Search results for: impedance matching
340 The Increasing Trend in Research Among Orthopedic Residency Applicants is Significant to Matching: A Retrospective Analysis
Authors: Nickolas A. Stewart, Donald C. Hefelfinger, Garrett V. Brittain, Timothy C. Frommeyer, Adrienne Stolfi
Abstract:
Orthopedic surgery is currently considered one of the most competitive specialties that medical students can apply to for residency training. As evidenced by increasing United States Medical Licensing Examination (USMLE) scores, overall grades, and publication, presentation, and abstract numbers, this specialty is getting increasingly competitive. The recent change of USMLE Step 1 scores to pass/fail has resulted in additional challenges for medical students planning to apply for orthopedic residency. Until now, these scores have been a tool used by residency programs to screen applicants as an initial factor to determine the strength of their application. With USMLE STEP 1 converting to a pass/fail grading criterion, the question remains as to what will take its place on the ERAS application. The primary objective of this study is to determine the trends in the number of research projects, abstracts, presentations, and publications among orthopedic residency applicants. Secondly, this study seeks to determine if there is a relationship between the number of research projects, abstracts, presentations, and publications, and match rates. The researchers utilized the National Resident Matching Program's Charting Outcomes in the Match between 2007 and 2022 to identify mean publications and research project numbers by allopathic and osteopathic US orthopedic surgery senior applicants. A paired t test was performed between the mean number of publications and research projects by matched and unmatched applicants. Additionally, simple linear regressions within matched and unmatched applicants were used to determine the association between year and number of abstracts, presentations, and publications, and a number of research projects. For determining whether the increase in the number of abstracts, presentations, and publications, and a number of research projects is significantly different between matched and unmatched applicants, an analysis of covariance is used with an interaction term added to the model, which represents the test for the difference between the slopes of each group. The data shows that from 2007 to 2022, the average number of research publications increased from 3 to 16.5 for matched orthopedic surgery applicants. The paired t-test had a significant p-value of 0.006 for the number of research publications between matched and unmatched applicants. In conclusion, the average number of publications for orthopedic surgery applicants has significantly increased for matched and unmatched applicants from 2007 to 2022. Moreover, this increase has accelerated in recent years, as evidenced by an increase of only 1.5 publications from 2007 to 2001 versus 5.0 publications from 2018 to 2022. The number of abstracts, presentations, and publications is a significant factor regarding an applicant's likelihood to successfully match into an orthopedic residency program. With USMLE Step 1 being converted to pass/fail, the researchers expect students and program directors will place increased importance on additional factors that can help them stand out. This study demonstrates that research will be a primary component in stratifying future orthopedic surgery applicants. In addition, this suggests the average number of research publications will continue to accelerate. Further study is required to determine whether this growth is sustainable.Keywords: publications, orthopedic surgery, research, residency applications
Procedia PDF Downloads 131339 Theoretical and Experimental Electrostatic Potential around the M-Nitrophenol Compound
Authors: Drissi Mokhtaria, Chouaih Abdelkader, Fodil Hamzaoui
Abstract:
Our work is about a comparison of experimental and theoretical results of the electron charge density distribution and the electrostatic potential around the M-Nitrophenol Molecule (m-NPH) kwon for its interesting physical characteristics. The molecular experimental results have been obtained from a high-resolution X-ray diffraction study. Theoretical investigations were performed under the Gaussian program using the Density Functional Theory at B3LYP level of theory at 6-31G*. The multipolar model of Hansen and Coppens was used for the experimental electron charge density distribution around the molecule, while we used the DFT methods for the theoretical calculations. The electron charge density obtained in both methods allowed us to find out the different molecular properties such us the electrostatic potential and the dipole moment which were finally subject to a comparison leading to an outcome of a good matching results obtained in both methods.Keywords: electron charge density, m-nitrophenol, nonlinear optical compound, electrostatic potential, optimized geometric
Procedia PDF Downloads 268338 Modified Step Size Patch Array Antenna for UWB Wireless Applications
Authors: Hamid Aslani, Ahmed Radwan
Abstract:
In this paper, a single element microstrip antenna is presented for UWB applications by using techniques as partial ground plane and modified the shape of the patch. The antenna is properly designed to have a compact size and constant gain against frequency. The simulated results have done using two EM software and show good agreement with the measured results for the fabricated antenna. Then a designing of two elements patch antenna array for UWB in the frequency band of 3.1-10 GHz is presented in this paper. The array is constructed by means of feeding two omni-directional modified circular patch elements with a modified power divider. Experimental results show that the array has a stable radiation pattern and low return loss over a broad bandwidth of 64% (3.1–10 GHz). Due to its planar profile, physically compact size, wide impedance bandwidth, directive performance over a wide bandwidth proposed antenna is a good candidate for portable UWB applications and other UWB integrated circuits.Keywords: ultra wide band, radiation performance, microstrip antenna, size miniaturized antenna
