Search results for: genetic analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28819

Search results for: genetic analysis

28489 Estimation of Heritability and Repeatability for Pre-Weaning Body Weights of Domestic Rabbits Raised in Derived Savanna Zone of Nigeria

Authors: Adewale I. Adeolu, Vivian U. Oleforuh-Okoleh, Sylvester N. Ibe

Abstract:

Heritability and repeatability estimates are needed for the genetic evaluation of livestock populations and consequently for the purpose of upgrading or improvement. Pooled data on 604 progeny from three consecutive parities of purebred rabbit breeds (Chinchilla, Dutch and New Zealand white) raised in Derived Savanna Zone of Nigeria were used to estimate heritability and repeatability for pre-weaning body weights between 1st and 8th week of age. Traits studied include Individual kit weight at birth (IKWB), 2nd week (IK2W), 4th week (IK4W), 6th week (IK6W) and 8th week (IK8W). Nested random effects analysis of (Co)variances as described by Statistical Analysis System (SAS) were employed in the estimation. Respective heritability estimates from the sire component (h2s) and repeatability (R) as intra-class correlations of repeated measurements from the three parties for IKWB, IK2W, IK4W and IK8W are 0.59±0.24, 0.55±0.24, 0.93±0.31, 0.28±0.17, 0.64±0.26 and 0.12±0.14, 0.05±0.14, 0.58±0.02, 0.60±0.11, 0.20±0.14. Heritability and repeatability (except R for IKWB and IK2W) estimates are moderate to high. In conclusion, since pre-weaning body weights in the present study tended to be moderately to highly heritable and repeatable, improvement of rabbits raised in derived savanna zone can be realized through genetic selection criterions.

Keywords: heritability, nested design, parity, pooled data, repeatability

Procedia PDF Downloads 147
28488 Genodata: The Human Genome Variation Using BigData

Authors: Surabhi Maiti, Prajakta Tamhankar, Prachi Uttam Mehta

Abstract:

Since the accomplishment of the Human Genome Project, there has been an unparalled escalation in the sequencing of genomic data. This project has been the first major vault in the field of medical research, especially in genomics. This project won accolades by using a concept called Bigdata which was earlier, extensively used to gain value for business. Bigdata makes use of data sets which are generally in the form of files of size terabytes, petabytes, or exabytes and these data sets were traditionally used and managed using excel sheets and RDBMS. The voluminous data made the process tedious and time consuming and hence a stronger framework called Hadoop was introduced in the field of genetic sciences to make data processing faster and efficient. This paper focuses on using SPARK which is gaining momentum with the advancement of BigData technologies. Cloud Storage is an effective medium for storage of large data sets which is generated from the genetic research and the resultant sets produced from SPARK analysis.

Keywords: human genome project, Bigdata, genomic data, SPARK, cloud storage, Hadoop

Procedia PDF Downloads 259
28487 An Application of Integrated Multi-Objective Particles Swarm Optimization and Genetic Algorithm Metaheuristic through Fuzzy Logic for Optimization of Vehicle Routing Problems in Sugar Industry

Authors: Mukhtiar Singh, Sumeet Nagar

Abstract:

Vehicle routing problem (VRP) is a combinatorial optimization and nonlinear programming problem aiming to optimize decisions regarding given set of routes for a fleet of vehicles in order to provide cost-effective and efficient delivery of both services and goods to the intended customers. This paper proposes the application of integrated particle swarm optimization (PSO) and genetic optimization algorithm (GA) to address the Vehicle routing problem in sugarcane industry in India. Suger industry is very prominent agro-based industry in India due to its impacts on rural livelihood and estimated to be employing around 5 lakhs workers directly in sugar mills. Due to various inadequacies, inefficiencies and inappropriateness associated with the current vehicle routing model it costs huge money loss to the industry which needs to be addressed in proper context. The proposed algorithm utilizes the crossover operation that originally appears in genetic algorithm (GA) to improve its flexibility and manipulation more readily and avoid being trapped in local optimum, and simultaneously for improving the convergence speed of the algorithm, level set theory is also added to it. We employ the hybrid approach to an example of VRP and compare its result with those generated by PSO, GA, and parallel PSO algorithms. The experimental comparison results indicate that the performance of hybrid algorithm is superior to others, and it will become an effective approach for solving discrete combinatory problems.

Keywords: fuzzy logic, genetic algorithm, particle swarm optimization, vehicle routing problem

Procedia PDF Downloads 394
28486 Genomic Diversity and Relationship among Arabian Peninsula Dromedary Camels Using Full Genome Sequencing Approach

Authors: H. Bahbahani, H. Musa, F. Al Mathen

Abstract:

The dromedary camels (Camelus dromedarius) are single-humped even-toed ungulates populating the African Sahara, Arabian Peninsula, and Southwest Asia. The genome of this desert-adapted species has been minimally investigated using autosomal microsatellite and mitochondrial DNA markers. In this study, the genomes of 33 dromedary camel samples from different parts of the Arabian Peninsula were sequenced using Illumina Next Generation Sequencing (NGS) platform. These data were combined with Genotyping-by-Sequencing (GBS) data from African (Sudanese) dromedaries to investigate the genomic relationship between African and Arabian Peninsula dromedary camels. Principle Component Analysis (PCA) and average genome-wide admixture analysis were be conducted on these data to tackle the objectives of these studies. Both of the two analyses conducted revealed phylogeographic distinction between these two camel populations. However, no breed-wise genetic classification has been revealed among the African (Sudanese) camel breeds. The Arabian Peninsula camel populations also show higher heterozygosity than the Sudanese camels. The results of this study explain the evolutionary history and migration of African dromedary camels from their center of domestication in the southern Arabian Peninsula. These outputs help scientists to further understand the evolutionary history of dromedary camels, which might impact in conserving the favorable genetic of this species.

