Search results for: graph representation of circuit networks
4622 Knowledge Reactor: A Contextual Computing Work in Progress for Eldercare
Authors: Scott N. Gerard, Aliza Heching, Susann M. Keohane, Samuel S. Adams
Abstract:
The world-wide population of people over 60 years of age is growing rapidly. The explosion is placing increasingly onerous demands on individual families, multiple industries and entire countries. Current, human-intensive approaches to eldercare are not sustainable, but IoT and AI technologies can help. The Knowledge Reactor (KR) is a contextual, data fusion engine built to address this and other similar problems. It fuses and centralizes IoT and System of Record/Engagement data into a reactive knowledge graph. Cognitive applications and services are constructed with its multiagent architecture. The KR can scale-up and scaledown, because it exploits container-based, horizontally scalable services for graph store (JanusGraph) and pub-sub (Kafka) technologies. While the KR can be applied to many domains that require IoT and AI technologies, this paper describes how the KR specifically supports the challenging domain of cognitive eldercare. Rule- and machine learning-based analytics infer activities of daily living from IoT sensor readings. KR scalability, adaptability, flexibility and usability are demonstrated.Keywords: ambient sensing, AI, artificial intelligence, eldercare, IoT, internet of things, knowledge graph
Procedia PDF Downloads 1754621 Enhance Engineering Pedagogy in Programming Course via Knowledge Graph-Based Recommender System
Authors: Yan Li
Abstract:
Purpose: There is a lack of suitable recommendation systems to assist engineering teaching. The existing traditional engineering pedagogies lack learning interests for postgraduate students. The knowledge graph-based recommender system aims to enhance postgraduate students’ programming skills, with a focus on programming courses. Design/methodology/approach: The case study will be used as a major research method, and the two case studies will be taken in both two teaching styles of the universities (Zhejiang University and the University of Nottingham Ningbo China), followed by the interviews. Quantitative and qualitative research methods will be combined in this study. Research limitations/implications: The case studies were only focused on two teaching styles universities, which is not comprehensive enough. The subject was limited to postgraduate students. Originality/value: The study collected and analyzed the data from two teaching styles of universities’ perspectives. It explored the challenges of Engineering education and tried to seek potential enhancement.Keywords: knowledge graph and recommender system, engineering pedagogy, programming skills, postgraduate students
Procedia PDF Downloads 744620 AI-Powered Models for Real-Time Fraud Detection in Financial Transactions to Improve Financial Security
Authors: Shanshan Zhu, Mohammad Nasim
Abstract:
Financial fraud continues to be a major threat to financial institutions across the world, causing colossal money losses and undermining public trust. Fraud prevention techniques, based on hard rules, have become ineffective due to evolving patterns of fraud in recent times. Against such a background, the present study probes into distinct methodologies that exploit emergent AI-driven techniques to further strengthen fraud detection. We would like to compare the performance of generative adversarial networks and graph neural networks with other popular techniques, like gradient boosting, random forests, and neural networks. To this end, we would recommend integrating all these state-of-the-art models into one robust, flexible, and smart system for real-time anomaly and fraud detection. To overcome the challenge, we designed synthetic data and then conducted pattern recognition and unsupervised and supervised learning analyses on the transaction data to identify which activities were fishy. With the use of actual financial statistics, we compare the performance of our model in accuracy, speed, and adaptability versus conventional models. The results of this study illustrate a strong signal and need to integrate state-of-the-art, AI-driven fraud detection solutions into frameworks that are highly relevant to the financial domain. It alerts one to the great urgency that banks and related financial institutions must rapidly implement these most advanced technologies to continue to have a high level of security.Keywords: AI-driven fraud detection, financial security, machine learning, anomaly detection, real-time fraud detection
Procedia PDF Downloads 424619 Learning Traffic Anomalies from Generative Models on Real-Time Observations
Authors: Fotis I. Giasemis, Alexandros Sopasakis
Abstract:
This study focuses on detecting traffic anomalies using generative models applied to real-time observations. By integrating a Graph Neural Network with an attention-based mechanism within the Spatiotemporal Generative Adversarial Network framework, we enhance the capture of both spatial and temporal dependencies in traffic data. Leveraging minute-by-minute observations from cameras distributed across Gothenburg, our approach provides a more detailed and precise anomaly detection system, effectively capturing the complex topology and dynamics of urban traffic networks.Keywords: traffic, anomaly detection, GNN, GAN
Procedia PDF Downloads 84618 A Method of Representing Knowledge of Toolkits in a Pervasive Toolroom Maintenance System
Authors: A. Mohamed Mydeen, Pallapa Venkataram
Abstract:
The learning process needs to be so pervasive to impart the quality in acquiring the knowledge about a subject by making use of the advancement in the field of information and communication systems. However, pervasive learning paradigms designed so far are system automation types and they lack in factual pervasive realm. Providing factual pervasive realm requires subtle ways of teaching and learning with system intelligence. Augmentation of intelligence with pervasive learning necessitates the most efficient way of representing knowledge for the system in order to give the right learning material to the learner. This paper presents a method of representing knowledge for Pervasive Toolroom Maintenance System (PTMS) in which a learner acquires sublime knowledge about the various kinds of tools kept in the toolroom and also helps for effective maintenance of the toolroom. First, we explicate the generic model of knowledge representation for PTMS. Second, we expound the knowledge representation for specific cases of toolkits in PTMS. We have also presented the conceptual view of knowledge representation using ontology for both generic and specific cases. Third, we have devised the relations for pervasive knowledge in PTMS. Finally, events are identified in PTMS which are then linked with pervasive data of toolkits based on relation formulated. The experimental environment and case studies show the accuracy and efficient knowledge representation of toolkits in PTMS.Keywords: knowledge representation, pervasive computing, agent technology, ECA rules
Procedia PDF Downloads 3384617 Transfer of Electrical Energy by Magnetic Induction
Authors: Carlos Oliveira Santiago Filho, Ciro Egoavil, Eduardo Oliveira, Jéferson Galdino, Moises Galileu, Tiago Oliveira Correa
Abstract:
Transfer of Electrical Energy through resonant inductive magnetic coupling is demonstrated experimentally in a system containing coil primary for transmission and secondary reception. The topology used in the prototype of the Class-E amplifier, has been identified as optimal for power transfer applications. Characteristic of the inductor and the load are defined by the requirements of the resonant inductive system. The frequency limitation the of circuit restricts unloaded “Q-Factor”, quality factor of the coils and thus the link efficiency. With a suitable circuit, copper coil unloaded Q-Factors of over 1,000 can be achieved in the low Mhz region, enabling a cost-effective high Q coil assembly. The circuit is capable system capable of transmitting energy with direct current to load efficiency above 60% at 2 Mhz.Keywords: magnetic induction, transfer of electrical energy, magnetic coupling, Q-Factor
Procedia PDF Downloads 5184616 Transgender Community in Pakistan through the Lens of Television Dramas
Authors: Ashbeelah Shafaqat Ali
Abstract:
Pakistan is a country where the transgender community has not been accepted as a third gender yet, but in recent years Pakistani drama industry has taken an initiative to include Transgender characters in the past few years. This research based on qualitative method i.e. content analysis and in-depth interviews investigates the depiction of transgender community in Pakistani television dramas. This study examined two dramas i.e.' Khuda Mera Bhi Hai' and 'Alif Allah Aur Insaan' to analyze the representation of transgender community whereas, in-depth Interviews from 15 transgender people lived in Lahore to observe their opinion regarding their representation in Pakistani television dramas. Snow-ball sampling technique was used for conducting interviews from the transgender community. The results concluded that transgender community did not get equal coverage in Pakistani television dramas but inclusion as characters were observed. This study is helpful in providing a base for observing role of Pakistani television dramas in the development of transgender identity. The major finding revealed is that the inclusion of representation of transgender community in Pakistani television dramas has indicated a successful development towards positive representation. Although, it was suggested by the interviewers that before producing a television drama, appropriate research must be conducted to depict the real life story, problems and struggles of the transgender community. Furthermore, it was analyzed that only fair and equal representation of transgender community by Pakistani drama industry can be beneficial in promoting the third gender rights in the society.Keywords: Pakistani dramas, portrayal, stereotypes, transgender