Procedia PDF Downloads 258337 The Effect of Fly Ash and Natural Pozzolans on the Quality of Passive Oxide Film Developed on Steel Reinforcement Bars
Authors: M.S. Ashraf, Raja Rizwan Hussain, A. M. Alhozaimy
Abstract:
The effect of supplementary cementitious materials (SCMs) with concrete pore solution on the protective properties of the oxide films that form on reinforcing steel bars has been experimentally investigated using electrochemical impedance spectroscopy (EIS) and Tafel Scan. The tests were conducted on oxide films grown in saturated calcium hydroxide solutions that included different representative amounts of NaOH and KOH. In addition to that, commonly used supplementary cementitious materials (natural pozzolan and fly ash) were also added. The results of electrochemical tests show that supplementary cementitious materials do have an effect on the protective properties of the passive oxide film. In particular, natural pozzolans has been shown to have a highly positive influence on the film quality. Fly ash also increases the protective qualities of the passive film.Keywords: supplementary cementitious materials (SCMs), passive film, EIS, Tafel scan, rebar, concrete, simulated concrete pore solution (SPS)
Procedia PDF Downloads 444336 Synthesis and Electrochemical Characterization of a Copolymer (PANI/PEDOT:PSS) for Application in Supercapacitors
Authors: Naima Boudieb, Mohamed Loucif Seaid, Imad Rati, Imane Benammane
Abstract:
The aim of this study is to synthesis of a copolymer PANI/PEDOT:PSS by electrochemical means to apply in supercapacitors. Polyaniline (PANI) is a conductive polymer; it was synthesized by electrochemical polymerization. It exhibits very stable properties in different environments, whereas PEDOT:PSS is a conductive polymer based on poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(styrene sulfonate)(PSS). It is commonly used with polyaniline to improve its electrical conductivity. Several physicochemical and electrochemical techniques were used for the characterization of PANI/PEDOT:PSS: cyclic voltammetry (VC), electrochemical impedance spectroscopy (EIS), open circuit potential, SEM, X-ray diffraction, etc. The results showed that the PANI/PEDOT:PSS composite is a promising material for supercapacitors due to its high electrical conductivity and high porosity. Electrochemical and physicochemical characterization tests have shown that the composite has high electrical and structural performances, making it a material of choice for high-performance energy storage applications.Keywords: energy storage, supercapacitors, SIE, VC, PANI, poly(3, 4-ethylenedioxythiophene, PEDOT, polystyrene sulfonate
Procedia PDF Downloads 63335 Combining Instance-Based and Reasoning-Based Approaches for Ontology Matching
Authors: Abderrahmane Khiat, Moussa Benaissa
Abstract:
Due to the increasing number of sources of information available on the web and their distribution and heterogeneity, ontology alignment became a very important and inevitable problem to ensure semantic interoperability. Instance-based ontology alignment is based on the comparison of the extensions of concepts; and represents a very promising technique to find semantic correspondences between entities of different ontologies. In practice, two situations may arise: ontologies that share many common instances and ontologies that share few or do not share common instances. In this paper, we describe an approach to manage the latter case. This approach exploits the reasoning on ontologies in order to create a corpus of common instances. We show that it is theoretically powerful because it is based on description logics and very useful in practice. We present the experimental results obtained by running our approach on ontologies of OAEI 2012 benchmark test. The results show the performance of our approach.Keywords: description logic inference, instance-based ontology alignment, semantic interoperability, semantic web
Procedia PDF Downloads 447334 Wideband Planar Antenna Based on Composite Right/Left-Handed Transmission-Line (CRLH-TL) for Operation across UHF/L/S-Bands
Authors: Mohammad Alibakhshikenari, Ernesto Limiti, Bal S. Virdee
Abstract:
The paper presents a miniature wideband antenna using composite right/left-handed transmission-line (CRLH-TL) metamaterial. The proposed planar antenna has a fractional bandwidth of 100% and is designed to operate in several frequency bands from 800MHz to 2.40GHz. The antenna is constructed using just two CRLH-TL unit cells comprising of two T-shaped slots that are inverted. The slots contribute towards generating the series left-handed (LH) capacitance CL. The rectangular patch on which the slots are created is grounded with spiral shaped high impedance stubs that contribute towards LH inductance LL. The antenna has a size of 14×6×1.6mm3 (0.037λ0×0.016λ0× 0.004λ0, where λ0 is free space wavelength at 800MHz). The peak gain and efficiency of the antenna are 1.5 dBi and ~75%, respectively, at 1.6GHz. Proposed antenna is suitable for use in wireless systems working at UHF/L/S-bands, in particular, AMPS, GSM, WCDMA, UMTS, PCS, cellular, DCS, IMT-2000, JCDMA, KPCS, GPS, lower band of WiMAX.Keywords: miniature antenna, composite right/left-handed transmission line (CRLH-TL), wideband antenna, communication transceiver, metamaterials
Procedia PDF Downloads 217333 Design of S-Shape GPS Application Electrically Small Antenna
Authors: Riki H. Patel, Arpan Desai, Trushit Upadhyaya, Shobhit K. Patel
Abstract:
The micro strip antennas area has seen some inventive work in recent years and is now one of the most dynamic fields of antenna theory. A novel and simple printed wideband monopole antenna is presented. Printed on a single dielectric substrate and easily fed by using a 50 ohm microstip line, low-profile antenna structure with two parallel S-shaped meandered line of same size. In this research, S–form micro strip patch antenna is designed from measuring the prototypes of the proposed antenna one available bands with 10db return loss bandwidths of about GPS application (GPS L2 1490 MHz) and covering the 1400 to 1580 MHz frequency band at 1.5 GHz The simulated results for main parameters such as return loss, impedance bandwidth, radiation patterns and gains are also discussed herein. The modeling study shows that such antennas, in simplicity design and supply, and can satisfy GPS application. Two parallel slots are incorporated to disturb the surface flow path, introducing local inductive effect. This antenna is fed by a coaxial feeding tube.Keywords: bandwidth, electrically small antenna, microstrip, patch antenna, GPS
Procedia PDF Downloads 495332 Synthesis and Characterization of Polypyrrole-Coated Non-Conducting Cellulosic Substrate and Modified by Copper Oxide
Authors: A. Hamam, D. Oukil, A. Dib, L. Makhloufi
Abstract:
The aim of this work is to synthesize modified Polypyrrole films (PPy) containing nanoparticles of copper oxides onto a non conducting cellulosic substrate. Firstly, the chemical polymerization of polypyrrole onto cellulosic substrate is carried out using FeCl3 as an oxidant and Pyrrole as monomer. Different parameters were optimized (monomer concentration, duration of the experiment, nature of supporting electrolyte, temperature, etc.) in order to obtain films with different thickness and different morphologies. Thickness and topography of different PPy deposits were estimated by a profilometer apparatus. The electrochemical reactivity of the obtained electrodes were tested by cyclic voltammetry technique (CV) and electrochemical impedance spectroscopy (EIS). Secondly, the modification of the PPy film surface by incorporation of copper oxide nanonoparticles is conducted by applying a galvanostatic procedure from CuCl2 solution. Surface characterization has been carried out using scanning microscope (SEM) coupled with energy dispersive X-ray analysis (EDX), Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The analysis showed the presence of the copper oxide nanoparticles (CuO) in the polymer films with dimensions less than 50 nm.Keywords: polypyrrole, modified electrode, cellulosic substrate, copper oxide
Procedia PDF Downloads 450331 Graphene/h-BN Heterostructure Interconnects
Authors: Nikhil Jain, Yang Xu, Bin Yu
Abstract:
The material behavior of graphene, a single layer of carbon lattice, is extremely sensitive to its dielectric environment. We demonstrate improvement in electronic performance of graphene nanowire interconnects with full encapsulation by lattice-matching, chemically inert, 2D layered insulator hexagonal boron nitride (h- BN). A novel layer-based transfer technique is developed to construct the h-BN/MLG/h-BN heterostructures. The encapsulated graphene wires are characterized and compared with that on SiO2 or h-BN substrate without passivating h-BN layer. Significant improvements in maximum current-carrying density, breakdown threshold, and power density in encapsulated graphene wires are observed. These critical improvements are achieved without compromising the carrier transport characteristics in graphene. Furthermore, graphene wires exhibit electrical behavior less insensitive to ambient conditions, as compared with the non-passivated ones. Overall, h-BN/graphene/h- BN heterostructure presents a robust material platform towards the implementation of high-speed carbon-based interconnects.Keywords: two-dimensional nanosheet, graphene, hexagonal boron nitride, heterostructure, interconnects
Procedia PDF Downloads 316330 Digital Transformation, Financing Microstructures, and Impact on Well-Being and Income Inequality
Authors: Koffi Sodokin
Abstract:
Financing microstructures are increasingly seen as a means of financial inclusion and improving overall well-being in developing countries. In practice, digital transformation in finance can accelerate the optimal functioning of financing microstructures, such as access by households to microfinance and microinsurance. Large households' access to finance can lead to a reduction in income inequality and an overall improvement in well-being. This paper explores the impact of access to digital finance and financing microstructures on household well-being and the reduction of income inequality. To this end, we use the propensity score matching, the double difference, and the smooth instrumental quantile regression as estimation methods with two periods of survey data. The paper uses the FinScope consumer data (2016) and the Harmonized Living Standards Measurement Study (2018) from Togo in a comparative perspective. The results indicate that access to digital finance, as a cultural game changer, and to financing microstructures improves overall household well-being and contributes significantly to reducing income inequality.Keywords: financing microstructure, microinsurance, microfinance, digital finance, well-being, income inequality
Procedia PDF Downloads 89329 Key Competences in Economics and Business Field: The Employers’ Side of the Story
Authors: Bruno Škrinjarić
Abstract:
Rapid technological developments and increase in organizations’ interdependence on international scale are changing the traditional workplace paradigm. A key feature of knowledge based economy is that employers are looking for individuals that possess both specific academic skills and knowledge, and also capability to be proactive and respond to problems creatively and autonomously. The focus of this paper is workers with Economics and Business background and its goals are threefold: (1) to explore wide range of competences and identify which are the most important to employers; (2) to investigate the existence and magnitude of gap between required and possessed level of a certain competency; and (3) to inquire how this gap is connected with performance of a company. A study was conducted on a representative sample of Croatian enterprises during the spring of 2016. Results show that generic, rather than specific, competences are more important to employers and the gap between the relative importance of certain competence and its current representation in existing workforce is greater for generic competences than for specific. Finally, results do not support the hypothesis that this gap is correlated with firms’ performance.Keywords: competency gap, competency matching, key competences, firm performance