Keywords: dromedary, genotyping-by-sequencing, Arabian Peninsula, Sudan

Procedia PDF Downloads 205
28485 A Case Study of Misinterpretation of Results in Forensic DNA Cases Due to Expression of Y- Chromosome in Females

Authors: Garima Chaudhary

Abstract:

The gender of an individual in forensic DNA analysis is normally accessed by using the STR multiplexes with the incorporated gender based marker amelogenin or in other words by presence or absence of Y-Chromosome, but it may not be true in all the cases. We hereby report an interesting case of a phenotypic female carrying a male karyotype (46XY). In the alleged murder case, the deceased female with XY genotype was noticed. The expression of 18 Y-linked genes was studied to measure the extent of expression. Expression at 4 loci was observed that might have caused the misinterpretation in forensic casework. This clinical situation of the deceased in this case was diagnosed as testicular feminization syndrome, which characterize a female phenotype with a male karyotype (46, XY). Most of these cases have SRY (testis determining factor). The genetic explanation of this phenomenon is not very clear. Here, we are discussing the impact of such situations of genetic discrepancy in forensic interpretation of results. In the presented murder case of a phenotypic female, sexual assault was also suspected. For confirmation vaginal swabs and micro slides were also sent to us for DNA examination. After DNA analysis using STR markers, Y-chromosome was detected in the samples which supporting the suspicion of sexual assault before murder. When the reference blood sample of the deceased was analyzed, it was found to be case of testicular feminization syndrome. Interesting inferences were made from the results obtained.

Keywords: DNA profiling, forensic case study, Y chromosome, females

Procedia PDF Downloads 228
28484 Use of Improved Genetic Algorithm in Cloud Computing to Reduce Energy Consumption in Migration of Virtual Machines

Authors: Marziyeh Bahrami, Hamed Pahlevan Hsseini, Behnam Ghamami, Arman Alvanpour, Hamed Ezzati, Amir Salar Sadeghi

Abstract:

One of the ways to increase the efficiency of services in the system of agents and, of course, in the world of cloud computing, is to use virtualization techniques. The aim of this research is to create changes in cloud computing services that will reduce as much as possible the energy consumption related to the migration of virtual machines and, in some way, the energy related to the allocation of resources and reduce the amount of pollution. So far, several methods have been proposed to increase the efficiency of cloud computing services in order to save energy in the cloud environment. The method presented in this article tries to prevent energy consumption by data centers and the subsequent production of carbon and biological pollutants as much as possible by increasing the efficiency of cloud computing services. The results show that the proposed algorithm, using the improvement in virtualization techniques and with the help of a genetic algorithm, improves the efficiency of cloud services in the matter of migrating virtual machines and finally saves consumption. becomes energy.

Keywords: consumption reduction, cloud computing, genetic algorithm, live migration, virtual Machine

Procedia PDF Downloads 60
28483 Molecular Characterization of Polyploid Bamboo (Dendrocalamus hamiltonii) Using Microsatellite Markers

Authors: Rajendra K. Meena, Maneesh S. Bhandari, Santan Barthwal, Harish S. Ginwal

Abstract:

Microsatellite markers are the most valuable tools for the characterization of plant genetic resources or population genetic analysis. Since it is codominant and allelic markers, utilizing them in polyploid species remained doubtful. In such cases, the microsatellite marker is usually analyzed by treating them as a dominant marker. In the current study, it has been showed that despite losing the advantage of co-dominance, microsatellite markers are still a powerful tool for genotyping of polyploid species because of availability of large number of reproducible alleles per locus. It has been studied by genotyping of 19 subpopulations of Dendrocalamus hamiltonii (hexaploid bamboo species) with 17 polymorphic simple sequence repeat (SSR) primer pairs. Among these, ten primers gave typical banding pattern of microsatellite marker as expected in diploid species, but rest 7 gave an unusual pattern, i.e., more than two bands per locus per genotype. In such case, genotyping data are generally analyzed by considering as dominant markers. In the current study, data were analyzed in both ways as dominant and co-dominant. All the 17 primers were first scored as nonallelic data and analyzed; later, the ten primers giving standard banding patterns were analyzed as allelic data and the results were compared. The UPGMA clustering and genetic structure showed that results obtained with both the data sets are very similar with slight variation, and therefore the SSR marker could be utilized to characterize polyploid species by considering them as a dominant marker. The study is highly useful to widen the scope for SSR markers applications and beneficial to the researchers dealing with polyploid species.

Keywords: microsatellite markers, Dendrocalamus hamiltonii, dominant and codominant, polyploids

Procedia PDF Downloads 143
28482 Reusing Assessments Tests by Generating Arborescent Test Groups Using a Genetic Algorithm

Authors: Ovidiu Domşa, Nicolae Bold

Abstract:

Using Information and Communication Technologies (ICT) notions in education and three basic processes of education (teaching, learning and assessment) can bring benefits to the pupils and the professional development of teachers. In this matter, we refer to these notions as concepts taken from the informatics area and apply them to the domain of education. These notions refer to genetic algorithms and arborescent structures, used in the specific process of assessment or evaluation. This paper uses these kinds of notions to generate subtrees from a main tree of tests related between them by their degree of difficulty. These subtrees must contain the highest number of connections between the nodes and the lowest number of missing edges (which are subtrees of the main tree) and, in the particular case of the non-existence of a subtree with no missing edges, the subtrees which have the lowest (minimal) number of missing edges between the nodes, where a node is a test and an edge is a direct connection between two tests which differs by one degree of difficulty. The subtrees are represented as sequences. The tests are the same (a number coding a test represents that test in every sequence) and they are reused for each sequence of tests.

