Search results for: high density lipoprotein
21761 Electronic Structure and Optical Properties of YNi₄Si-Type GdNi₅: A Coulomb Corrected Local-Spin Density Approximation Study
Authors: Sapan Mohan Saini
Abstract:
In this work, we report the calculations on the electronic and optical properties of YNi₄Si-type GdNi₅ compound. Calculations are performed using the full-potential augmented plane wave (FPLAPW) method in the framework of density functional theory (DFT). The Coulomb corrected local-spin density approximation (LSDA+U) in the self-interaction correction (SIC) has been used for exchange-correlation potential. Spin polarised calculations of band structure show that several bands cross the Fermi level (EF) reflect the metallic character. Analysis of density of states (DOS) demonstrates that spin up Gd-f states lie around 7.5 eV below EF and spin down Gd-f lie around 4.5 eV above EF. We found Ni-3d states mainly contribute to DOS from -5.0 eV to the EF. Our calculated results of optical conductivity agree well with the experimental data.Keywords: electronic structure, optical properties, FPLAPW method, YNi₄Si-type GdNi₅
Procedia PDF Downloads 17321760 Comparison of Bone Mineral Density of Lumbar Spines between High Level Cyclists and Sedentary
Authors: Mohammad Shabani
Abstract:
The physical activities depending on the nature of the mechanical stresses they induce on bone sometimes have brought about different results. The purpose of this study was to compare bone mineral density (BMD) of the lumbar spine between the high-level cyclists and sedentary. Materials and Methods: In the present study, 73 cyclists senior (age: 25.81 ± 4.35 years; height: 179.66 ± 6.31 cm; weight: 71.55 ± 6.31 kg) and 32 sedentary subjects (age: 28.28 ± 4.52 years; height: 176.56 ± 6.2 cm; weight: 74.47 ± 8.35 kg) participated voluntarily. All cyclists belonged to the different teams from the International Cycling Union and they trained competitively for 10 years. BMD of the lumbar spine of the subjects was measured using DXA X-ray (Lunar). Descriptive statistics calculations were performed using computer software data processing (Statview 5, SAS Institute Inc. USA). The comparison of two independent distributions (BMD high level cyclists and sedentary) was made by the Student T Test standard. Probability 0.05 (p≤0 / 05) was adopted as significance. Results: The result of this study showed that the BMD values of the lumbar spine of sedentary subjects were significantly higher for all measured segments. Conclusion and Discussion: Cycling is firstly a common sport and on the other hand endurance sport. It is now accepted that weight bearing exercises have an osteogenic effect compared to non-weight bearing exercises. Thus, endurance sports such as cycling, compared to the activities imposing intense force in short time, seem not to really be osteogenic. Therefore, it can be concluded that cycling provides low stimulates osteogenic because of specific biomechanical forces of the sport and its lack of impact.Keywords: BMD, lumbar spine, high level cyclist, cycling
Procedia PDF Downloads 26921759 Nanostructured Transition Metal Oxides Doped Graphene for High Performance Solid-State Supercapacitor Electrodes
Authors: G. Nyongombe, Guy L. Kabongo, B. M. Mothudi, M. S. Dhlamini
Abstract:
A series of Transition Metals Oxides (TMOs) doped graphene were synthesized and successfully used as supercapacitor electrode materials. The as-synthesized materials exhibited exceptional electrochemical properties owing to the combined properties of its constituents; high surface area and good conductivity were achieved. Several analytical characterization techniques were employed to investigate the morphology, crystal structure atomic arrangement and elemental chemical state in the materials for which scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were conducted, respectively. Moreover, the electrochemical properties of the as-synthesized materials were examined by performing cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) measurements. Furthermore, the effect of doping concentration on the interlayer distance of the graphene materials and the charge transfer resistance are investigated and correlated to the exceptional current density which was multiplied by a factor of ~80 after TMOs doping in graphene. Finally, the resulting high capacitance obtained confirms the contribution of grapheme exceptional electronic conductivity and large surface area on the electrode materials. Such good-performing electrode materials are highly promising for supercapacitors and other energy storage devices.Keywords: energy density, graphene, supercapacitors, TMOs
Procedia PDF Downloads 25821758 High-Intensity, Short-Duration Electric Pulses Induced Action Potential in Animal Nerves
Authors: Jiahui Song, Ravindra P. Joshi
Abstract:
The use of high-intensity, short-duration electric pulses is a promising development with many biomedical applications. The uses include irreversible electroporation for killing abnormal cells, reversible poration for drug and gene delivery, neuromuscular manipulation, and the shrinkage of tumors, etc. High intensity, short-duration electric pulses result in the creation of high-density, nanometer-sized pores in the cellular membrane. This electroporation amounts to localized modulation of the transverse membrane conductance, and effectively provides a voltage shunt. The electrically controlled changes in the trans-membrane conductivity could be used to affect neural traffic and action potential propagation. A rat was taken as the representative example in this research. The simulation study shows the pathway from the sensorimotor cortex down to the spinal motoneurons, and effector muscles could be reversibly blocked by using high-intensity, short-duration electrical pulses. Also, actual experimental observations were compared against simulation predictions.Keywords: action potential, electroporation, high-intensity, short-duration
Procedia PDF Downloads 26921757 Assessment of the Interface Strength between High-Density Polyethylene Geomembrane and Expanded Polystyrene by the Direct Shear Test
Authors: Sergio Luiz da Costa Junior, Carolina Fofonka Palomino, Paulo Cesar Lodi
Abstract:
The use of light landfills is an effective solution for road works in soft ground sites, such as Rio de Janeiro (RJ) and Santos (SP) - the Southeastern Brazilian coast. The technique consists in replacing the topsoil by expandable polystyrene (EPS) geofoam, lined with geomembrane to prevent the attack of chemical products.Thus, knowing the interface shear strength of those materials is important in projects to avoid rupturing the system. The purpose of this paper is to compare the shear strength in the geomembrane-EPS interfaces by the direct shear test. The tests were performed under the dry and saturated condition, and four kind of high-density polyethylene (HDPE) 2,00mm geomembranes were used, smooth and texturized - manufactured in the flat die and blown film process. It was found that the shear strength is directly influenced by the roughness of the geomembrane, showed higher friction angle in the textured geomembrane. The direct shear test, in the saturated condition, also showed smaller friction angle than the now-wetted test.Keywords: geofoam, geomembrane, soft ground, strength shear
Procedia PDF Downloads 31621756 Second Harmonic Generation of Higher-Order Gaussian Laser Beam in Density Rippled Plasma
Authors: Jyoti Wadhwa, Arvinder Singh
Abstract:
This work presents the theoretical investigation of an enhanced second-harmonic generation of higher-order Gaussian laser beam in plasma having a density ramp. The mechanism responsible for the self-focusing of a laser beam in plasma is considered to be the relativistic mass variation of plasma electrons under the effect of a highly intense laser beam. Using the moment theory approach and considering the Wentzel-Kramers-Brillouin approximation for the non-linear Schrodinger wave equation, the differential equation is derived, which governs the spot size of the higher-order Gaussian laser beam in plasma. The nonlinearity induced by the laser beam creates the density gradient in the background plasma electrons, which is responsible for the excitation of the electron plasma wave. The large amplitude electron plasma wave interacts with the fundamental beam, which further produces the coherent radiations with double the frequency of the incident beam. The analysis shows the important role of the different modes of higher-order Gaussian laser beam and density ramp on the efficiency of generated harmonics.Keywords: density rippled plasma, higher order Gaussian laser beam, moment theory approach, second harmonic generation.