Procedia PDF Downloads 1874615 An Approach for Multilayered Ecological Networks
Authors: N. F. F. Ebecken, G. C. Pereira
Abstract:
Although networks provide a powerful approach to the study of a wide variety of ecological systems, their formulation usually does not include various types of interactions, interactions that vary in space and time, and interconnected systems such as networks. The emerging field of 'multilayer networks' provides a natural framework for extending ecological systems analysis to include these multiple layers of complexity as it specifically allows for differentiation and modeling of intralayer and interlayer connectivity. The structure provides a set of concepts and tools that can be adapted and applied to the ecology, facilitating research in high dimensionality, heterogeneous systems in nature. Here, ecological multilayer networks are formally defined based on a review of prior and related approaches, illustrates their application and potential with existing data analyzes, and discusses limitations, challenges, and future applications. The integration of multilayer network theory into ecology offers a largely untapped potential to further address ecological complexity, to finally provide new theoretical and empirical insights into the architecture and dynamics of ecological systems.Keywords: ecological networks, multilayered networks, sea ecology, Brazilian Coastal Area
Procedia PDF Downloads 1554614 Artificial Neural Networks in Environmental Psychology: Application in Architectural Projects
Authors: Diego De Almeida Pereira, Diana Borchenko
Abstract:
Artificial neural networks are used for many applications as they are able to learn complex nonlinear relationships between input and output data. As the number of neurons and layers in a neural network increases, it is possible to represent more complex behaviors. The present study proposes that artificial neural networks are a valuable tool for architecture and engineering professionals concerned with understanding how buildings influence human and social well-being based on theories of environmental psychology.Keywords: environmental psychology, architecture, neural networks, human and social well-being
Procedia PDF Downloads 4964613 Performance Study of Cascade Refrigeration System Using Alternative Refrigerants
Authors: Gulshan Sachdeva, Vaibhav Jain, S. S. Kachhwaha
Abstract:
Cascade refrigeration systems employ series of single stage vapor compression units which are thermally coupled with evaporator/condenser cascades. Different refrigerants are used in each of the circuit depending on the optimum characteristics shown by the refrigerant for a particular application. In the present research study, a steady state thermodynamic model is developed which simulates the working of an actual cascade system. The model provides COP and all other system parameters like total compressor work, temperature, pressure, enthalpy and entropy at different state points. The working fluid in Low Temperature Circuit (LTC) is CO2 (R744) while ammonia (R717), propane (R290), propylene (R1270), R404A and R12 are the refrigerants in High Temperature Circuit (HTC). The performance curves of ammonia, propane, propylene, and R404A are compared with R12 to find its nearest substitute. Results show that ammonia is the best substitute of R12.Keywords: cascade system, refrigerants, thermodynamic model, production engineering
Procedia PDF Downloads 3614612 Comparison Between the Radiation Resistance of n/p and p/n InP Solar Cell
Authors: Mazouz Halima, Belghachi Abdrahmane
Abstract:
Effects of electron irradiation-induced deep level defects have been studied on both n/p and p/n indium phosphide solar cells with very thin emitters. The simulation results show that n/p structure offers a somewhat better short circuit current but the p/n structure offers improved circuit voltage, not only before electron irradiation, but also after 1MeV electron irradiation with 5.1015 fluence. The simulation also shows that n/p solar cell structure is more resistant than that of p/n structure.Keywords: InP solar cell, p/n and n/p structure, electron irradiation, output parameters
Procedia PDF Downloads 5504611 Lexical Semantic Analysis to Support Ontology Modeling of Maintenance Activities– Case Study of Offshore Riser Integrity
Authors: Vahid Ebrahimipour
Abstract:
Word representation and context meaning of text-based documents play an essential role in knowledge modeling. Business procedures written in natural language are meant to store technical and engineering information, management decision and operation experience during the production system life cycle. Context meaning representation is highly dependent upon word sense, lexical relativity, and sematic features of the argument. This paper proposes a method for lexical semantic analysis and context meaning representation of maintenance activity in a mass production system. Our approach constructs a straightforward lexical semantic approach to analyze facilitates semantic and syntactic features of context structure of maintenance report to facilitate translation, interpretation, and conversion of human-readable interpretation into computer-readable representation and understandable with less heterogeneity and ambiguity. The methodology will enable users to obtain a representation format that maximizes shareability and accessibility for multi-purpose usage. It provides a contextualized structure to obtain a generic context model that can be utilized during the system life cycle. At first, it employs a co-occurrence-based clustering framework to recognize a group of highly frequent contextual features that correspond to a maintenance report text. Then the keywords are identified for syntactic and semantic extraction analysis. The analysis exercises causality-driven logic of keywords’ senses to divulge the structural and meaning dependency relationships between the words in a context. The output is a word contextualized representation of maintenance activity accommodating computer-based representation and inference using OWL/RDF.Keywords: lexical semantic analysis, metadata modeling, contextual meaning extraction, ontology modeling, knowledge representation
Procedia PDF Downloads 1054610 A Lifetime-Enhancing Monitoring Node Distribution Using Minimum Spanning Tree in Mobile Ad Hoc Networks
Authors: Sungchul Ha, Hyunwoo Kim
Abstract:
In mobile ad hoc networks, all nodes in a network only have limited resources and calculation ability. Therefore communication topology which have long lifetime is good for all nodes in mobile ad hoc networks. There are a variety of researches on security problems in wireless ad hoc networks. The existing many researches try to make efficient security schemes to reduce network power consumption and enhance network lifetime. Because a new node can join the network at any time, the wireless ad hoc networks are exposed to various threats and can be destroyed by attacks. Resource consumption is absolutely necessary to secure networks, but more resource consumption can be a critical problem to network lifetime. This paper focuses on efficient monitoring node distribution to enhance network lifetime in wireless ad hoc networks. Since the wireless ad hoc networks cannot use centralized infrastructure and security systems of wired networks, a new special IDS scheme is necessary. The scheme should not only cover all nodes in a network but also enhance the network lifetime. In this paper, we propose an efficient IDS node distribution scheme using minimum spanning tree (MST) method. The simulation results show that the proposed algorithm has superior performance in comparison with existing algorithms.Keywords: MANETs, IDS, power control, minimum spanning tree
Procedia PDF Downloads 3724609 Progressive Multimedia Collection Structuring via Scene Linking
Authors: Aman Berhe, Camille Guinaudeau, Claude Barras
Abstract:
In order to facilitate information seeking in large collections of multimedia documents with long and progressive content (such as broadcast news or TV series), one can extract the semantic links that exist between semantically coherent parts of documents, i.e., scenes. The links can then create a coherent collection of scenes from which it is easier to perform content analysis, topic extraction, or information retrieval. In this paper, we focus on TV series structuring and propose two approaches for scene linking at different levels of granularity (episode and season): a fuzzy online clustering technique and a graph-based community detection algorithm. When evaluated on the two first seasons of the TV series Game of Thrones, we found that the fuzzy online clustering approach performed better compared to graph-based community detection at the episode level, while graph-based approaches show better performance at the season level.Keywords: multimedia collection structuring, progressive content, scene linking, fuzzy clustering, community detection
Procedia PDF Downloads 1014608 The Different Improvement of Numerical Magnitude and Spatial Representation of Numbers to Symbolic Approximate Arithmetic: A Training Study of Preschooler
Abstract:
Spatial representation of numbers and numerical magnitude are important for preschoolers’ mathematical ability. Mental number line, a typical index to measure numbers spatial representation, and numerical comparison are both related to arithmetic obviously. However, they seem to rely on different mechanisms and probably influence arithmetic through different mechanisms. In line with this idea, preschool children were trained with two tasks to investigate which one is more important for approximate arithmetic. The training of numerical processing and number line estimation were proved to be effective. They both improved the ability of approximate arithmetic. When the difficulty of approximate arithmetic was taken into account, the performance in number line training group was not significantly different among three levels. However, two harder levels achieved significance in numerical comparison training group. Thus, comparing spatial representation ability, symbolic approximation arithmetic relies more on numerical magnitude. Educational implications of the study were discussed.Keywords: approximate arithmetic, mental number line, numerical magnitude, preschooler