Procedia PDF Downloads 333328 MIL-88b(Fe)-MOF Grafted Carbon Dot Nanocomposites as Effective Photocatalysts for Fenton-Like Photodegradation of Amphotericin B and Naproxen Under Visible Light Irradiation
Authors: Payam Hayati, Fateme Firoozbakht, Gholamhassan Azimi, Shahram Tangestaninejad
Abstract:
The synthesis of a photocatalytic adsorbent involved the integration of carbon dots (CD) into a metal-organic framework (MOF) of MIL-88B(Fe) using the solvothermal technique. Characterization of the resulting CD@MIL-88B(Fe) was conducted using various analytical methods, including X-ray-based microscopic and spectroscopic techniques, electrochemical impedance spectroscopy, UV–Vis, FT-IR, DRS, TGA, and photoluminescence (PL) analysis. The adsorbent demonstrated significant photocatalytic activity, achieving up to 92% and 90% removal of amphotericin B (AmB) and naproxen (Nap) from aqueous solutions under visible light, with an RSD value of around 5%. The study explored the factors influencing the degradation of pharmaceuticals and determined the optimal conditions for the process, including pH values of 3 and 4 for AmB and Nap, a photocatalyst concentration of 0.2 g L-1, and an H2O2 concentration ranging from 40 to 50 mM. Reactive oxidative species such as ⋅OH and ⋅O2 were identified through the examination of different scavengers. Additionally, the adsorption isotherm and kinetic studies revealed that the synthesized photocatalyst functions as an effective adsorbent, with maximum adsorption capacities of 42.5 and 121.5 mg g-1 for AmB and Nap, while also serving as a photocatalytic agent for removal purposes.Keywords: fenton-like degradation, metal-organic frameworks, heterogenous photocatalysts, naproxen
Procedia PDF Downloads 76327 Optimized Processing of Neural Sensory Information with Unwanted Artifacts
Authors: John Lachapelle
Abstract:
Introduction: Neural stimulation is increasingly targeted toward treatment of back pain, PTSD, Parkinson’s disease, and for sensory perception. Sensory recording during stimulation is important in order to examine neural response to stimulation. Most neural amplifiers (headstages) focus on noise efficiency factor (NEF). Conversely, neural headstages need to handle artifacts from several sources including power lines, movement (EMG), and neural stimulation itself. In this work a layered approach to artifact rejection is used to reduce corruption of the neural ENG signal by 60dBv, resulting in recovery of sensory signals in rats and primates that would previously not be possible. Methods: The approach combines analog techniques to reduce and handle unwanted signal amplitudes. The methods include optimized (1) sensory electrode placement, (2) amplifier configuration, and (3) artifact blanking when necessary. The techniques together are like concentric moats protecting a castle; only the wanted neural signal can penetrate. There are two conditions in which the headstage operates: unwanted artifact < 50mV, linear operation, and artifact > 50mV, fast-settle gain reduction signal limiting (covered in more detail in a separate paper). Unwanted Signals at the headstage input: Consider: (a) EMG signals are by nature < 10mV. (b) 60 Hz power line signals may be > 50mV with poor electrode cable conditions; with careful routing much of the signal is common to both reference and active electrode and rejected in the differential amplifier with <50mV remaining. (c) An unwanted (to the neural recorder) stimulation signal is attenuated from stimulation to sensory electrode. The voltage seen at the sensory electrode can be modeled Φ_m=I_o/4πσr. For a 1 mA stimulation signal, with 1 cm spacing between electrodes, the signal is <20mV at the headstage. Headstage ASIC design: The front end ASIC design is designed to produce < 1% THD at 50mV input; 50 times higher than typical headstage ASICs, with no increase in noise floor. This requires careful balance of amplifier stages in the headstage ASIC, as well as consideration of the electrodes effect on noise. The ASIC is designed to allow extremely small signal extraction on low impedance (< 10kohm) electrodes with configuration of the headstage ASIC noise floor to < 700nV/rt-Hz. Smaller high impedance electrodes (> 100kohm) are typically located closer to neural sources and transduce higher amplitude signals (> 10uV); the ASIC low-power mode conserves power with 2uV/rt-Hz noise. Findings: The enhanced neural processing ASIC has been compared with a commercial neural recording amplifier IC. Chronically implanted primates at MGH demonstrated the presence of commercial neural amplifier saturation as a result of large environmental artifacts. The enhanced artifact suppression headstage ASIC, in the same setup, was able to recover and process the wanted neural signal separately from the suppressed unwanted artifacts. Separately, the enhanced artifact suppression headstage ASIC was able to separate sensory neural signals from unwanted artifacts in mouse-implanted peripheral intrafascicular electrodes. Conclusion: Optimizing headstage ASICs allow observation of neural signals in the presence of large artifacts that will be present in real-life implanted applications, and are targeted toward human implantation in the DARPA HAPTIX program.Keywords: ASIC, biosensors, biomedical signal processing, biomedical sensors
