and following injuries have been associated with various disorders, such as long-lasting changes in muscle activation patterns in athletes, which might last after ACL reconstruction (ACLR). The rupture of the ACL might result in abnormal patterns of movement execution, extending the treatment period and delaying athletes’ return to sports (RTS). As ACL injury is especially prevalent among athletes, the lengthy treatment process and athletes’ absence from sports are of great concern to athletes and coaches. Thus, estimating safe time of RTS is of crucial importance. Therefore, using a deep neural network (DNN) to classify the health levels of ACL in injured athletes, this study aimed to estimate the safe time for athletes to return to competitions. Methods: Ten athletes with ACLR and fourteen healthy controls participated in this study. Three health levels of ACL were defined: healthy, six-month post-ACLR surgery and nine-month post-ACLR surgery. Athletes with ACLR were tested six and nine months after the ACLR surgery. During the course of this study, surface electromyography (sEMG) signals were recorded from five knee muscles, namely Rectus Femoris (RF), Vastus Lateralis (VL), Vastus Medialis (VM), Biceps Femoris (BF), Semitendinosus (ST), during single-leg drop landing (SLDL) and forward hopping (SLFH) tasks. The Pseudo-Wigner-Ville distribution (PWVD) was used to produce three-dimensional (3-D) images of the energy distribution patterns of sEMG signals. Then, these 3-D images were converted to two-dimensional (2-D) images implementing the heat mapping technique, which were then fed to a deep convolutional neural network (DCNN). Results: In this study, we estimated the safe time of RTS by designing a DCNN classifier with an accuracy of 90 %, which could classify ACL into three health levels. Discussion: The findings of this study demonstrate the potential of the DCNN classification technique using sEMG signals in estimating RTS time, which will assist in evaluating the recovery process of ACLR in athletes.

Keywords: anterior cruciate ligament reconstruction, return to sports, surface electromyography, deep convolutional neural network

Procedia PDF Downloads 54
10926 Impact of Integrated Signals for Doing Human Activity Recognition Using Deep Learning Models

Authors: Milagros Jaén-Vargas, Javier García Martínez, Karla Miriam Reyes Leiva, María Fernanda Trujillo-Guerrero, Francisco Fernandes, Sérgio Barroso Gonçalves, Miguel Tavares Silva, Daniel Simões Lopes, José Javier Serrano Olmedo

Abstract:

Human Activity Recognition (HAR) is having a growing impact in creating new applications and is responsible for emerging new technologies. Also, the use of wearable sensors is an important key to exploring the human body's behavior when performing activities. Hence, the use of these dispositive is less invasive and the person is more comfortable. In this study, a database that includes three activities is used. The activities were acquired from inertial measurement unit sensors (IMU) and motion capture systems (MOCAP). The main objective is differentiating the performance from four Deep Learning (DL) models: Deep Neural Network (DNN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and hybrid model Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM), when considering acceleration, velocity and position and evaluate if integrating the IMU acceleration to obtain velocity and position represent an increment in performance when it works as input to the DL models. Moreover, compared with the same type of data provided by the MOCAP system. Despite the acceleration data is cleaned when integrating, results show a minimal increase in accuracy for the integrated signals.

Keywords: HAR, IMU, MOCAP, acceleration, velocity, position, feature maps

Procedia PDF Downloads 76
10925 Human Identification Using Local Roughness Patterns in Heartbeat Signal

Authors: Md. Khayrul Bashar, Md. Saiful Islam, Kimiko Yamashita, Yano Midori

Abstract:

Despite having some progress in human authentication, conventional biometrics (e.g., facial features, fingerprints, retinal scans, gait, voice patterns) are not robust against falsification because they are neither confidential nor secret to an individual. As a non-invasive tool, electrocardiogram (ECG) has recently shown a great potential in human recognition due to its unique rhythms characterizing the variability of human heart structures (chest geometry, sizes, and positions). Moreover, ECG has a real-time vitality characteristic that signifies the live signs, which ensure legitimate individual to be identified. However, the detection accuracy of the current ECG-based methods is not sufficient due to a high variability of the individual’s heartbeats at a different instance of time. These variations may occur due to muscle flexure, the change of mental or emotional states, and the change of sensor positions or long-term baseline shift during the recording of ECG signal. In this study, a new method is proposed for human identification, which is based on the extraction of the local roughness of ECG heartbeat signals. First ECG signal is preprocessed using a second order band-pass Butterworth filter having cut-off frequencies of 0.00025 and 0.04. A number of local binary patterns are then extracted by applying a moving neighborhood window along the ECG signal. At each instant of the ECG signal, the pattern is formed by comparing the ECG intensities at neighboring time points with the central intensity in the moving window. Then, binary weights are multiplied with the pattern to come up with the local roughness description of the signal. Finally, histograms are constructed that describe the heartbeat signals of individual subjects in the database. One advantage of the proposed feature is that it does not depend on the accuracy of detecting QRS complex, unlike the conventional methods. Supervised recognition methods are then designed using minimum distance to mean and Bayesian classifiers to identify authentic human subjects. An experiment with sixty (60) ECG signals from sixty adult subjects from National Metrology Institute of Germany (NMIG) - PTB database, showed that the proposed new method is promising compared to a conventional interval and amplitude feature-based method.