Procedia PDF Downloads 18121755 Saponins from the Fruits of Solanum anguivi Reverse Hyperglycemia, Hyperlipidemia and Increase Antioxidant Status in Stretozotocin Induced Diabetic Rats
Authors: Isaac Gbadura Adanlawo, Olusola Olalekan Elekofehinti
Abstract:
This work investigated the antihyperglycemic, antioxidant and antihyperlipidemic effects of saponins from the fruit of Solanum anguivi, a plant generally used in folk medicine to treat diabetes and hypertension and to compare its effect with metformin in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced in albino rats by administration of STZ (65 mg/kg) intraperitoneally. Saponin (40 and 100 mg/kg) was administered by oral gavage once daily for 21 days. Metformin (200 mg/kg b.w.) was administered as the positive control. The effect of saponin on blood glucose, serum lipids and enzymatic antioxidants defense systems, like superoxide dismutase (SOD), catalase (CAT), as well as MDA levels in serum, liver and pancreas were studied. Saponins from S. anguivi fruits reduced the blood glucose, total cholesterol (TC), triglycerides (TG) and low-density lipoprotein (LDL) levels in STZ-diabetic rats. They also significantly abolished the increase in MDA level in serum, liver and pancreas of diabetic rats. The activities of SOD and CAT in serum, liver and pancreas were significantly increased as well as concentration of HDL in the serum. Metformin had the same effect as saponin but saponins seems to be more potent in reducing serum TC, TG, LDL, and MDA, and increasing SOD and CAT. Conclusions: These results suggest that saponins from S. anguivi fruits have anti-diabetic and antihypercholesterolemic, antihypertriglyceridemic antiperoxidative activities mediated through their antioxidant properties. Also, saponins appeared to have more hypolipidemic, antiperoxidative and antioxidant activity than metformin.Keywords: saponin, diabetes, metformin, streptozotocin, Solanum anguivi
Procedia PDF Downloads 47821754 Electrochemical Study of Al-Doped K₂CO₃ Activated Coconut Husk Carbon-Based Composite Anode Material for Battery Applications
Authors: Alpha Matthew
Abstract:
The Composites of Al-Doped K₂CO₃ activated coconut husk carbon, Al₀.₁:(K₂CO₃C)₀.₉ and AI₀.₃:(K₂CO₃C)₀.₇, were prepared using the hydrothermal method and drop casting deposition technique. The electrochemical performance of the Al-doped K₂CO₃ activated coconut husk carbon composite as a promising anode material for lithium-ion batteries was characterised by cyclic voltammetry analysis, electrochemical impedance spectroscopy, and galvanostatic charge discharge analysis. The charges that are retained in the anode material during charging showed a linear decline in charge capacity as the charging current intensity increased. Ionic polarisation was the reason for the observed drop in the charge and discharge capabilities at the current density of 5 A/g. Having greater specific capacitance and energy density, the composite Al₀.₁:(K₂CO₃C)₀.₉ is a better anode material for electrochemical applications compared to AI₀.₃:(K₂CO₃C)₀.₇, also its comparatively higher power density at a scan rate of 5 mV/s is mostly explained by its lower equivalent series resistance.Keywords: coconut carbon husk, power density, energy density, battery, anode electrode
Procedia PDF Downloads 2621753 Obtaining High-Dimensional Configuration Space for Robotic Systems Operating in a Common Environment
Authors: U. Yerlikaya, R. T. Balkan
Abstract:
In this research, a method is developed to obtain high-dimensional configuration space for path planning problems. In typical cases, the path planning problems are solved directly in the 3-dimensional (D) workspace. However, this method is inefficient in handling the robots with various geometrical and mechanical restrictions. To overcome these difficulties, path planning may be formalized and solved in a new space which is called configuration space. The number of dimensions of the configuration space comes from the degree of freedoms of the system of interest. The method can be applied in two ways. In the first way, the point clouds of all the bodies of the system and interaction of them are used. The second way is performed via using the clearance function of simulation software where the minimum distances between surfaces of bodies are simultaneously measured. A double-turret system is held in the scope of this study. The 4-D configuration space of a double-turret system is obtained in these two ways. As a result, the difference between these two methods is around 1%, depending on the density of the point cloud. The disparity between the two forms steadily decreases as the point cloud density increases. At the end of the study, in order to verify 4-D configuration space obtained, 4-D path planning problem was realized as 2-D + 2-D and a sample path planning is carried out with using A* algorithm. Then, the accuracy of the configuration space is proved using the obtained paths on the simulation model of the double-turret system.Keywords: A* algorithm, autonomous turrets, high-dimensional C-space, manifold C-space, point clouds
Procedia PDF Downloads 14021752 Impact of Enzyme-Treated Bran on the Physical and Functional Properties of Extruded Sorghum Snacks
Authors: Charles Kwasi Antwi, Mohammad Naushad Emmambux, Natalia Rosa-Sibakov
Abstract:
The consumption of high-fibre snacks is beneficial in reducing the prevalence of most non-communicable diseases and improving human health. However, using high-fibre flour to produce snacks by extrusion cooking reduces the expansion ratio of snacks, thereby decreasing sensory properties and consumer acceptability of the snack. The study determines the effects of adding Viscozyme®-treated sorghum bran on the properties of extruded sorghum snacks with the aim of producing high-fibre expanded snacks with acceptable quality. With a twin-screw extruder, sorghum endosperm flour [by decortication] with and without sorghum bran and with enzyme-treated sorghum bran was extruded at high shear rates with feed moisture of 20%, feed rate of 10 kg/hr, screw speed of 500 rpm, and temperature zones of 60°C, 70°C, 80°C, 140°C, and 140°C toward the die. The expanded snacks that resulted from this process were analysed in terms of their physical (expansion ratio, bulk density, colour profile), chemical (soluble and insoluble dietary fibre), and functional (water solubility index (WSI) and water absorption index (WAI)) characteristics. The expanded snacks produced from refined sorghum flour enriched with Viscozyme-treated bran had similar expansion ratios to refined sorghum flour extrudates, which were higher than those for untreated bran-sorghum extrudate. Sorghum extrudates without bran showed higher values of expansion ratio and low values of bulk density compared to the untreated bran extrudates. The enzyme-treated fibre increased the expansion ratio significantly with low bulk density values compared to untreated bran. Compared to untreated bran extrudates, WSI values in enzyme-treated samples increased, while WAI values decreased. Enzyme treatment of bran reduced particle size and increased soluble dietary fibre to increase expansion. Lower particle size suggests less interference with bubble formation at the die. Viscozyme-treated bran-sorghum composite flour could be used as raw material to produce high-fibre expanded snacks with improved physicochemical and functional properties.Keywords: extrusion, sorghum bran, decortication, expanded snacks
Procedia PDF Downloads 9321751 Dense and Quality Urban Living: A Comparative Study on Architectural Solutions in the European City
Authors: Flavia Magliacani
Abstract:
The urbanization of the last decades and its resulting urban growth entail problems both for environmental and economic sustainability. From this perspective, sustainable settlement development requires a horizontal decrease in the existing urban structure in order to enhance its greater concentration. Hence, new stratifications of the city fabric and architectural strategies ensuring high-density settlement models are possible solutions. However, although increasing housing density is necessary, it is not sufficient. Guaranteeing the quality of living is, indeed, equally essential. In order to meet this objective, many other factors come to light, namely the relationship between private and public spaces, the proximity to services, the accessibility of public transport, the local lifestyle habits, and the social needs. Therefore, how to safeguard both quality and density in human habitats? The present paper attempts to answer the previous main research question by addressing several sub-questions: Which architectural types meet the dual need for urban density and housing quality? Which project criteria should be taken into consideration by good design practices? What principles are desirable for future planning? The research will analyse different architectural responses adopted in four European cities: Paris, Lion, Rotterdam, and Amsterdam. In particular, it will develop a qualitative and comparative study of two specific architectural solutions which integrate housing density and quality living. On the one hand, the so-called 'self-contained city' model, on the other hand, the French 'Habitat Dense Individualisé' one. The structure of the paper will be as follows: the first part will develop a qualitative evaluation of some case studies, emblematic examples of the two above said architectural models. The second part will focus on the comparison among the chosen case studies. Finally, some conclusions will be drawn. The methodological approach, therefore, combines qualitative and comparative research. Parameters will be defined in order to highlight potential and criticality of each model in light of an interdisciplinary view. In conclusion, the present paper aims at shading light on design approaches which ensure a right balance between density and quality of the urban living in contemporary European cities.Keywords: density, future design, housing quality, human habitat
Procedia PDF Downloads 10821750 Relationship between Wave Velocities and Geo-Pressures in Shallow Libyan Carbonate Reservoir
Authors: Tarek Sabri Duzan
Abstract:
Knowledge of the magnitude of Geo-pressures (Pore, Fracture & Over-burden pressures) is vital especially during drilling, completions, stimulations, Enhance Oil Recovery. Many times problems, like lost circulation could have been avoided if techniques for calculating Geo-pressures had been employed in the well planning, mud weight plan, and casing design. In this paper, we focused on the relationships between Geo-pressures and wave velocities (P-Wave (Vp) and S-wave (Vs)) in shallow Libyan carbonate reservoir in the western part of the Sirte Basin (Dahra F-Area). The data used in this report was collected from four new wells recently drilled. Those wells were scattered throughout the interested reservoir as shown in figure-1. The data used in this work are bulk density, Formation Mult -Tester (FMT) results and Acoustic wave velocities. Furthermore, Eaton Method is the most common equation used in the world, therefore this equation has been used to calculate Fracture pressure for all wells using dynamic Poisson ratio calculated by using acoustic wave velocities, FMT results for pore pressure, Overburden pressure estimated by using bulk density. Upon data analysis, it has been found that there is a linear relationship between Geo-pressures (Pore, Fracture & Over-Burden pressures) and wave velocities ratio (Vp/Vs). However, the relationship was not clear in the high-pressure area, as shown in figure-10. Therefore, it is recommended to use the output relationship utilizing the new seismic data for shallow carbonate reservoir to predict the Geo-pressures for future oil operations. More data can be collected from the high-pressure zone to investigate more about this area.Keywords: bulk density, formation mult-tester (FMT) results, acoustic wave, carbonate shalow reservoir, d/jfield velocities
Procedia PDF Downloads 28721749 The Impact of Infectious Disease on Densely Populated Urban Area: In Terms of COVID-19
Authors: Samira Ghasempourkazemi
Abstract:
In terms of the COVID-19 pandemic, lots of mutations in the urban system, which have systemic impacts, have clearly appeared. COVID-19 not only had a direct impact on health but also caused significant losses to other departments, including the economy, education, tourism, environment and the construction industry. Therefore, the pandemic caused a disruption in the whole urban system. Particularly, today’s large urban areas are not designed in order to be compatible during a pandemic. Hence, cities are more vulnerable to infectious disease threats according to the population density, built environment and socioeconomic aspects. Considering the direct relationship between population and rate of infection, higher rates are given to those individuals located in areas with high-density populations. Population density can be a factor that seems to have a strong impact on the spread of infectious diseases. Thus, the preliminary hypothesis can be related to a densely populated areas which become hotspots for the rapid spread of the pandemic due to high levels of interaction. In addition, some other indicators can be effective in this condition, such as age range, education and socio-economy. To figure out the measure of infectious disease risk in densely populated areas in Istanbul is an objective of this study. Besides, this study intends to figure out Vulnerability Index in the case of COVID-19. In order to achieve the proper result, the considered method can be Analytic Hierarchy Process (AHP) by involving the mentioned variables. In the end, the study represents the COVID Vulnerability of densely populated areas in a metro city and the gaps that need to be identified and plugged for the pandemic-resilience city of tomorrow.Keywords: infectious disease, COVID-19, urban system, densely populated area
Procedia PDF Downloads 8321748 Boiler Ash as a Reducer of Formaldehyde Emission in Medium-Density Fiberboard
Authors: Alexsandro Bayestorff da Cunha, Dpebora Caline de Mello, Camila Alves Corrêa
Abstract:
In the production of fiberboards, an adhesive based on urea-formaldehyde resin is used, which has the advantages of low cost, homogeneity of distribution, solubility in water, high reactivity in an acid medium, and high adhesion to wood. On the other hand, as a disadvantage, there is low resistance to humidity and the release of formaldehyde. The objective of the study was to determine the viability of adding industrial boiler ash to the urea formaldehyde-based adhesive for the production of medium-density fiberboard. The raw material used was composed of Pinus spp fibers, urea-formaldehyde resin, paraffin emulsion, ammonium sulfate, and boiler ash. The experimental plan, consisting of 8 treatments, was completely randomized with a factorial arrangement, with 0%, 1%, 3%, and 5% ash added to the adhesive, with and without the application of a catalyst. In each treatment, 4 panels were produced with density of 750 kg.m⁻³, dimensions of 40 x 40 x 1,5 cm, 12% urea formaldehyde resin, 1% paraffin emulsion and hot pressing at a temperature of 180ºC, the pressure of 40 kgf/cm⁻² for a time of 10 minutes. The different compositions of the adhesive were characterized in terms of viscosity, pH, gel time and solids, and the panels by physical and mechanical properties, in addition to evaluation using the IMAL DPX300 X-ray densitometer and formaldehyde emission by the perforator method. The results showed a significant reduction of all adhesive properties with the use of the catalyst, regardless of the treatment; while the percentage increase of ashes provided an increase in the average values of viscosity, gel time, and solids and a reduction in pH for the panels with a catalyst; for panels without catalyst, the behavior was the opposite, with the exception of solids. For the physical properties, the results of the variables of density, compaction ratio, and thickness were equivalent and in accordance with the standard, while the moisture content was significantly reduced with the use of the catalyst but without the influence of the percentage of ash. The density profile for all treatments was characteristic of medium-density fiberboard, with more compacted and dense surfaces when compared to the central layer. For thickness, the swelling was not influenced by the catalyst and the use of ash, presenting average values within the normalized parameters. For mechanical properties, the influence of ashes on the adhesive was negatively observed in the modulus of rupture from 1% and in the traction test from 3%; however, only this last property, in the percentages of 3% and 5%, were below the minimum limit of the norm. The use of catalyst and ashes with percentages of 3% and 5% reduced the formaldehyde emission of the panels; however, only the panels that used adhesive with catalyst presented emissions below 8mg of formaldehyde / 100g of the panel. In this way, it can be said that boiler ash can be added to the adhesive with a catalyst without impairing the technological properties by up to 1%.Keywords: reconstituted wood panels, formaldehyde emission, technological properties of panels, perforator
Procedia PDF Downloads 7221747 Physical Characteristics of Locally Composts Produced in Saudi Arabia and the Need for Regulations
Authors: Ahmad Al-Turki
Abstract:
Composting is the suitable way of recycling organic waste for agricultural application and environment protection. In Saudi Arabia, several composting facilities are available and producing high quantity of composts. The aim of this study is to evaluate the physical characteristics of composts manufactured in Saudi Arabia and acquire a comprehensive image of its quality through the comparative with international standards of compost quality such as CCQC and PAS-100. In the present study different locally produced compost were identified and most of the producing factories were visited during the manufacturing of composts. Representative samples of different compost production stage were collected and Physical characteristics were determined, which included moisture content, bulk density, percentage of sand and the size of distribution of the compost particles. Results showed wide variations in all parameters investigated. Results of the study indicated generally that there is a wide variation in the physical characteristics of the types of compost under study. The initial moister contents in composts were generally low, it was less than 60% in most samples and not sufficient for microbial activities for biodegradation in 96% of the 96% of the types of compost and this will impede the decomposition of organic materials. The initial bulk density values ranged from 117 gL-1 to 1110.0 gL-1, while the final apparent bulk density ranged from 340.0 gL-1 to 1000gL-1 and about 45.4 % did not meet the ideal bulk density value. Sand percents in composts were between 3.3 % and 12.5%. This study has confirmed the need for a standard specification for compost manufactured in Saudi Arabia for agricultural use based on international standards for compost and soil characteristics and climatic conditions in Saudi Arabia.Keywords: compost, maturity, Saudi Arabia, organic material