Procedia PDF Downloads 2514607 A Tale of Seven Districts: Reviewing The Past, Present and Future of Patent Litigation Filings to Form a Two-Step Burden-Shifting Framework for 28 U.S.C. § 1404(a)
Authors: Timothy T. Hsieh
Abstract:
Current patent venue transfer laws under 28 U.S.C. § 1404(a) e.g., the Gilbert factors from Gulf Oil Corp. v. Gilbert, 330 U.S. 501 (1947) are too malleable in that they often lead to frequent mandamus orders from the U.S. Court of Appeals for the Federal Circuit (“Federal Circuit”) overturning district court rulings on venue transfer motions. Thus, this paper proposes a more robust two-step burden-shifting framework that replaces the eight Gilbert factors. Moreover, a brief history of venue transfer patterns in the seven most active federal patent district courts is covered, with special focus devoted to the venue transfer orders from Judge Alan D Albright of the U.S. District Court for the Western District of Texas. A comprehensive data summary of 45 case sets where the Federal Circuit ruled on writs of mandamus involving Judge Albright’s transfer orders is subsequently provided, with coverage summaries of certain cases including four precedential ones from the Federal Circuit. This proposed two-step burden shifting framework is then applied to these venue transfer cases, as well as Federal Circuit mandamus orders ruling on those decisions. Finally, alternative approaches to remedying the frequent reversals for venue transfer will be discussed, including potential legislative solutions, adjustments to common law framework approaches to venue transfer, deference to the inherent powers of Article III U.S. District Judge, and a unified federal patent district court. Overall, this paper seeks to offer a more robust and consistent three-step burden-shifting framework for venue transfer and for the Federal Circuit to follow in administering mandamus orders, which might change somewhat in light of Western District of Texas Chief Judge Orlando Garcia’s order on redistributing Judge Albright’s patent cases.Keywords: Patent law, venue, judge Alan Albright, minimum contacts, western district of Texas
Procedia PDF Downloads 1094606 The Effect of Closed Circuit Television Image Patch Layout on Performance of a Simulated Train-Platform Departure Task
Authors: Aaron J. Small, Craig A. Fletcher
Abstract:
This study investigates the effect of closed circuit television (CCTV) image patch layout on performance of a simulated train-platform departure task. The within-subjects experimental design measures target detection rate and response latency during a CCTV visual search task conducted as part of the procedure for safe train dispatch. Three interface designs were developed by manipulating CCTV image patch layout. Eye movements, perceived workload and system usability were measured across experimental conditions. Task performance was compared to identify significant differences between conditions. The results of this study have not been determined.Keywords: rail human factors, workload, closed circuit television, platform departure, attention, information processing, interface design
Procedia PDF Downloads 1684605 Arabic Text Classification: Review Study
Authors: M. Hijazi, A. Zeki, A. Ismail
Abstract:
An enormous amount of valuable human knowledge is preserved in documents. The rapid growth in the number of machine-readable documents for public or private access requires the use of automatic text classification. Text classification can be defined as assigning or structuring documents into a defined set of classes known in advance. Arabic text classification methods have emerged as a natural result of the existence of a massive amount of varied textual information written in the Arabic language on the web. This paper presents a review on the published researches of Arabic Text Classification using classical data representation, Bag of words (BoW), and using conceptual data representation based on semantic resources such as Arabic WordNet and Wikipedia.Keywords: Arabic text classification, Arabic WordNet, bag of words, conceptual representation, semantic relations
Procedia PDF Downloads 4264604 Inverter IGBT Open–Circuit Fault Detection Using Park's Vectors Enhanced by Polar Coordinates
Authors: Bendiabdellah Azzeddine, Cherif Bilal Djamal Eddine
Abstract:
The three-phase power converter voltage structure is widely used in many power applications but its failure can lead to partial or total loss of control of the phase currents and can cause serious system malfunctions or even a complete system shutdown. To ensure continuity of service in all circumstances, effective and rapid techniques of detection and location of inverter fault is to be implemented. The present paper is dedicated to open-circuit fault detection in a three-phase two-level inverter fed induction motor. For detection purpose, the proposed contribution addresses the Park’s current vectors associated to a polar coordinates calculation tool to compute the exact value of the fault angle corresponding directly to the faulty IGBT switch. The merit of the proposed contribution is illustrated by experimental results.Keywords: diagnosis, detection, Park’s vectors, polar coordinates, open-circuit fault, inverter, IGBT switch