Keywords: chromosome, genetic algorithm, subtree, test

Procedia PDF Downloads 324
28481 Modeling of Particle Reduction and Volatile Compounds Profile during Chocolate Conching by Electronic Nose and Genetic Programming (GP) Based System

Authors: Juzhong Tan, William Kerr

Abstract:

Conching is one critical procedure in chocolate processing, where special flavors are developed, and smooth mouse feel the texture of the chocolate is developed due to particle size reduction of cocoa mass and other additives. Therefore, determination of the particle size and volatile compounds profile of cocoa bean is important for chocolate manufacturers to ensure the quality of chocolate products. Currently, precise particle size measurement is usually done by laser scattering which is expensive and inaccessible to small/medium size chocolate manufacturers. Also, some other alternatives, such as micrometer and microscopy, can’t provide good measurements and provide little information. Volatile compounds analysis of cocoa during conching, has similar problems due to its high cost and limited accessibility. In this study, a self-made electronic nose system consists of gas sensors (TGS 800 and 2000 series) was inserted to a conching machine and was used to monitoring the volatile compound profile of chocolate during the conching. A model correlated volatile compounds profiles along with factors including the content of cocoa, sugar, and the temperature during the conching to particle size of chocolate particles by genetic programming was established. The model was used to predict the particle size reduction of chocolates with different cocoa mass to sugar ratio (1:2, 1:1, 1.5:1, 2:1) at 8 conching time (15min, 30min, 1h, 1.5h, 2h, 4h, 8h, and 24h). And the predictions were compared to laser scattering measurements of the same chocolate samples. 91.3% of the predictions were within the range of later scatting measurement ± 5% deviation. 99.3% were within the range of later scatting measurement ± 10% deviation.

Keywords: cocoa bean, conching, electronic nose, genetic programming

Procedia PDF Downloads 255
28480 Sensor Network Routing Optimization by Simulating Eurygaster Life in Wheat Farms

Authors: Fariborz Ahmadi, Hamid Salehi, Khosrow Karimi

Abstract:

A sensor network is set of sensor nodes that cooperate together to perform a predefined tasks. The important problem in this network is power consumption. So, in this paper one algorithm based on the eurygaster life is introduced to minimize power consumption by the nodes of these networks. In this method the search space of problem is divided into several partitions and each partition is investigated separately. The evaluation results show that our approach is more efficient in comparison to other evolutionary algorithm like genetic algorithm.

Keywords: evolutionary computation, genetic algorithm, particle swarm optimization, sensor network optimization

Procedia PDF Downloads 428
28479 Optimizing Emergency Rescue Center Layouts: A Backpropagation Neural Networks-Genetic Algorithms Method

Authors: Xiyang Li, Qi Yu, Lun Zhang

Abstract:

In the face of natural disasters and other emergency situations, determining the optimal location of rescue centers is crucial for improving rescue efficiency and minimizing impact on affected populations. This paper proposes a method that integrates genetic algorithms (GA) and backpropagation neural networks (BPNN) to address the site selection optimization problem for emergency rescue centers. We utilize BPNN to accurately estimate the cost of delivering supplies from rescue centers to each temporary camp. Moreover, a genetic algorithm with a special partially matched crossover (PMX) strategy is employed to ensure that the number of temporary camps assigned to each rescue center adheres to predetermined limits. Using the population distribution data during the 2022 epidemic in Jiading District, Shanghai, as an experimental case, this paper verifies the effectiveness of the proposed method. The experimental results demonstrate that the BPNN-GA method proposed in this study outperforms existing algorithms in terms of computational efficiency and optimization performance. Especially considering the requirements for computational resources and response time in emergency situations, the proposed method shows its ability to achieve rapid convergence and optimal performance in the early and mid-stages. Future research could explore incorporating more real-world conditions and variables into the model to further improve its accuracy and applicability.

Keywords: emergency rescue centers, genetic algorithms, back-propagation neural networks, site selection optimization

Procedia PDF Downloads 84
28478 Genetics of Pharmacokinetic Drug-Drug Interactions of Most Commonly Used Drug Combinations in the UK: Uncovering Unrecognised Associations

Authors: Mustafa Malki, Ewan R. Pearson

Abstract:

Tools utilized by health care practitioners to flag potential adverse drug reactions secondary to drug-drug interactions ignore individual genetic variation, which has the potential to markedly alter the severity of these interactions. To our best knowledge, there have been limited published studies on the impact of genetic variation on drug-drug interactions. Therefore, our aim in this project is the discovery of previously unrecognized, clinically important drug-drug-gene interactions (DDGIs) within the list of most commonly used drug combinations in the UK. The UKBB database was utilized to identify the top most frequently prescribed drug combinations in the UK with at least one route of interaction (over than 200 combinations were identified). We have recognised 37 common and unique interacting genes considering all of our drug combinations. Out of around 600 potential genetic variants found in these 37 genes, 100 variants have met the selection criteria (common variant with minor allele frequency ≥ 5%, independence, and has passed HWE test). The association between these variants and the use of each of our top drug combinations has been tested with a case-control analysis under the log-additive model. As the data is cross-sectional, drug intolerance has been identified from the genotype distribution as presented by the lower percentage of patients carrying the risky allele and on the drug combination compared to those free of these risk factors and vice versa with drug tolerance. In GoDARTs database, the same list of common drug combinations identified by the UKBB was utilized here with the same list of candidate genetic variants but with the addition of 14 new SNPs so that we have a total of 114 variants which have met the selection criteria in GoDARTs. From the list of the top 200 drug combinations, we have selected 28 combinations where the two drugs in each combination are known to be used chronically. For each of our 28 combinations, three drug response phenotypes have been identified (drug stop/switch, dose decrease, or dose increase of any of the two drugs during their interaction). The association between each of the three phenotypes belonging to each of our 28 drug combinations has been tested against our 114 candidate genetic variants. The results show replication of four findings between both databases : (1) Omeprazole +Amitriptyline +rs2246709 (A > G) variant in CYP3A4 gene (p-values and ORs with the UKBB and GoDARTs respectively = 0.048,0.037,0.92,and 0.52 (dose increase phenotype)) (2) Simvastatin + Ranitidine + rs9332197 (T > C) variant in CYP2C9 gene (0.024,0.032,0.81, and 5.75 (drug stop/switch phenotype)) (3) Atorvastatin + Doxazosin + rs9282564 (T > C) variant in ABCB1 gene (0.0015,0.0095,1.58,and 3.14 (drug stop/switch phenotype)) (4) Simvastatin + Nifedipine + rs2257401 (C > G) variant in CYP3A7 gene (0.025,0.019,0.77,and 0.30 (drug stop/switch phenotype)). In addition, some other non-replicated, but interesting, significant findings were detected. Our work also provides a great source of information for researchers interested in DD, DG, or DDG interactions studies as it has highlighted the top common drug combinations in the UK with recognizing 114 significant genetic variants related to drugs' pharmacokinetic.