Procedia PDF Downloads 34921746 Field Emission Scanning Microscope Image Analysis for Porosity Characterization of Autoclaved Aerated Concrete
Authors: Venuka Kuruwita Arachchige Don, Mohamed Shaheen, Chris Goodier
Abstract:
Aerated autoclaved concrete (AAC) is known for its lightweight, easy handling, high thermal insulation, and extremely porous structure. Investigation of pore behavior in AAC is crucial for characterizing the material, standardizing design and production techniques, enhancing the mechanical, durability, and thermal performance, studying the effectiveness of protective measures, and analyzing the effects of weather conditions. The significant details of pores are complicated to observe with acknowledged accuracy. The High-resolution Field Emission Scanning Electron Microscope (FESEM) image analysis is a promising technique for investigating the pore behavior and density of AAC, which is adopted in this study. Mercury intrusion porosimeter and gas pycnometer were employed to characterize porosity distribution and density parameters. The analysis considered three different densities of AAC blocks and three layers in the altitude direction within each block. A set of understandings was presented to extract and analyze the details of pore shape, pore size, pore connectivity, and pore percentages from FESEM images of AAC. Average pore behavior outcomes per unit area were presented. Comparison of porosity distribution and density parameters revealed significant variations. FESEM imaging offered unparalleled insights into porosity behavior, surpassing the capabilities of other techniques. The analysis conducted from a multi-staged approach provides porosity percentage occupied by various pore categories, total porosity, variation of pore distribution compared to AAC densities and layers, number of two-dimensional and three-dimensional pores, variation of apparent and matrix densities concerning pore behaviors, variation of pore behavior with respect to aluminum content, and relationship among shape, diameter, connectivity, and percentage in each pore classification.Keywords: autoclaved aerated concrete, density, imaging technique, microstructure, porosity behavior
Procedia PDF Downloads 6921745 Geological Structure Identification in Semilir Formation: An Correlated Geological and Geophysical (Very Low Frequency) Data for Zonation Disaster with Current Density Parameters and Geological Surface Information
Authors: E. M. Rifqi Wilda Pradana, Bagus Bayu Prabowo, Meida Riski Pujiyati, Efraim Maykhel Hagana Ginting, Virgiawan Arya Hangga Reksa
Abstract:
The VLF (Very Low Frequency) method is an electromagnetic method that uses low frequencies between 10-30 KHz which results in a fairly deep penetration. In this study, the VLF method was used for zonation of disaster-prone areas by identifying geological structures in the form of faults. Data acquisition was carried out in Trimulyo Region, Jetis District, Bantul Regency, Special Region of Yogyakarta, Indonesia with 8 measurement paths. This study uses wave transmitters from Japan and Australia to obtain Tilt and Elipt values that can be used to create RAE (Rapat Arus Ekuivalen or Current Density) sections that can be used to identify areas that are easily crossed by electric current. This section will indicate the existence of a geological structure in the form of faults in the study area which is characterized by a high RAE value. In data processing of VLF method, it is obtained Tilt vs Elliptical graph and Moving Average (MA) Tilt vs Moving Average (MA) Elipt graph of each path that shows a fluctuating pattern and does not show any intersection at all. Data processing uses Matlab software and obtained areas with low RAE values that are 0%-6% which shows medium with low conductivity and high resistivity and can be interpreted as sandstone, claystone, and tuff lithology which is part of the Semilir Formation. Whereas a high RAE value of 10% -16% which shows a medium with high conductivity and low resistivity can be interpreted as a fault zone filled with fluid. The existence of the fault zone is strengthened by the discovery of a normal fault on the surface with strike N550W and dip 630E at coordinates X= 433256 and Y= 9127722 so that the activities of residents in the zone such as housing, mining activities and other activities can be avoided to reduce the risk of natural disasters.Keywords: current density, faults, very low frequency, zonation
Procedia PDF Downloads 17521744 Strength & Density of an Autoclaved Aerated Concrete Using Various Air Entraining Agent
Authors: Shashank Gupta, Shiva Garg
Abstract:
The purpose of the present paper is to study the changes in the strength characteristics of autoclaved aerated concrete (AAC) and also the density when different expansion agents are used. The expansion agent so used releases air in the concrete thereby making it lighter by reducing its density. It also increases the workability of the concrete. The various air entraining agents used for this study are hydrogen peroxide, oleic acid, and olive oil. The addition of these agents causes the concrete to rise like cake but it reduces the strength of concrete due to the formation of air voids. The amount of agents chosen for concrete production are 0.5%, 1%, 1.5% by weight of cement.Keywords: AAC, olive oil, hydrogen peroxide, oleic acid, steam curing