Procedia PDF Downloads 4024603 Graph-Oriented Summary for Optimized Resource Description Framework Graphs Streams Processing
Authors: Amadou Fall Dia, Maurras Ulbricht Togbe, Aliou Boly, Zakia Kazi Aoul, Elisabeth Metais
Abstract:
Existing RDF (Resource Description Framework) Stream Processing (RSP) systems allow continuous processing of RDF data issued from different application domains such as weather station measuring phenomena, geolocation, IoT applications, drinking water distribution management, and so on. However, processing window phase often expires before finishing the entire session and RSP systems immediately delete data streams after each processed window. Such mechanism does not allow optimized exploitation of the RDF data streams as the most relevant and pertinent information of the data is often not used in a due time and almost impossible to be exploited for further analyzes. It should be better to keep the most informative part of data within streams while minimizing the memory storage space. In this work, we propose an RDF graph summarization system based on an explicit and implicit expressed needs through three main approaches: (1) an approach for user queries (SPARQL) in order to extract their needs and group them into a more global query, (2) an extension of the closeness centrality measure issued from Social Network Analysis (SNA) to determine the most informative parts of the graph and (3) an RDF graph summarization technique combining extracted user query needs and the extended centrality measure. Experiments and evaluations show efficient results in terms of memory space storage and the most expected approximate query results on summarized graphs compared to the source ones.Keywords: centrality measures, RDF graphs summary, RDF graphs stream, SPARQL query
Procedia PDF Downloads 2034602 Efficient Energy Extraction Circuit for Impact Harvesting from High Impedance Sources
Authors: Sherif Keddis, Mohamed Azzam, Norbert Schwesinger
Abstract:
Harvesting mechanical energy from footsteps or other impacts is a possibility to enable wireless autonomous sensor nodes. These can be used for a highly efficient control of connected devices such as lights, security systems, air conditioning systems or other smart home applications. They can also be used for accurate location or occupancy monitoring. Converting the mechanical energy into useful electrical energy can be achieved using the piezoelectric effect offering simple harvesting setups and low deflections. The challenge facing piezoelectric transducers is the achievable amount of energy per impact in the lower mJ range and the management of such low energies. Simple setups for energy extraction such as a full wave bridge connected directly to a capacitor are problematic due to the mismatch between high impedance sources and low impedance storage elements. Efficient energy circuits for piezoelectric harvesters are commonly designed for vibration harvesters and require periodic input energies with predictable frequencies. Due to the sporadic nature of impact harvesters, such circuits are not well suited. This paper presents a self-powered circuit that avoids the impedance mismatch during energy extraction by disconnecting the load until the source reaches its charge peak. The switch is implemented with passive components and works independent from the input frequency. Therefore, this circuit is suited for impact harvesting and sporadic inputs. For the same input energy, this circuit stores 150% of the energy in comparison to a directly connected capacitor to a bridge rectifier. The total efficiency, defined as the ratio of stored energy on a capacitor to available energy measured across a matched resistive load, is 63%. Although the resulting energy is already sufficient to power certain autonomous applications, further optimization of the circuit are still under investigation in order to improve the overall efficiency.Keywords: autonomous sensors, circuit design, energy harvesting, energy management, impact harvester, piezoelectricity
Procedia PDF Downloads 1544601 Synchronization of Semiconductor Laser Networks
Authors: R. M. López-Gutiérrez, L. Cardoza-Avendaño, H. Cervantes-de Ávila, J. A. Michel-Macarty, C. Cruz-Hernández, A. Arellano-Delgado, R. Carmona-Rodríguez
Abstract:
In this paper, synchronization of multiple chaotic semiconductor lasers is achieved by appealing to complex system theory. In particular, we consider dynamical networks composed by semiconductor laser, as interconnected nodes, where the interaction in the networks are defined by coupling the first state of each node. An interesting case is synchronized with master-slave configuration in star topology. Nodes of these networks are modeled for the laser and simulated by Matlab. These results are applicable to private communication.Keywords: chaotic laser, network, star topology, synchronization