Keywords: adverse drug reactions, common drug combinations, drug-drug-gene interactions, pharmacogenomics

Procedia PDF Downloads 163
28477 Molecular Genetic Purity Test Using SSR Markers in Pigeon Pea

Authors: Rakesh C. Mathad, G. Y. Lokesh, Basavegowda

Abstract:

In agriculture using quality seeds of improved varieties is very important to ensure higher productivity thereby food security and sustainability. To ensure good productivity, seeds should have characters as described by the breeder. To know whether the characters as described by the breeder are expressing in a variety such as genuineness or genetic purity, field grow out test (GOT) is done. In pigeon pea which is long durational crop, conducting a GOT may take very long time and expensive also. Since in pigeon pea flower character is a most distinguishing character from the contaminants, conducting a field grow out test require 120-130 days or till flower emergence, which may increase cost of storage and seed production. This will also delay the distribution of seed inventory to the pigeon pea growing areas. In this view during 2014-15 with financial support of Govt. of Karnataka, India, a project to develop a molecular genetic test for newly developed variety of pigeon pea cv.TS3R was commissioned at Seed Unit, UAS, Raichur. A molecular test was developed with the help SSR markers to identify pure variety from possible off types in newly released pigeon pea variety TS3R. In the investigation, 44 primer pairs were screened to identify the specific marker associated with this variety. Pigeon pea cv. TS3R could be clearly identified by using the primer CCM 293 based on the banding pattern resolved on gel electrophoresis and PCR reactions. However some of the markers like AHSSR 46, CCM 82 and CCM 57 can be used to test other popular varieties in the region like Asha, GRG-811 and Maruti respectively. Further to develop this in to a lab test, the seed sample size was standardized to 200 seeds and a grow out matrix was developed. This matrix was used to sample 12 days old leaves to extract DNA. The lab test results were validated with actual field GOT test results and found variations within the acceptable limit of 1%. This molecular method can now be employed to test the genetic purity in pigeon pea cv TS3R which reduces the time and can be a cheaper alternative method for field GOT.

Keywords: genuineness, grow-out matrix, molecular genetic purity, SSR markers

Procedia PDF Downloads 284
28476 The Interdisciplinary Synergy Between Computer Engineering and Mathematics

Authors: Mitat Uysal, Aynur Uysal

Abstract:

Computer engineering and mathematics share a deep and symbiotic relationship, with mathematics providing the foundational theories and models for computer engineering advancements. From algorithm development to optimization techniques, mathematics plays a pivotal role in solving complex computational problems. This paper explores key mathematical principles that underpin computer engineering, illustrating their significance through a case study that demonstrates the application of optimization techniques using Python code. The case study addresses the well-known vehicle routing problem (VRP), an extension of the traveling salesman problem (TSP), and solves it using a genetic algorithm.

Keywords: VRP, TSP, genetic algorithm, computer engineering, optimization

Procedia PDF Downloads 13
28475 Genetic Algorithm Based Node Fault Detection and Recovery in Distributed Sensor Networks

Authors: N. Nalini, Lokesh B. Bhajantri

Abstract:

In Distributed Sensor Networks, the sensor nodes are prone to failure due to energy depletion and some other reasons. In this regard, fault tolerance of network is essential in distributed sensor environment. Energy efficiency, network or topology control and fault-tolerance are the most important issues in the development of next-generation Distributed Sensor Networks (DSNs). This paper proposes a node fault detection and recovery using Genetic Algorithm (GA) in DSN when some of the sensor nodes are faulty. The main objective of this work is to provide fault tolerance mechanism which is energy efficient and responsive to network using GA, which is used to detect the faulty nodes in the network based on the energy depletion of node and link failure between nodes. The proposed fault detection model is used to detect faults at node level and network level faults (link failure and packet error). Finally, the performance parameters for the proposed scheme are evaluated.

Keywords: distributed sensor networks, genetic algorithm, fault detection and recovery, information technology

Procedia PDF Downloads 452
28474 Computational Pipeline for Lynch Syndrome Detection: Integrating Alignment, Variant Calling, and Annotations

Authors: Rofida Gamal, Mostafa Mohammed, Mariam Adel, Marwa Gamal, Marwa kamal, Ayat Saber, Maha Mamdouh, Amira Emad, Mai Ramadan

Abstract:

Lynch Syndrome is an inherited genetic condition associated with an increased risk of colorectal and other cancers. Detecting Lynch Syndrome in individuals is crucial for early intervention and preventive measures. This study proposes a computational pipeline for Lynch Syndrome detection by integrating alignment, variant calling, and annotation. The pipeline leverages popular tools such as FastQC, Trimmomatic, BWA, bcftools, and ANNOVAR to process the input FASTQ file, perform quality trimming, align reads to the reference genome, call variants, and annotate them. It is believed that the computational pipeline was applied to a dataset of Lynch Syndrome cases, and its performance was evaluated. It is believed that the quality check step ensured the integrity of the sequencing data, while the trimming process is thought to have removed low-quality bases and adaptors. In the alignment step, it is believed that the reads were accurately mapped to the reference genome, and the subsequent variant calling step is believed to have identified potential genetic variants. The annotation step is believed to have provided functional insights into the detected variants, including their effects on known Lynch Syndrome-associated genes. The results obtained from the pipeline revealed Lynch Syndrome-related positions in the genome, providing valuable information for further investigation and clinical decision-making. The pipeline's effectiveness was demonstrated through its ability to streamline the analysis workflow and identify potential genetic markers associated with Lynch Syndrome. It is believed that the computational pipeline presents a comprehensive and efficient approach to Lynch Syndrome detection, contributing to early diagnosis and intervention. The modularity and flexibility of the pipeline are believed to enable customization and adaptation to various datasets and research settings. Further optimization and validation are believed to be necessary to enhance performance and applicability across diverse populations.