Procedia PDF Downloads 330326 Allura Red, Sunset Yellow and Amaranth Azo Dyes for Corrosion Inhibition of Mild Steel in 0.5 H₂SO₄ Solutions
Authors: Ashish Kumar Singh, Preeti Tiwari, Shubham Srivastava, Rajiv Prakash, Herman Terryn, Gopal Ji
Abstract:
Corrosion inhibition potential of azo dyes namely Allura red (AR), Sunset Yellow (SY) and Amaranth (AN) have been investigated in 0.5 M H2SO4 solutions by electrochemical impedance spectroscopy (EIS), Tafel polarization curves, linear polarization curves, open circuit potential (ocp) curves, UV-Visible spectroscopy, Fourier Transform Infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) techniques. Amaranth dye is found to provide highest corrosion inhibition (90 %) against mild steel corrosion in sulfuric acid solutions among all the tested dyes; while SY and AR dye shows 80% and 78% corrosion inhibition efficiency respectively. The electrochemical measurements and surface morphology analysis reveal that molecular adsorption of dyes at metal acid interface is accountable for inhibition of mild steel corrosion in H2SO4 solutions. The adsorption behavior of dyes has been investigated by various isotherms models, which verifies that it is in accordance with Langmuir isotherm.Keywords: mild steel, Azo dye, EIS, Langmuir isotherm
Procedia PDF Downloads 375325 Enhancing Human Mobility Exoskeleton Comfort Using Admittance Controller
Authors: Alexandre Rabaseda, Emelie Seguin, Marc Doumit
Abstract:
Human mobility exoskeletons have been in development for several years and are becoming increasingly efficient. Unfortunately, user comfort was not always a priority design criterion throughout their development. To further improve this technology, exoskeletons should operate and deliver assistance without causing discomfort to the user. For this, improvements are necessary from an ergonomic point of view. The device’s control method is important when endeavoring to enhance user comfort. Exoskeleton or rehabilitation device controllers use methods of control called interaction controls (admittance and impedance controls). This paper proposes an extended version of an admittance controller to enhance user comfort. The control method used consists of adding an inner loop that is controlled by a proportional-integral-derivative (PID) controller. This allows the interaction force to be kept as close as possible to the desired force trajectory. The force-tracking admittance controller modifies the actuation force of the system in order to follow both the desired motion trajectory and the desired relative force between the user and the exoskeleton.Keywords: mobility assistive device, exoskeleton, force-tracking admittance controller, user comfort
Procedia PDF Downloads 156324 Simulation and Analysis of Different Parameters in Hydraulic Circuit Due to Leakage
Abstract:
Leakage is the main gradual failure in the fluid power system, which is usually caused by the impurity in the oil and wear of matching surfaces between parts and lead to the change of the gap value. When leakage occurs in the system, the oil will flow from the high pressure chamber into the low pressure chamber through the gap, causing the reduction of system flow as well as the loss of system pressure, resulting in the decreasing of system efficiency. In the fluid power system, internal leakage may occur in various components such as gear pump, reversing valve and hydraulic cylinder, and affect the system work performance. Therefore, component leakage in the fluid power system is selected as the study to characterize the leakage and the effect of leakage on the system. Effect of leakage on system pressure and cylinder displacement can be obtained using pressure sensors and the displacement sensor. The leakage can be varied by changing the orifice using a flow control valve. Hydraulic circuit for leakage will be developed in Matlab/Simulink environment and simulations will be done by changing different parameters.Keywords: leakage causes, effect, analysis, MATLAB simulation, hydraulic circuit
Procedia PDF Downloads 399323 Green Synthesized Palladium Loaded Titanium Nanotube Arrays for Simultaneous Azo-Dye Degradation and Hydrogen Production
Authors: Yen-Ping Peng, Ku-Fan Chen, Ken-Lin Chang, Jian Sun
Abstract:
In this study, palladium loaded titanium dioxide nanotube arrays (Pd/TNAs) was successfully synthesized by anodic oxidation etching method combined with microwave hydrothermal method, using tea or coffee as a green reductant. Pd/TNAs was employed as an electrode in a photoelectrochemcial (PEC) system to simultaneously remove azo-dye and to generate hydrogen in the anodic and cathodic chamber, respectively. The chemical and physical properties of as-synthesized Pd/TNAs were characterized by scanning electron microscopy (SEM), ultraviolet–visible spectroscopy (UV-vis), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). SEM image indicates the diameter and the length of Pd/TNAs were approximately 300 nm and 2.5 μm, respectively. XPS analyses indicate that 1.13% (atomic %) of Pd was loaded onto the surface of TNAs. UV-vis results show that the band gap of TNAs was reduced from 3.2 eV to 2.37 eV after Pd loading. In addition, the electrochemical performances of Pd/TNAs were investigated by photocurrent density test and electrochemical impedance spectroscopy (EIS). The photocurrent (4.0 mA/cm²) of Pd /TNAs was higher than that of the uncoated TNAs (1.4 mA/cm²) at a bias potential of 1 V (vs. Ag/AgCl), indicating that Pd/TNAs-C can effectively separate photogenerated electrons and holes. The mechanism of our PEC system was proposed and discussed in detail in this study.Keywords: Pd/TNAs, photoelectrochemical, azo-dye degradation, hydrogen generation
Procedia PDF Downloads 422322 Two-Dimensional Nanostack Based On Chip Wiring
Authors: Nikhil Jain, Bin Yu
Abstract:
The material behavior of graphene, a single layer of carbon lattice, is extremely sensitive to its dielectric environment. We demonstrate improvement in electronic performance of graphene nanowire interconnects with full encapsulation by lattice-matching, chemically inert, 2D layered insulator hexagonal boron nitride (h-BN). A novel layer-based transfer technique is developed to construct the h-BN/MLG/h-BN heterostructures. The encapsulated graphene wires are characterized and compared with that on SiO2 or h-BN substrate without passivating h-BN layer. Significant improvements in maximum current-carrying density, breakdown threshold, and power density in encapsulated graphene wires are observed. These critical improvements are achieved without compromising the carrier transport characteristics in graphene. Furthermore, graphene wires exhibit electrical behavior less insensitive to ambient conditions, as compared with the non-passivated ones. Overall, h-BN/graphene/h-BN heterostructure presents a robust material platform towards the implementation of high-speed carbon-based interconnects.Keywords: two-dimensional nanosheet, graphene, hexagonal boron nitride, heterostructure, interconnects
Procedia PDF Downloads 453321 Sensitivity of the Estimated Output Energy of the Induction Motor to both the Asymmetry Supply Voltage and the Machine Parameters
Authors: Eyhab El-Kharashi, Maher El-Dessouki
Abstract:
The paper is dedicated to precise assessment of the induction motor output energy during the unbalanced operation. Since many years ago and until now the voltage complex unbalance factor (CVUF) is used only to assess the output energy of the induction motor while this output energy for asymmetry supply voltage does not depend on the value of unbalanced voltage only but also on the machine parameters. The paper illustrates the variation of the two unbalance factors, complex voltage unbalance factor (CVUF) and impedance unbalance factor (IUF), with positive sequence voltage component, reveals that degree and manner of unbalance in supply voltage. From this point of view the paper delineates the current unbalance factor (CUF) to exactly reflect the output energy during unbalanced operation. The paper proceeds to illustrate the importance of using this factor in the multi-machine system to precise prediction of the output energy during the unbalanced operation. The use of the proposed unbalance factor (CUF) avoids the accumulation of the error due to more than one machine in the system which is expected if only the complex voltage unbalance factor (CVUF) is used.Keywords: induction motor, electromagnetic torque, voltage unbalance, energy conversion
Procedia PDF Downloads 557320 Spherical Harmonic Based Monostatic Anisotropic Point Scatterer Model for RADAR Applications
Authors: Eric Huang, Coleman DeLude, Justin Romberg, Saibal Mukhopadhyay, Madhavan Swaminathan
Abstract:
High performance computing (HPC) based emulators can be used to model the scattering from multiple stationary and moving targets for RADAR applications. These emulators rely on the RADAR Cross Section (RCS) of the targets being available in complex scenarios. Representing the RCS using tables generated from electromagnetic (EM) simulations is often times cumbersome leading to large storage requirement. This paper proposed a spherical harmonic based anisotropic scatterer model to represent the RCS of complex targets. The problem of finding the locations and reflection profiles of all scatterers can be formulated as a linear least square problem with a special sparsity constraint. This paper solves this problem using a modified Orthogonal Matching Pursuit algorithm. The results show that the spherical harmonic based scatterer model can effectively represent the RCS data of complex targets.Keywords: RADAR, RCS, high performance computing, point scatterer model
Procedia PDF Downloads 191319 Development of Innovative Islamic Web Applications
Authors: Farrukh Shahzad
Abstract:
The rich Islamic resources related to religious text, Islamic sciences, and history are widely available in print and in electronic format online. However, most of these works are only available in Arabic language. In this research, an attempt is made to utilize these resources to create interactive web applications in Arabic, English and other languages. The system utilizes the Pattern Recognition, Knowledge Management, Data Mining, Information Retrieval and Management, Indexing, storage and data-analysis techniques to parse, store, convert and manage the information from authentic Arabic resources. These interactive web Apps provide smart multi-lingual search, tree based search, on-demand information matching and linking. In this paper, we provide details of application architecture, design, implementation and technologies employed. We also presented the summary of web applications already developed. We have also included some screen shots from the corresponding web sites. These web applications provide an Innovative On-line Learning Systems (eLearning and computer based education).Keywords: Islamic resources, Muslim scholars, hadith, narrators, history, fiqh
Procedia PDF Downloads 283318 Post-Earthquake Damage Detection Using System Identification with a Pair of Seismic Recordings
Authors: Lotfi O. Gargab, Ruichong R. Zhang
Abstract:
A wave-based framework is presented for modeling seismic motion in multistory buildings and using measured response for system identification which can be utilized to extract important information regarding structure integrity. With one pair of building response at two locations, a generalized model response is formulated based on wave propagation features and expressed as frequency and time response functions denoted, respectively, as GFRF and GIRF. In particular, GIRF is fundamental in tracking arrival times of impulsive wave motion initiated at response level which is dependent on local model properties. Matching model and measured-structure responses can help in identifying model parameters and infer building properties. To show the effectiveness of this approach, the Millikan Library in Pasadena, California is identified with recordings of the Yorba Linda earthquake of September 3, 2002.Keywords: system identification, continuous-discrete mass modeling, damage detection, post-earthquake