Procedia PDF Downloads 5664600 A Secure Routing Algorithm for Underwater Wireless Sensor Networks
Authors: Seyed Mahdi Jameii
Abstract:
Underwater wireless sensor networks have been attracting the interest of many researchers lately, and the past three decades have beheld the rapid progress of underwater acoustic communication. One of the major problems in underwater wireless sensor networks is how to transfer data from the moving node to the base stations and choose the optimized route for data transmission. Secure routing in underwater wireless sensor network (UWCNs) is necessary for packet delivery. Some routing protocols are proposed for underwater wireless sensor networks. However, a few researches have been done on secure routing in underwater sensor networks. In this article, a secure routing protocol is provided to resist against wormhole and sybil attacks. The results indicated acceptable performance in terms of increasing the packet delivery ratio with regards to the attacks, increasing network lifetime by creating balance in the network energy consumption, high detection rates against the attacks, and low-end to end delay.Keywords: attacks, routing, security, underwater wireless sensor networks
Procedia PDF Downloads 4184599 A Comprehensive Study and Evaluation on Image Fashion Features Extraction
Authors: Yuanchao Sang, Zhihao Gong, Longsheng Chen, Long Chen
Abstract:
Clothing fashion represents a human’s aesthetic appreciation towards everyday outfits and appetite for fashion, and it reflects the development of status in society, humanity, and economics. However, modelling fashion by machine is extremely challenging because fashion is too abstract to be efficiently described by machines. Even human beings can hardly reach a consensus about fashion. In this paper, we are dedicated to answering a fundamental fashion-related problem: what image feature best describes clothing fashion? To address this issue, we have designed and evaluated various image features, ranging from traditional low-level hand-crafted features to mid-level style awareness features to various current popular deep neural network-based features, which have shown state-of-the-art performance in various vision tasks. In summary, we tested the following 9 feature representations: color, texture, shape, style, convolutional neural networks (CNNs), CNNs with distance metric learning (CNNs&DML), AutoEncoder, CNNs with multiple layer combination (CNNs&MLC) and CNNs with dynamic feature clustering (CNNs&DFC). Finally, we validated the performance of these features on two publicly available datasets. Quantitative and qualitative experimental results on both intra-domain and inter-domain fashion clothing image retrieval showed that deep learning based feature representations far outweigh traditional hand-crafted feature representation. Additionally, among all deep learning based methods, CNNs with explicit feature clustering performs best, which shows feature clustering is essential for discriminative fashion feature representation.Keywords: convolutional neural network, feature representation, image processing, machine modelling
Procedia PDF Downloads 1394598 Application of MoM-GEC Method for Electromagnetic Study of Planar Microwave Structures: Shielding Application
Authors: Ahmed Nouainia, Mohamed Hajji, Taoufik Aguili
Abstract:
In this paper, an electromagnetic analysis is presented for describing the influence of shielding in a rectangular waveguide. A hybridization based on the method of moments combined to the generalized equivalent circuit MoM-GEC is used to model the problem. This is validated by applying the MoM-GEC hybridization to investigate a diffraction structure. It consists of electromagnetic diffraction by an iris in a rectangular waveguide. Numerical results are shown and discussed and a comparison with FEM and Marcuvitz methods is achieved.Keywords: method MoM-GEC, waveguide, shielding, equivalent circuit
Procedia PDF Downloads 3744597 Single-Inductor Multi-Output Converters with Four-Level Output Voltages
Authors: Yasunori Kobori, Murong Li, Feng Zhao, Shu Wu, Nobukazu Takai, Haruo Kobayashi
Abstract:
This paper proposes an electrolytic capacitor-less transformer-less AC-DC LED driver with a current ripple canceller. The proposed LED driver includes a diode bridge, a buck-boost converter, a negative feedback controller and a current ripple cancellation circuit. The current ripple canceller works as a bi-directional current converter using a sub-inductor, a sub-capacitor and two switches for controlling current flow. LED voltage is controlled in order to regulate LED current by the negative feedback controller using a current sense resistor. There are two capacitors with capacitance of 5 uF. We describe circuit topologies, operation principles and simulation results for our proposed circuit. In addition, we show the line regulation for input voltage variation from 85V to 130V. The output voltage ripple is 2V and the LED current ripple is 65 mA which is less than 20% of the average of LED current of 350 mA.Keywords: DC-DC buck converter, four-level output voltage, single inductor multi output (SIMO), switching converter