Keywords: Lynch Syndrome, computational pipeline, alignment, variant calling, annotation, genetic markers

Procedia PDF Downloads 76
28473 Frequent Pattern Mining for Digenic Human Traits

Authors: Atsuko Okazaki, Jurg Ott

Abstract:

Some genetic diseases (‘digenic traits’) are due to the interaction between two DNA variants. For example, certain forms of Retinitis Pigmentosa (a genetic form of blindness) occur in the presence of two mutant variants, one in the ROM1 gene and one in the RDS gene, while the occurrence of only one of these mutant variants leads to a completely normal phenotype. Detecting such digenic traits by genetic methods is difficult. A common approach to finding disease-causing variants is to compare 100,000s of variants between individuals with a trait (cases) and those without the trait (controls). Such genome-wide association studies (GWASs) have been very successful but hinge on genetic effects of single variants, that is, there should be a difference in allele or genotype frequencies between cases and controls at a disease-causing variant. Frequent pattern mining (FPM) methods offer an avenue at detecting digenic traits even in the absence of single-variant effects. The idea is to enumerate pairs of genotypes (genotype patterns) with each of the two genotypes originating from different variants that may be located at very different genomic positions. What is needed is for genotype patterns to be significantly more common in cases than in controls. Let Y = 2 refer to cases and Y = 1 to controls, with X denoting a specific genotype pattern. We are seeking association rules, ‘X → Y’, with high confidence, P(Y = 2|X), significantly higher than the proportion of cases, P(Y = 2) in the study. Clearly, generally available FPM methods are very suitable for detecting disease-associated genotype patterns. We use fpgrowth as the basic FPM algorithm and built a framework around it to enumerate high-frequency digenic genotype patterns and to evaluate their statistical significance by permutation analysis. Application to a published dataset on opioid dependence furnished results that could not be found with classical GWAS methodology. There were 143 cases and 153 healthy controls, each genotyped for 82 variants in eight genes of the opioid system. The aim was to find out whether any of these variants were disease-associated. The single-variant analysis did not lead to significant results. Application of our FPM implementation resulted in one significant (p < 0.01) genotype pattern with both genotypes in the pattern being heterozygous and originating from two variants on different chromosomes. This pattern occurred in 14 cases and none of the controls. Thus, the pattern seems quite specific to this form of substance abuse and is also rather predictive of disease. An algorithm called Multifactor Dimension Reduction (MDR) was developed some 20 years ago and has been in use in human genetics ever since. This and our algorithms share some similar properties, but they are also very different in other respects. The main difference seems to be that our algorithm focuses on patterns of genotypes while the main object of inference in MDR is the 3 × 3 table of genotypes at two variants.

Keywords: digenic traits, DNA variants, epistasis, statistical genetics

Procedia PDF Downloads 121
28472 A Genetic Algorithm Approach to Solve a Weaving Job Scheduling Problem, Aiming Tardiness Minimization

Authors: Carolina Silva, João Nuno Oliveira, Rui Sousa, João Paulo Silva

Abstract:

This study uses genetic algorithms to solve a job scheduling problem in a weaving factory. The underline problem regards an NP-Hard problem concerning unrelated parallel machines, with sequence-dependent setup times. This research uses real data regarding a weaving industry located in the North of Portugal, with a capacity of 96 looms and a production, on average, of 440000 meters of fabric per month. Besides, this study includes a high level of complexity once most of the real production constraints are applied, and several real data instances are tested. Topics such as data analyses and algorithm performance are addressed and tested, to offer a solution that can generate reliable and due date results. All the approaches will be tested in the operational environment, and the KPIs monitored, to understand the solution's impact on the production, with a particular focus on the total number of weeks of late deliveries to clients. Thus, the main goal of this research is to develop a solution that allows for the production of automatically optimized production plans, aiming to the tardiness minimizing.

Keywords: genetic algorithms, textile industry, job scheduling, optimization

Procedia PDF Downloads 157
28471 Advances in Sesame Molecular Breeding: A Comprehensive Review

Authors: Micheale Yifter Weldemichael

Abstract:

Sesame (Sesamum indicum L.) is among the most important oilseed crops for its high edible oil quality and quantity. Sesame is grown for food, medicinal, pharmaceutical, and industrial uses. Sesame is also cultivated as a main cash crop in Asia and Africa by smallholder farmers. Despite the global exponential increase in sesame cultivation area, its production and productivity remain low, mainly due to biotic and abiotic constraints. Notwithstanding the efforts to solve these problems, a low level of genetic variation and inadequate genomic resources hinder the progress of sesame improvement. The objective of this paper is, therefore, to review recent advances in the area of molecular breeding and transformation to overcome major production constraints and could result in enhanced and sustained sesame production. This paper reviews various researches conducted to date on molecular breeding and genetic transformation in sesame focusing on molecular markers used in assessing the available online database resources, genes responsible for key agronomic traits as well as transgenic technology and genome editing. The review concentrates on quantitative and semi-quantitative studies on molecular breeding for key agronomic traits such as improvement of yield components, oil and oil-related traits, disease and insect/pest resistance, and drought, waterlogging and salt tolerance, as well as sesame genetic transformation and genome editing techniques. Pitfalls and limitations of existing studies and methodologies used so far are identified and some priorities for future research directions in sesame genetic improvement are identified in this review.