Procedia PDF Downloads 36721743 The Mechanism Study on the Difference between High and Low Voltage Performance of Li3V2(PO4)3
Authors: Enhui Wang, Qingzhu Ou, Yan Tang, Xiaodong Guo
Abstract:
As one of most popular polyanionic compounds in lithium-ion cathode materials, Li3V2(PO4)3 has always suffered from the low rate capability especially during 3~4.8V, which is considered to be related with the ion diffusion resistance and structural transformation during the Li+ de/intercalation. Here, as the change of cut-off voltages, cycling numbers and current densities, the process of SEI interfacial film’s formation-growing- destruction-repair on the surface of the cathode, the structural transformation during the charge and discharge, the de/intercalation kinetics reflected by the electrochemical impedance and the diffusion coefficient, have been investigated in detail. Current density, cycle numbers and cut-off voltage impacting on interfacial film and structure was studied specifically. Firstly, the matching between electrolyte and material was investigated, it turned out that the batteries with high voltage electrolyte showed the best electrochemical performance and high voltage electrolyte would be the best electrolyte. Secondly, AC impedance technology was used to study the changes of interface impedance and lithium ion diffusion coefficient, the results showed that current density, cycle numbers and cut-off voltage influenced the interfacial film together and the one who changed the interfacial properties most was the key factor. Scanning electron microscopy (SEM) analysis confirmed that the attenuation of discharge specific capacity was associated with the destruction and repair process of the SEI film. Thirdly, the X-ray diffraction was used to study the changes of structure, which was also impacted by current density, cycle numbers and cut-off voltage. The results indicated that the cell volume of Li3V2 (PO4 )3 increased as the current density increased; cycle numbers merely influenced the structure of material; the cell volume decreased first and moved back gradually after two Li-ion had been deintercalated as the charging cut-off voltage increased, and increased as the intercalation number of Li-ion increased during the discharging process. Then, the results which studied the changes of interface impedance and lithium ion diffusion coefficient turned out that the interface impedance and lithium ion diffusion coefficient increased when the cut-off voltage passed the voltage platforms and decreased when the cut-off voltage was between voltage platforms. Finally, three-electrode system was first adopted to test the activation energy of the system, the results indicated that the activation energy of the three-electrode system (22.385 KJ /mol) was much smaller than that of two-electrode system (40.064 KJ /mol).Keywords: cut-off voltage, de/intercalation kinetics, solid electrolyte interphase film, structural transformation
Procedia PDF Downloads 29721742 Effect of Pozzolanic Additives on the Strength Development of High Performance Concrete
Authors: Laura Dembovska, Diana Bajare, Ina Pundiene, Daira Erdmane
Abstract:
The aim of this research is to estimate effect of pozzolanic substitutes and their combination on the hydration heat and final strength of high performance concrete. Ternary cementitious systems with different ratios of ordinary Portland cement, silica fume and calcined clay were investigated. Local illite clay was calcined at temperature 700oC in rotary furnace for 20 min. It has been well recognized that the use of pozzolanic materials such as silica fume or calcined clay are recommended for high performance concrete for reduction of porosity, increasing density and as a consequence raising the chemical durability of the concrete. It has been found, that silica fume has a superior influence on the strength development of concrete, but calcined clay increase density and decrease size of dominating pores. Additionally it was found that the rates of pozzolanic reaction and calcium hydroxide consumption in the silica fume-blended cement pastes are higher than in the illite clay-blended cement pastes, it strongly depends from the amount of pozzolanic substitutes which are used. If the pozzolanic reaction is dominating then amount of Ca(OH)2 is decreasing. The identity and the amount of the phases present were determined from the thermal analysis (DTA) data. The hydration temperature of blended cement pastes was measured during the first 24 hours. Fresh and hardened concrete properties were tested. Compressive strength was determined and differential thermal analysis (DTA) was conducted of specimens at the age of 3, 14, 28 and 56 days.Keywords: high performance concrete, pozzolanic additives, silica fume, ternary systems
Procedia PDF Downloads 37521741 Numerical Prediction of Wall Eroded Area by Cavitation
Authors: Ridha Zgolli, Ahmed Belhaj, Maroua Ennouri
Abstract:
This study presents a new method to predict cavitation area that may be eroded. It is based on the post-treatment of URANS simulations in cavitant flows. The most RANS calculations with incompressible consideration are based on cavitation model using mixture fluid with density (ρm) calculated as a function of liquid density (ρliq), vapour or gas density (ρvap) and vapour or gas volume fraction α (ρm = αρvap + (1-α) ρliq). The calculations are performed on hydrofoil geometries and compared with experimental works concerning flows characteristics (size of pocket, pressure, velocity). We present here the used cavitation model and the approach followed to evaluate the value of α fixing the shape of pocket around wall before collapsing.Keywords: flows, CFD, cavitation, erosion
Procedia PDF Downloads 33821740 Treatment of Healthcare Wastewater Using The Peroxi-Photoelectrocoagulation Process: Predictive Models for Chemical Oxygen Demand, Color Removal, and Electrical Energy Consumption
Authors: Samuel Fekadu A., Esayas Alemayehu B., Bultum Oljira D., Seid Tiku D., Dessalegn Dadi D., Bart Van Der Bruggen A.