Keywords: human identification, ECG biometrics, local roughness patterns, supervised classification

Procedia PDF Downloads 383
10924 Isolation and Structural Elucidation of 20 Hydroxyecdystone from Vitex doniana Sweet Stem Bark

Authors: Mustapha A. Tijjani, Fanna I. Abdulrahman, Irfan Z. Khan, Umar K. Sandabe, Cong Li

Abstract:

Air dried sample V. doniana after collection and identification was extracted with ethanol and further partition with chloroform, ethyl acetate and n-butanol. Ethanolic extract (11.9g) was fractionated on a silica gel accelerated column chromatography using solvents such as n-hexane, ethyl acetate and methanol. Each eluent fractions (150ml aliquots) were collected and monitored with thin layer chromatography. Fractions with similar Rf values from same solvents system were pooled together. Phytochemical test of all the fractions were performed using standard procedure. Complete elution yielded 48 fractions (150ml/fraction) which were pooled to 24 fractions base on the Rf values. It was further recombined and 12 fractions were obtained on the basis on Rf values and coded Vd1 to Vd12 fractions. Vd8 was further eluted with ethylacetate and methanol and gave fourteen sub fractions Vd8-a, -Vd8-m. Fraction Vd8-a (56mg) gave a white crystal compound coded V1. It was further checked on TLC and observed under ultraviolet lamp and was found to give a single spot. The Rf values were calculated to be 0.433. The melting point was determined using Gallenkamp capillary melting point apparatus and found to be 241-243°C uncorrected. Characterization of the isolated compound coded V1 was done using FT-infra-red spectroscopy, HNMR, 13CNMR(1and 2D) and HRESI-MS. The IR spectrum of compound V1 shows prominent peaks that corresponds to OHstr (3365cm-1) and C=0 (1652cm-1) etc. This spectrum suggests that among the functional moiety in compound V1 are the carbonyl and hydroxyl group. The 1H NMR (400 MHz) spectrum of compound V1 in DMSO-d6 displayed five singlet signals at δ 0.72 (3H, s, H-18), 0.79 (3H, s, H-19), 1.03 (3H, s, H-21), 1.04 (3H, s, H-26), 1.06 (3H, s, H-27) each integrating for three protons indicating the five methyl functional groups present in the compound. It further showed a broad singlet at δ 5.58 integrated for 1 H due to an olefinic H-atom adjacent to the carbonyl carbon atom. Three signals at δ 3.10 (d, J = 9.0 Hz, H-22), 3.59 (m, 1H, 2H-a) and 3.72 (m, 1H, 3H-e), each integrating for one proton is due to oxymethine protons indicating that three oxymethine H-atoms are present in the compound. These all signals are characteristic to the ecdysteroid skeletons. The 13C-NMR spectrum showed the presence of 27 carbon atoms, suggesting that may be steroid skeleton. The DEPT-135 experiment showed the presence of five CH3, eight CH2, and seven CH groups, and seven quaternary C-atoms. The molecular formula was established as C27H44O7 by high resolution electron spray ionization-mass spectroscopy (HRESI-MS) positive ion mode m/z 481.3179. The signals in mass spectrum are 463, 445, and 427 peaks corresponding to losses of one, two, three, or four water molecules characteristic for ecdysterone skeleton reported in the literature. Based on the spectral analysis (HNMR, 13CNMR, DEPT, HMQC, IR, HRESI-MS) the compound V1 is thus concluded to have ecdysteriod skeleton and conclusively conforms with 2β, 3β 14α, 20R, 22R, 25-hexahydroxy-5 β cholest-7-ene-6- one, or 2, 3, 14, 20, 22, 25 hexahydroxy cholest-7-ene-6-one commonly known as 20-hydroxyecdysone.

Keywords: vitex, phytochemical, purification, isolation, chromatography, spectroscopy

Procedia PDF Downloads 333