Keywords: abiotic stress, biotic stress, improvement, molecular breeding, oil, sesame, shattering

Procedia PDF Downloads 34
28470 Genetic Improvement Potential for Wood Production in Melaleuca cajuputi

Authors: Hong Nguyen Thi Hai, Ryota Konda, Dat Kieu Tuan, Cao Tran Thanh, Khang Phung Van, Hau Tran Tin, Harry Wu

Abstract:

Melaleuca cajuputi is a moderately fast-growing species and considered as a multi-purpose tree as it provides fuelwood, piles and frame poles in construction, leaf essential oil and honey. It occurs in Australia, Papua New Guinea, and South-East Asia. M. cajuputi plantation can be harvested on 6-7 year rotations for wood products. Its timber can also be used for pulp and paper, fiber and particle board, producing quality charcoal and potentially sawn timber. However, most reported M. cajuputi breeding programs have been focused on oil production rather than wood production. In this study, breeding program of M. cajuputi aimed to improve wood production was examined by estimating genetic parameters for growth (tree height, diameter at breast height (DBH), and volume), stem form, stiffness (modulus of elasticity (MOE)), bark thickness and bark ratio in a half-sib family progeny trial including 80 families in the Mekong Delta of Vietnam. MOE is one of the key wood properties of interest to the wood industry. Non-destructive wood stiffness was measured indirectly by acoustic velocity using FAKOPP Microsecond Timer and especially unaffected by bark mass. Narrow-sense heritability for the seven traits ranged from 0.13 to 0.27 at age 7 years. MOE and stem form had positive genetic correlations with growth while the negative correlation between bark ratio and growth was also favorable. Breeding for simultaneous improvement of multiple traits, faster growth with higher MOE and reduction of bark ratio should be possible in M. cajuputi. Index selection based on volume and MOE showed genetic gains of 31 % in volume, 6 % in MOE and 13 % in stem form. In addition, heritability and age-age genetic correlations for growth traits increased with time and optimal early selection age for growth of M. cajuputi based on DBH alone was 4 years. Selected thinning resulted in an increase of heritability due to considerable reduction of phenotypic variation but little effect on genetic variation.

Keywords: acoustic velocity, age-age correlation, bark thickness, heritability, Melaleuca cajuputi, stiffness, thinning effect

Procedia PDF Downloads 182
28469 Sentiment Analysis of Ensemble-Based Classifiers for E-Mail Data

Authors: Muthukumarasamy Govindarajan

Abstract:

Detection of unwanted, unsolicited mails called spam from email is an interesting area of research. It is necessary to evaluate the performance of any new spam classifier using standard data sets. Recently, ensemble-based classifiers have gained popularity in this domain. In this research work, an efficient email filtering approach based on ensemble methods is addressed for developing an accurate and sensitive spam classifier. The proposed approach employs Naive Bayes (NB), Support Vector Machine (SVM) and Genetic Algorithm (GA) as base classifiers along with different ensemble methods. The experimental results show that the ensemble classifier was performing with accuracy greater than individual classifiers, and also hybrid model results are found to be better than the combined models for the e-mail dataset. The proposed ensemble-based classifiers turn out to be good in terms of classification accuracy, which is considered to be an important criterion for building a robust spam classifier.

Keywords: accuracy, arcing, bagging, genetic algorithm, Naive Bayes, sentiment mining, support vector machine

Procedia PDF Downloads 142
28468 Genomic Identification of Anisakis Simplex Larvae by PCR-RAPD

Authors: Fumiko Kojima, Shuji Fujimoto

Abstract:

Anisakiasis is a disease caused by infection with an anisakid larvae, mostly Anisakis simplex. The larvae commonly infect in marine fish and the disease is frequently reported in areas of the world where fish is consumed raw, lightly pickled or salted. In Japan, people have the habit of eating raw fish such as ‘sushi’ or ‘sashimi’, so they have more chance of infection with larvae of anisakid nematodes. There are three sibling species in A. simplex larvae, namely, A. simplex sensu stricto (Asss), A. pegreffii (Ap) and A. simplex C. It was revealed that Ap is dominant among the larvae from fish (Scomber japonics) in the Japan Sea side and Asss is dominant among those of the Pacific Ocean side conversely. Although anisakiasis has happened in Japan among both the Japan Sea side area and the Pacific Ocean side area. The aim of this study was to investigate genetic variations between the siblings (Asss and Ap) and within the same sibling species by random amplified polymorphic DNA (RAPD) technique. In order to investigate the genetic difference among the each A. simplex larvae, we used RAPD technique to differentiate individuals of A. simplex obtained from Scomber japonics fish those were caught in the Japan sea (Goto Islands in Nagasaki Prefecture) and the cost of Pacific Ocean (Kanagawa Prefecture). The RAPD patterns of the control DNA (Genus Raphidascaris) were markedly different from those of the A. simplex. There were differences in amplification patterns between Asss and Ap. The RAPD patterns for larvae obtained from fish of the same sea were somewhat different and variations were detected even among larvae from the same fish. These results suggest the considerable high genetic variability between Asss and Ap and the possible existence of genetic variation within the sibling species.