Procedia PDF Downloads 369317 Seismic Behavior of Steel Moment-Resisting Frames for Uplift Permitted in Near-Fault Regions
Authors: M. Tehranizadeh, E. Shoushtari Rezvani
Abstract:
Seismic performance of steel moment-resisting frame structures is investigated considering nonlinear soil-structure interaction (SSI) effects. 10-, 15-, and 20-story planar building frames with aspect ratio of 3 are designed in accordance with current building codes. Inelastic seismic demands of the superstructure are considered using concentrated plasticity model. The raft foundation system is designed for different soil types. Beam-on-nonlinear Winkler foundation (BNWF) is used to represent dynamic impedance of the underlying soil. Two sets of pulse-like as well as no-pulse near-fault earthquakes are used as input ground motions. The results show that the reduction in drift demands due to nonlinear SSI is characterized by a more uniform distribution pattern along the height when compared to the fixed-base and linear SSI condition. It is also concluded that beneficial effects of nonlinear SSI on displacement demands is more significant in case of pulse-like ground motions and performance level of the steel moment-resisting frames can be enhanced.Keywords: soil-structure interaction, uplifting, soil plasticity, near-fault earthquake, tall building
Procedia PDF Downloads 549316 Study and Design of Novel Structure of Circularly Polarized Dual Band Microstrip Antenna Fed by Hybrid Coupler for RFID Applications
Authors: M. Taouzari, A. Sardi, J. El Aoufi, Ahmed Mouhsen
Abstract:
The purpose of this work is to design a reader antenna fed by 90° hybrid coupler that would ensure a tag which is detected regardless of its orientation for the radio frequency identification system covering the UHF and ISM bands frequencies. Based on this idea, the proposed work is dividing in two parts, first part is about study and design hybrid coupler using the resonators planar called T-and Pi networks operating in commercial bands. In the second part, the proposed antenna fed by the hybrid coupler is designed on FR4 substrate with dielectric permittivity 4.4, thickness dielectric 1.6mm and loss tangent 0.025. The T-slot is inserted in patch of the proposed antenna fed by the hybrid coupler is first designed, optimized and simulated using electromagnetic simulator ADS and then simulated in a full wave simulation software CST Microwave Studio. The simulated antenna by the both softwares achieves the expected performances in terms of matching, pattern radiation, phase shifting, gain and size.Keywords: dual band antenna, RFID, hybrid coupler, polarization, radiation pattern
Procedia PDF Downloads 131315 Structural, Magnetic, Dielectric, and Electrical Properties of ZnFe2O4 Nanoparticles
Authors: Raghvendra Singh Yadav, Ivo Kuřitka, Jarmila Vilcakova, Pavel Urbanek, Michal Machovsky, Milan Masař, Martin Holek
Abstract:
ZnFe2O4 spinel ferrite nanoparticles were synthesized by sol-gel auto-combustion method. The synthesized spinel ferrite nanoparticles were annealed at different higher temperature to achieve different size nanoparticles. The as synthesized and annealed samples were characterized by powder X-ray Diffraction Spectroscopy, Raman Spectroscopy, Fourier Transform Infrared Spectroscopy, UV-Vis absorption Spectroscopy and Scanning Electron Microscopy. The magnetic properties were studied by vibrating sample magnetometer. The variation in magnetic parameters was noticed with variation in grain size. The dielectric constant and dielectric loss with variation of frequency shows normal behaviour of spinel ferrite. The variation in conductivity with variation in grain size is noticed. Modulus and Impedance Spectroscopy shows the role of grain and grain boundary on the electrical resistance and capacitance of different grain sized spinel ferrite nanoparticles. Acknowledgment: This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504).Keywords: spinel ferrite, nanoparticles, magnetic properties, dielectric properties
Procedia PDF Downloads 427314 Modeling of a Small Unmanned Aerial Vehicle
Authors: Ahmed Elsayed Ahmed, Ashraf Hafez, A. N. Ouda, Hossam Eldin Hussein Ahmed, Hala Mohamed ABD-Elkader
Abstract:
Unmanned Aircraft Systems (UAS) are playing increasingly prominent roles in defense programs and defense strategies around the world. Technology advancements have enabled the development of it to do many excellent jobs as reconnaissance, surveillance, battle fighters, and communications relays. Simulating a small unmanned aerial vehicle (SUAV) dynamics and analyzing its behavior at the preflight stage is too important and more efficient. The first step in the UAV design is the mathematical modeling of the nonlinear equations of motion. In this paper, a survey with a standard method to obtain the full non-linear equations of motion is utilized,and then the linearization of the equations according to a steady state flight condition (trimming) is derived. This modeling technique is applied to an Ultrastick-25e fixed wing UAV to obtain the valued linear longitudinal and lateral models. At the end, the model is checked by matching between the behavior of the states of the non-linear UAV and the resulted linear model with doublet at the control surfaces.Keywords: UAV, equations of motion, modeling, linearization
Procedia PDF Downloads 741313 Development of a Psychometric Testing Instrument Using Algorithms and Combinatorics to Yield Coupled Parameters and Multiple Geometric Arrays in Large Information Grids
Authors: Laith F. Gulli, Nicole M. Mallory
Abstract:
The undertaking to develop a psychometric instrument is monumental. Understanding the relationship between variables and events is important in structural and exploratory design of psychometric instruments. Considering this, we describe a method used to group, pair and combine multiple Philosophical Assumption statements that assisted in development of a 13 item psychometric screening instrument. We abbreviated our Philosophical Assumptions (PA)s and added parameters, which were then condensed and mathematically modeled in a specific process. This model produced clusters of combinatorics which was utilized in design and development for 1) information retrieval and categorization 2) item development and 3) estimation of interactions among variables and likelihood of events. The psychometric screening instrument measured Knowledge, Assessment (education) and Beliefs (KAB) of New Addictions Research (NAR), which we called KABNAR. We obtained an overall internal consistency for the seven Likert belief items as measured by Cronbach’s α of .81 in the final study of 40 Clinicians, calculated by SPSS 14.0.1 for Windows. We constructed the instrument to begin with demographic items (degree/addictions certifications) for identification of target populations that practiced within Outpatient Substance Abuse Counseling (OSAC) settings. We then devised education items, beliefs items (seven items) and a modifiable “barrier from learning” item that consisted of six “choose any” choices. We also conceptualized a close relationship between identifying various degrees and certifications held by Outpatient Substance Abuse Therapists (OSAT) (the demographics domain) and all aspects of their education related to EB-NAR (past and present education and desired future training). We placed a descriptive (PA)1tx in both demographic and education domains to trace relationships of therapist education within these two domains. The two perceptions domains B1/b1 and B2/b2 represented different but interrelated perceptions from the therapist perspective. The belief items measured therapist perceptions concerning EB-NAR and therapist perceptions using EB-NAR during the beginning of outpatient addictions counseling. The (PA)s were written in simple words and descriptively accurate and concise. We then devised a list of parameters and appropriately matched them to each PA and devised descriptive parametric (PA)s in a domain categorized information grid. Descriptive parametric (PA)s were reduced to simple mathematical symbols. This made it easy to utilize parametric (PA)s into algorithms, combinatorics and clusters to develop larger information grids. By using matching combinatorics we took paired demographic and education domains with a subscript of 1 and matched them to the column with each B domain with subscript 1. Our algorithmic matching formed larger information grids with organized clusters in columns and rows. We repeated the process using different demographic, education and belief domains and devised multiple information grids with different parametric clusters and geometric arrays. We found benefit combining clusters by different geometric arrays, which enabled us to trace parametric variables and concepts. We were able to understand potential differences between dependent and independent variables and trace relationships of maximum likelihoods.Keywords: psychometric, parametric, domains, grids, therapists
Procedia PDF Downloads 278312 Anthraquinone Labelled DNA for Direct Detection and Discrimination of Closely Related DNA Targets
Authors: Sarah A. Goodchild, Rachel Gao, Philip N. Bartlett
Abstract:
A novel detection approach using immobilized DNA probes labeled with Anthraquinone (AQ) as an electrochemically active reporter moiety has been successfully developed as a new, simple, reliable method for the detection of DNA. This method represents a step forward in DNA detection as it can discriminate between multiple nucleotide polymorphisms within target DNA strands without the need for any additional reagents, reporters or processes such as melting of DNA strands. The detection approach utilizes single-stranded DNA probes immobilized on gold surfaces labeled at the distal terminus with AQ. The effective immobilization has been monitored using techniques such as AC impedance and Raman spectroscopy. Simple voltammetry techniques (Differential Pulse Voltammetry, Cyclic Voltammetry) are then used to monitor the reduction potential of the AQ before and after the addition of complementary strand of target DNA. A reliable relationship between the shift in reduction potential and the number of base pair mismatch has been established and can be used to discriminate between DNA from highly related pathogenic organisms of clinical importance. This indicates that this approach may have great potential to be exploited within biosensor kits for detection and diagnosis of pathogenic organisms in Point of Care devices.Keywords: Anthraquinone, discrimination, DNA detection, electrochemical biosensor
Procedia PDF Downloads 393311 Trajectory Tracking Control for Quadrotor Helicopter by Controlled Lagrangian Method
Abstract:
A nonlinear trajectory tracking controller for quadrotor helicopter based on controlled Lagrangian (CL) method is proposed in this paper. A Lagrangian system with virtual angles as generated coordinates rather than Euler angles is developed. Based on the model, the matching conditions presented by nonlinear partial differential equations are simplified and explicitly solved. Smooth tracking control laws and the range of control parameters are deduced based on the controlled energy of closed-loop system. Besides, a constraint condition for reference accelerations is deduced to identify the trackable reference trajectories by the proposed controller and to ensure the stability of the closed-loop system. The proposed method in this paper does not rely on the division of the quadrotor system, and the design of the control torques does not depend on the thrust as in backstepping or hierarchical control method. Simulations for a quadrotor model demonstrate the feasibility and efficiency of the theoretical results.Keywords: quadrotor, trajectory tracking control, controlled lagrangians, underactuated system
Procedia PDF Downloads 120