Abstract:
The peroxi-photoelectrocoagulation process was evaluated for the removal of chemical oxygen demand (COD) and color from healthcare wastewater. A 2-level full factorial design with center points was created to investigate the effect of the process parameters, i.e., initial COD, H₂O₂, pH, reaction time and current density. Furthermore, the total energy consumption and average current efficiency in the system were evaluated. Predictive models for % COD, % color removal and energy consumption were obtained. The initial COD and pH were found to be the most significant variables in the reduction of COD and color in peroxi-photoelectrocoagulation process. Hydrogen peroxide only has a significant effect on the treated wastewater when combined with other input variables in the process like pH, reaction time and current density. In the peroxi-photoelectrocoagulation process, current density appears not as a single effect but rather as an interaction effect with H₂O₂ in reducing COD and color. Lower energy expenditure was observed at higher initial COD, shorter reaction time and lower current density. The average current efficiency was found as low as 13 % and as high as 777 %. Overall, the study showed that hybrid electrochemical oxidation can be applied effectively and efficiently for the removal of pollutants from healthcare wastewater.Keywords: electrochemical oxidation, UV, healthcare pollutants removals, factorial design
Procedia PDF Downloads 8021739 Effect of High Temperature on Residual Mechanical and Physical Properties of Brick Aggregate Concrete
Authors: Samia Hachemi, Abdelhafid Ounis, W. Heriheri
Abstract:
This paper presents an experimental investigation of high temperatures applied to normal and high performance concrete made with natural coarse aggregates. The experimental results of physical and mechanical properties were compared with those obtained with recycled brick aggregates produced by replacing 30% of natural coarse aggregates by recycled brick aggregates. The following parameters: compressive strength, concrete mass loss, apparent density and water porosity were examined in this experiment. The results show that concrete could be produced by using recycled brick aggregates and reveals that at high temperatures recycled aggregate concrete preformed similar or even better than natural aggregate concrete.Keywords: high temperature, compressive strength, mass loss, recycled brick aggregate
Procedia PDF Downloads 24721738 On the Cluster of the Families of Hybrid Polynomial Kernels in Kernel Density Estimation
Authors: Benson Ade Eniola Afere
Abstract:
Over the years, kernel density estimation has been extensively studied within the context of nonparametric density estimation. The fundamental components of kernel density estimation are the kernel function and the bandwidth. While the mathematical exploration of the kernel component has been relatively limited, its selection and development remain crucial. The Mean Integrated Squared Error (MISE), serving as a measure of discrepancy, provides a robust framework for assessing the effectiveness of any kernel function. A kernel function with a lower MISE is generally considered to perform better than one with a higher MISE. Hence, the primary aim of this article is to create kernels that exhibit significantly reduced MISE when compared to existing classical kernels. Consequently, this article introduces a cluster of hybrid polynomial kernel families. The construction of these proposed kernel functions is carried out heuristically by combining two kernels from the classical polynomial kernel family using probability axioms. We delve into the analysis of error propagation within these kernels. To assess their performance, simulation experiments, and real-life datasets are employed. The obtained results demonstrate that the proposed hybrid kernels surpass their classical kernel counterparts in terms of performance.Keywords: classical polynomial kernels, cluster of families, global error, hybrid Kernels, Kernel density estimation, Monte Carlo simulation
Procedia PDF Downloads 9421737 The Structure and Composition of Plant Communities in Ajluon Forest Reserve in Jordan
Authors: Maher J. Tadros, Yaseen Ananbeh
Abstract:
The study area is located in Ajluon Forest Reserve northern part of Jordan. It consists of Mediterranean hills dominated by open woodlands of oak and pistachio. The aims of the study were to investigate the positive and negative relationships between the locals and the protected area and how it can affect the long-term forest conservation. The main research objectives are to review the impact of establishing Ajloun Forest Reserve on nature conservation and on the livelihood level of local communities around the reserve. The Ajloun forest reserve plays a fundamental role in Ajloun area development. The existence of initiatives of nature conservation in the area supports various socio-economic activities around the reserve that contribute towards the development of local communities in Ajloun area. A part of this research was to conduct a survey to study the impact of Ajloun forest reserve on biodiversity composition. Also, studying the biodiversity content especially for vegetation to determine the economic impacts of Ajloun forest reserve on its surroundings was studied. In this study, several methods were used to fill the objectives including point-centered quarter method which involves selecting randomly 50 plots at the study site. The collected data from the field showed that the absolute density was (1031.24 plant per hectare). Density was recorded and found to be the highest for Quecus coccifera, and relative density of (73.7%), this was followed by Arbutus andrachne and relative density (7.1%), Pistacia palaestina and relative density (10.5%) and Crataegus azarulus (82.5 p/ha) and relative density (5.1%),Keywords: composition, density, frequency, importance value, point-centered quarter, structure, tree cover
Procedia PDF Downloads 27921736 Effect of Varying Stocking Densities and Vitamin C (Ascorbic Acid) Supplementation on Growth Performance of Japanese Quails
Authors: T. S. Olugbemi, T. S. Friday, O. O. Olusola
Abstract:
This experiment was carried out to assess the effect of different stocking densities and vitamin C supplementation on the performance of Japanese quails. Five hundred and twenty (520) unsexed quail birds of two (2) weeks of age were allotted randomly into nine (9) groups with 3 replicates each in a 3x3 factorial arrangement (3 stocking density levels and 3 graded vitamin C levels) with densities of 150, 120, 90 cm2/bird(11, 16, 21 birds). During the five weeks growing trial (2- 6 weeks), results showed that stocking density had significant effects on final weight (131.59g compared to 111.10g for the lowest), total and daily weight gain. No significance difference was observed for feed conversion ratio, age at first lay and first egg weight. Observations on haematological parameters (packed cell volume (PCV), total protein (TP), haemoglobin, red blood cell (RBC), lymphocyte, heterophil) on stocking density showed no significant differences. Vitamin C supplementation at 50mg/kg and 100mg/kg did not have any significant effect on the growth performance parameters of growing quails. Stocking density at 150cm2/bird had a better performance with or without vitamin C supplementation hence it is recommended that stocking rates of quails between the ages of 2 – 6 weeks should not be below 150cm2/bird.Keywords: anti-oxidants, performance, stress, stocking density
Procedia PDF Downloads 64721735 Management Practices in Holding Pens in Pig’s Slaughterhouses in the Valle De Aburrá, Antioquia and Animal Welfare
Authors: Natalia Uribe Corrales, Santiago Henao Villegas
Abstract:
Introduction: The management of pigs in the holding pens at the slaughterhouses is a key point to minimize levels of stress and fear, improve efficiency, maintain a good quality of meat and avoid economic losses. Holding pens should guarantee drinking water continuously, a minimum space of 1.2 m2/ animal; As well as an adequate management in the conduction of the animals towards stun. Objective: To characterize the management practices in holding pens in slaughterhouses in the Valle de Aburrá. Methods: A descriptive cross - sectional study was carried out in Valle de Aburrá benefit plants, which were authorized by National Institute for Food and Medicine Surveillance (INVIMA). Variables such as management mechanisms to the pens, time of housing, water supply, load density, vocalization, slips and falls of the animals in the pens and mechanism of conduction towards desensitization were analyzed. Results: 225 pigs were analyzed, finding that 35.6% were lowered with slaps from the trucks to the waiting pens; The lairage time was greater than 10 hours in 16% of the animals; 12.9% of pigs had no water permanently; 40.9% was subjected to a high load density, while 19.6% had a low load density. Regarding aspects of animal welfare, 37.3% presented high vocalizations; 29.3% and 14.2% presented slips or falls respectively. Regarding the mechanism of conduction towards desensitization, slapping was used in 56% and electrical prod in 4%. Conclusions: It is necessary to continue promoting the learning of the densities of load, since both high and low densities generate inconveniences in animal welfare, favoring the appearance of lesions and stress in the animals. Also, to promote the rule of permanent water in the pens and a time of housing less than 10 hours. In relation to the driving mechanisms, it is necessary to continue animal husbandry campaigns, encouraging the use of other alternatives such as boards or panels to assist the movement of pigs.Keywords: animal welfare, quality of meat, swine, waiting pens
Procedia PDF Downloads 19721734 Multi-Scale Damage and Mechanical Behavior of Sheet Molding Compound Composites Subjected to Fatigue, Dynamic, and Post-Fatigue Dynamic Loadings
Authors: M. Shirinbayan, J. Fitoussi, N. Abbasnezhad, A. Lucas, A. Tcharkhtchi
Abstract:
Sheet Molding Compounds (SMCs) with special microstructures are very attractive to use in automobile structures especially when they are accidentally subjected to collision type accidents because of their high energy absorption capacity. These are materials designated as standard SMC, Advanced Sheet Molding Compounds (A-SMC), Low-Density SMC (LD-SMC) and etc. In this study, testing methods have been performed to compare the mechanical responses and damage phenomena of SMC, LD-SMC, and A-SMC under quasi-static and high strain rate tensile tests. The paper also aims at investigating the effect of an initial pre-damage induced by fatigue on the tensile dynamic behavior of A-SMC. In the case of SMCs and A-SMCs, whatever the fibers orientation and applied strain rate are, the first observed phenomenon of damage corresponds to decohesion of the fiber-matrix interface which is followed by coalescence and multiplication of these micro-cracks and their propagations. For LD-SMCs, damage mechanisms depend on the presence of Hollow Glass Microspheres (HGM) and fibers orientation.Keywords: SMC, Sheet Molding Compound, LD-SMC, Low-Density SMC, A-SMC, Advanced Sheet Molding Compounds, HGM, Hollow Glass Microspheres, damage
Procedia PDF Downloads 21121733 Vertical Village Buildings as Sustainable Strategy to Re-Attract Mega-Cities in Developing Countries
Authors: M. J. Eichner, Y. S. Sarhan
Abstract:
Overall study purpose has been the evaluation of ‘Vertical Villages’ as a new sustainable building typology, reducing significantly negative impacts of rapid urbanization processes in third world capital cities. Commonly in fast-growing cities, housing and job supply, educational and recreational opportunities, as well as public transportation infrastructure, are not accommodating rapid population growth, exposing people to high noise and emission polluted living environments with low-quality neighborhoods and a lack of recreational areas. Like many others, Egypt’s capital city Cairo, according to the UN facing annual population growth rates of up to 428.000 people, is struggling to address the general deterioration of urban living conditions. New settlements typologies and urban reconstruction approach hardly follow sustainable urbanization principles or socio-ecologic urbanization models with severe effects not only for inhabitants but also for the local environment and global climate. The authors prove that ‘Vertical Village’ buildings can offer a sustainable solution for increasing urban density with at the same time improving the living quality and urban environment significantly. Inserting them within high-density urban fabrics the ecologic and socio-cultural conditions of low-quality neighborhoods can be transformed towards districts, considering all needs of sustainable and social urban life. This study analyzes existing building typologies in Cairo’s «low quality - high density» districts Ard el Lewa, Dokki and Mohandesen according to benchmarks for sustainable residential buildings, identifying major problems and deficits. In 3 case study design projects, the sustainable transformation potential through ‘Vertical Village’ buildings are laid out and comparative studies show the improvement of the urban microclimate, safety, social diversity, sense of community, aesthetics, privacy, efficiency, healthiness and accessibility. The main result of the paper is that the disadvantages of density and overpopulation in developing countries can be converted with ‘Vertical Village’ buildings into advantages, achieving attractive and environmentally friendly living environments with multiple synergies. The paper is documenting based on scientific criteria that mixed-use vertical building structures, designed according to sustainable principles of low rise housing, can serve as an alternative to convert «low quality - high density» districts in megacities, opening a pathway for governments to achieve sustainable urban transformation goals. Neglected informal urban districts, home to millions of the poorer population groups, can be converted into healthier living and working environments.Keywords: sustainable, architecture, urbanization, urban transformation, vertical village
Procedia PDF Downloads 12521732 Effectiveness of the Use of Polycarboxylic Ether Superplasticizers in High Performance Concrete Containing Silica Fume
Authors: Alya Harichane, Badreddine Harichane
Abstract:
The incorporation of polycarboxylate ether superplasticizer (PCE) and silica fume (SF) in high-performance concretes (HPC) leads to the achievement of remarkable rheological and mechanical improvements. In the fresh state, PCEs are adsorbed on cement particles and dispersants, in turn promoting the workability of the concrete. Silica fume enables a very well compacted concrete to be obtained, which is characterized by high mechanical parameters in its hardened state. Some PCEs are incompatible with silica fume, which can result in the loss of slump and in poor rheological behavior. The main objective of the research is the study of the influence of three types of PCEs, which all have a different molecular architecture, on the rheological and mechanical behavior of high-performance concretes containing 10% of SF as a partial replacement of cement. The results show that the carboxylic density of PCE has an influence on its compatibility with SF.Keywords: polycarboxylate-ether superplasticizer, rheology, compressive strength, high-performance concrete, silica fume
Procedia PDF Downloads 76