Keywords: Anisakiasis in Japan, Anisakis simplex, genomic identification, PCR-RAPD

Procedia PDF Downloads 181
28467 Artificial Neural Network Modeling and Genetic Algorithm Based Optimization of Hydraulic Design Related to Seepage under Concrete Gravity Dams on Permeable Soils

Authors: Muqdad Al-Juboori, Bithin Datta

Abstract:

Hydraulic structures such as gravity dams are classified as essential structures, and have the vital role in providing strong and safe water resource management. Three major aspects must be considered to achieve an effective design of such a structure: 1) The building cost, 2) safety, and 3) accurate analysis of seepage characteristics. Due to the complexity and non-linearity relationships of the seepage process, many approximation theories have been developed; however, the application of these theories results in noticeable errors. The analytical solution, which includes the difficult conformal mapping procedure, could be applied for a simple and symmetrical problem only. Therefore, the objectives of this paper are to: 1) develop a surrogate model based on numerical simulated data using SEEPW software to approximately simulate seepage process related to a hydraulic structure, 2) develop and solve a linked simulation-optimization model based on the developed surrogate model to describe the seepage occurring under a concrete gravity dam, in order to obtain optimum and safe design at minimum cost. The result shows that the linked simulation-optimization model provides an efficient and optimum design of concrete gravity dams.

Keywords: artificial neural network, concrete gravity dam, genetic algorithm, seepage analysis

Procedia PDF Downloads 224
28466 Tuning Fractional Order Proportional-Integral-Derivative Controller Using Hybrid Genetic Algorithm Particle Swarm and Differential Evolution Optimization Methods for Automatic Voltage Regulator System

Authors: Fouzi Aboura

Abstract:

The fractional order proportional-integral-derivative (FOPID) controller or fractional order (PIλDµ) is a proportional-integral-derivative (PID) controller where integral order (λ) and derivative order (µ) are fractional, one of the important application of classical PID is the Automatic Voltage Regulator (AVR).The FOPID controller needs five parameters optimization while the design of conventional PID controller needs only three parameters to be optimized. In our paper we have proposed a comparison between algorithms Differential Evolution (DE) and Hybrid Genetic Algorithm Particle Swarm Optimization (HGAPSO) ,we have studied theirs characteristics and performance analysis to find an optimum parameters of the FOPID controller, a new objective function is also proposed to take into account the relation between the performance criteria’s.

Keywords: FOPID controller, fractional order, AVR system, objective function, optimization, GA, PSO, HGAPSO

Procedia PDF Downloads 90
28465 Acceleration of DNA Hybridization Using Electroosmotic Flow

Authors: Yun-Hsiang Wang, Huai-Yi Chen, Kin Fong Lei

Abstract:

Deoxyribonucleic acid (DNA) hybridization is a common technique used in genetic assay widely. However, the hybridization ratio and rate are usually limited by the diffusion effect. Here, microfluidic electrode platform producing electroosmosis generated by alternating current signal has been proposed to enhance the hybridization ratio and rate. The electrode was made of aurum fabricated by microfabrication technique. Thiol-modified oligo probe was immobilized on the electrode for specific capture of target, which is modified by fluorescent tag. Alternative electroosmosis can induce local microfluidic vortexes to accelerate DNA hybridization. This study provides a strategy to enhance the rate of DNA hybridization in the genetic assay.

Keywords: DNA hybridization, electroosmosis, electrical enhancement, hybridization ratio

Procedia PDF Downloads 383
28464 Arabic Lexicon Learning to Analyze Sentiment in Microblogs

Authors: Mahmoud B. Rokaya

Abstract:

The study of opinion mining and sentiment analysis includes analysis of opinions, sentiments, evaluations, attitudes, and emotions. The rapid growth of social media, social networks, reviews, forum discussions, microblogs, and Twitter, leads to a parallel growth in the field of sentiment analysis. The field of sentiment analysis tries to develop effective tools to make it possible to capture the trends of people. There are two approaches in the field, lexicon-based and corpus-based methods. A lexicon-based method uses a sentiment lexicon which includes sentiment words and phrases with assigned numeric scores. These scores reveal if sentiment phrases are positive or negative, their intensity, and/or their emotional orientations. Creation of manual lexicons is hard. This brings the need for adaptive automated methods for generating a lexicon. The proposed method generates dynamic lexicons based on the corpus and then classifies text using these lexicons. In the proposed method, different approaches are combined to generate lexicons from text. The proposed method classifies the tweets into 5 classes instead of +ve or –ve classes. The sentiment classification problem is written as an optimization problem, finding optimum sentiment lexicons are the goal of the optimization process. The solution was produced based on mathematical programming approaches to find the best lexicon to classify texts. A genetic algorithm was written to find the optimal lexicon. Then, extraction of a meta-level feature was done based on the optimal lexicon. The experiments were conducted on several datasets. Results, in terms of accuracy, recall and F measure, outperformed the state-of-the-art methods proposed in the literature in some of the datasets. A better understanding of the Arabic language and culture of Arab Twitter users and sentiment orientation of words in different contexts can be achieved based on the sentiment lexicons proposed by the algorithm.

Keywords: social media, Twitter sentiment, sentiment analysis, lexicon, genetic algorithm, evolutionary computation

Procedia PDF Downloads 188
28463 Twenty-Five Polymorphic Microsatellite Loci Used To Genotype Some Camel Types and Subtypes From Sudan, Qatar, Chad, And Somalia

Authors: Wathig Hashim Mohamed Ibrahim

Abstract:

Twenty Five polymorphic microsatellite out of 50 Loci were used to genotype some camel (Camelus dromedarius) types and subtypes in Sudan (Naylawi, Shanapla, Lahawi, Kinani, Rashaydi, Bani-Aamir, Annafi, Bishari Shallagyai and Bishari Arririt) and that from Qatar (OmmaniHJ, OmmaniKH, Majaheem, Pakistani Sindi, Pakistani Punjabi and Pakistani) and for comparative; one type from Somalia (Aarhou) and another from Chad (Spotted) were investigated. The highest number of alleles were 23 in Locus CVRL 01, and lowest were 2 in YWLL 59. The observed heterozygosity (Hobs) were 0.950 and 0.049 for VOLP08 and YWLL09, respectively, while the expected heterozygosity (HExp) were 0.915 and 0.362 for Locus VOLP67 and YWLL58, respectively, and the HExp mean was 0.7378. Polymorphic Information Content (PIC) ranged between 0.907 - 0.345 in Locus VOLP67 and YWLL58, and the PIC mean was 0.7002. The genetic distance ranged between 0.545 – 0.098 for Shallagyai (Bishari subtype) – Pakistani Sindi subtype and between Annafi - Rashaydi, respectively. The genetic distance between spotted and all types ranged between 0.223 with Arririt (Bishari subtype) and 0.463 with Punjabi (Pakistani subtype) that found in Qatar, while all types with Aarhou ranged between 0.215 for Arririt and 0.469 with Punjabi (Pakistani subtype). The dondrogram shows that there is a relationship between the genetic makeup and geographical distributions and also between the genetic makeup and phenotypic characteristic. Individual assignment was calculated, 46.62% correctly assigned and 46.87% quality index. Hardy Weinberg Equivalent (HWE) was also calculated. Key words: Camel, genotype, polymorphic microsatellite

Keywords: camel, genotype, polymorphic microsatellite, types and subtypes

Procedia PDF Downloads 82
28462 Genetic Association of SIX6 Gene with Pathogenesis of Glaucoma

Authors: Riffat Iqbal, Sidra Ihsan, Andleeb Batool, Maryam Mukhtar

Abstract:

Glaucoma is a gathering of optic neuropathies described by dynamic degeneration of retinal ganglionic cells. It is clinically and innately heterogenous illness containing a couple of particular forms each with various causes and severities. Primary open-angle glaucoma (POAG) is the most generally perceived kind of glaucoma. This study investigated the genetic association of single nucleotide polymorphisms (SNPs; rs10483727 and rs33912345) at the SIX1/SIX6 locus with primary open-angle glaucoma (POAG) in the Pakistani population. The SIX6 gene plays an important role in ocular development and has been associated with morphology of the optic nerve. A total of 100 patients clinically diagnosed with glaucoma and 100 control individuals of age over 40 were enrolled in the study. Genomic DNA was extracted by organic extraction method. The SNP genotyping was done by (i) PCR based restriction fragment length polymorphism (RFLP) and sequencing method. Significant genetic associations were observed for rs10483727 (risk allele T) and rs33912345 (risk allele C) with POAG. Hence, it was concluded that Six6 gene is genetically associated with pathogenesis of Glaucoma in Pakistan.

Keywords: genotyping, Pakistani population, primary open-angle glaucoma, SIX6 gene

Procedia PDF Downloads 184
28461 Phylogenetic Studies of Six Egyptian Sheep Breeds Using Cytochrome B

Authors: Othman Elmahdy Othman, Agnés Germot, Daniel Petit, Muhammad Khodary, Abderrahman Maftah

Abstract:

Recently, the control (D-loop) and cytochrome b (Cyt b) regions of mtDNA have received more attention due to their role in the genetic diversity and phylogenetic studies in different livestock which give important knowledge towards the genetic resource conservation. Studies based on sequencing of sheep mitochondrial DNA showed that there are five maternal lineages in the world for domestic sheep breeds; A, B, C, D and E. By using cytochrome B sequencing, we aimed to clarify the genetic affinities and phylogeny of six Egyptian sheep breeds. Blood samples were collected from 111 animals belonging to six Egyptian sheep breeds; Barki, Rahmani, Ossimi, Saidi, Sohagi and Fallahi. The total DNA was extracted and the specific primers were used for conventional PCR amplification of the cytochrome B region of mtDNA. PCR amplified products were purified and sequenced. The alignment of sequences was done using BioEdit software and DnaSP 5.00 software was used to identify the sequence variation and polymorphic sites in the aligned sequences. The result showed that the presence of 39 polymorphic sites leading to the formation of 29 haplotypes. The haplotype diversity in six tested breeds ranged from 0.643 in Rahmani breed to 0.871 in Barki breed. The lowest genetic distance was observed between Rahmani and Saidi (D: 1.436 and Dxy: 0.00127) while the highest distance was observed between Ossimi and Sohagi (D: 6.050 and Dxy: 0.00534). Neighbour-joining (Phylogeny) tree was constructed using Mega 5.0 software. The sequences of 111 analyzed samples were aligned with references sequences of different haplogroups; A, B, C, D and E. The phylogeny result showed the presence of four haplogroups; HapA, HapB, HapC and HapE in the examined samples whereas the haplogroup D was not found. The result showed that 88 out of 111 tested animals cluster with haplogroup B (79.28%), whereas 12 tested animals cluster with haplogroup A (10.81%), 10 animals cluster with haplogroup C (9.01%) and one animal belongs to haplogroup E (0.90%).

Keywords: phylogeny, genetic biodiversity, MtDNA, cytochrome B, Egyptian sheep

Procedia PDF Downloads 347
28460 Microarrays: Wide Clinical Utilities and Advances in Healthcare

Authors: Salma M. Wakil

Abstract:

Advances in the field of genetics overwhelmed detecting large number of inherited disorders at the molecular level and directed to the development of innovative technologies. These innovations have led to gene sequencing, prenatal mutation detection, pre-implantation genetic diagnosis; population based carrier screening and genome wide analyses using microarrays. Microarrays are widely used in establishing clinical and diagnostic setup for genetic anomalies at a massive level, with the advent of cytoscan molecular karyotyping as a clinical utility card for detecting chromosomal aberrations with high coverage across the entire human genome. Unlike a regular karyotype that relies on the microscopic inspection of chromosomes, molecular karyotyping with cytoscan constructs virtual chromosomes based on the copy number analysis of DNA which improves its resolution by 100-fold. We have been investigating a large number of patients with Developmental Delay and Intellectual disability with this platform for establishing micro syndrome deletions and have detected number of novel CNV’s in the Arabian population with the clinical relevance.

Keywords: microarrays, molecular karyotyping, developmental delay, genetics

Procedia PDF Downloads 456