Procedia PDF Downloads 5484596 A Sentence-to-Sentence Relation Network for Recognizing Textual Entailment
Authors: Isaac K. E. Ampomah, Seong-Bae Park, Sang-Jo Lee
Abstract:
Over the past decade, there have been promising developments in Natural Language Processing (NLP) with several investigations of approaches focusing on Recognizing Textual Entailment (RTE). These models include models based on lexical similarities, models based on formal reasoning, and most recently deep neural models. In this paper, we present a sentence encoding model that exploits the sentence-to-sentence relation information for RTE. In terms of sentence modeling, Convolutional neural network (CNN) and recurrent neural networks (RNNs) adopt different approaches. RNNs are known to be well suited for sequence modeling, whilst CNN is suited for the extraction of n-gram features through the filters and can learn ranges of relations via the pooling mechanism. We combine the strength of RNN and CNN as stated above to present a unified model for the RTE task. Our model basically combines relation vectors computed from the phrasal representation of each sentence and final encoded sentence representations. Firstly, we pass each sentence through a convolutional layer to extract a sequence of higher-level phrase representation for each sentence from which the first relation vector is computed. Secondly, the phrasal representation of each sentence from the convolutional layer is fed into a Bidirectional Long Short Term Memory (Bi-LSTM) to obtain the final sentence representations from which a second relation vector is computed. The relations vectors are combined and then used in then used in the same fashion as attention mechanism over the Bi-LSTM outputs to yield the final sentence representations for the classification. Experiment on the Stanford Natural Language Inference (SNLI) corpus suggests that this is a promising technique for RTE.Keywords: deep neural models, natural language inference, recognizing textual entailment (RTE), sentence-to-sentence relation
Procedia PDF Downloads 3484595 Analytical Modeling of Equivalent Magnetic Circuit in Multi-segment and Multi-barrier Synchronous Reluctance Motor
Authors: Huai-Cong Liu,Tae Chul Jeong,Ju Lee
Abstract:
This paper describes characteristic analysis of a synchronous reluctance motor (SynRM)’s rotor with the Multi-segment and Multi-layer structure. The magnetic-saturation phenomenon in SynRM is often appeared. Therefore, when modeling analysis of SynRM the calculation of nonlinear magnetic field needs to be considered. An important influence factor on the convergence process is how to determine the relative permeability. An improved method, which ensures the calculation, is convergence by linear iterative method for saturated magnetic field. If there are inflection points on the magnetic curve,an optimum convergence method of solution for nonlinear magnetic field was provided. Then the equivalent magnetic circuit is calculated, and d,q-axis inductance can be got. At last, this process is applied to design a 7.5Kw SynRM and its validity is verified by comparing with the result of finite element method (FEM) and experimental test data.Keywords: SynRM, magnetic-saturation, magnetic circuit, analytical modeling
Procedia PDF Downloads 5034594 Ontology-Based Approach for Temporal Semantic Modeling of Social Networks
Authors: Souâad Boudebza, Omar Nouali, Faiçal Azouaou
Abstract:
Social networks have recently gained a growing interest on the web. Traditional formalisms for representing social networks are static and suffer from the lack of semantics. In this paper, we will show how semantic web technologies can be used to model social data. The SemTemp ontology aligns and extends existing ontologies such as FOAF, SIOC, SKOS and OWL-Time to provide a temporal and semantically rich description of social data. We also present a modeling scenario to illustrate how our ontology can be used to model social networks.Keywords: ontology, semantic web, social network, temporal modeling
Procedia PDF Downloads 3874593 Routing Metrics and Protocols for Wireless Mesh Networks
Authors: Samira Kalantary, Zohre Saatzade
Abstract:
Wireless Mesh Networks (WMNs) are low-cost access networks built on cooperative routing over a backbone composed of stationary wireless routers. WMNs must deal with the highly unstable wireless medium. Thus, routing metrics and protocols are evolving by designing algorithms that consider link quality to choose the best routes. In this work, we analyse the state of the art in WMN metrics and propose taxonomy for WMN routing protocols. Performance measurements of a wireless mesh network deployed using various routing metrics are presented and corroborate our analysis.Keywords: wireless mesh networks, routing protocols, routing metrics, bioinformatics
Procedia PDF Downloads 453