Search results for: evaluation accuracy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9833

Search results for: evaluation accuracy

9503 Development and Evaluation of Simvastatin Based Self Nanoemulsifying Drug Delivery System (SNEDDS) for Treatment of Alzheimer's Disease

Authors: Hardeep

Abstract:

The aim of this research work to improve the solubility and bioavailability of Simvastatin using a self nanoemulsifying drug delivery system (SNEDDS). Self emulsifying property of various oils including essential oils was evaluated with suitable surfactants and co-surfactants. Validation of a method for accuracy, repeatability, Interday and intraday precision, ruggedness, and robustness were within acceptable limits. The liquid SNEDDS was prepared and optimized using a ternary phase diagram, thermodynamic, centrifugation and cloud point studies. The globule size of optimized formulations was less than 200 nm which could be an acceptable nanoemulsion size range. The mean droplet size, drug loading, PDI and zeta potential were found to be 141.0 nm, 92.22%, 0.23 and -10.13 mV and 153.5nm, 93.89 % ,0.41 and -11.7 mV and 164.26 nm, 95.26% , 0.41 and -10.66mV respectively.

Keywords: simvastatin, self nanoemulsifying drug delivery system, solubility, bioavailability

Procedia PDF Downloads 207
9502 Machine Vision System for Measuring the Quality of Bulk Sun-dried Organic Raisins

Authors: Navab Karimi, Tohid Alizadeh

Abstract:

An intelligent vision-based system was designed to measure the quality and purity of raisins. A machine vision setup was utilized to capture the images of bulk raisins in ranges of 5-50% mixed pure-impure berries. The textural features of bulk raisins were extracted using Grey-level Histograms, Co-occurrence Matrix, and Local Binary Pattern (a total of 108 features). Genetic Algorithm and neural network regression were used for selecting and ranking the best features (21 features). As a result, the GLCM features set was found to have the highest accuracy (92.4%) among the other sets. Followingly, multiple feature combinations of the previous stage were fed into the second regression (linear regression) to increase accuracy, wherein a combination of 16 features was found to be the optimum. Finally, a Support Vector Machine (SVM) classifier was used to differentiate the mixtures, producing the best efficiency and accuracy of 96.2% and 97.35%, respectively.

Keywords: sun-dried organic raisin, genetic algorithm, feature extraction, ann regression, linear regression, support vector machine, south azerbaijan.

Procedia PDF Downloads 76
9501 Small Text Extraction from Documents and Chart Images

Authors: Rominkumar Busa, Shahira K. C., Lijiya A.

Abstract:

Text recognition is an important area in computer vision which deals with detecting and recognising text from an image. The Optical Character Recognition (OCR) is a saturated area these days and with very good text recognition accuracy. However the same OCR methods when applied on text with small font sizes like the text data of chart images, the recognition rate is less than 30%. In this work, aims to extract small text in images using the deep learning model, CRNN with CTC loss. The text recognition accuracy is found to improve by applying image enhancement by super resolution prior to CRNN model. We also observe the text recognition rate further increases by 18% by applying the proposed method, which involves super resolution and character segmentation followed by CRNN with CTC loss. The efficiency of the proposed method shows that further pre-processing on chart image text and other small text images will improve the accuracy further, thereby helping text extraction from chart images.

Keywords: small text extraction, OCR, scene text recognition, CRNN

Procedia PDF Downloads 132
9500 Perceptions and Expectations by Participants of Monitoring and Evaluation Short Course Training Programmes in Africa

Authors: Mokgophana Ramasobana

Abstract:

Background: At the core of the demand to utilize evidence-based approaches in the policy-making cycle, prioritization of limited financial resources and results driven initiatives is the urgency to develop a cohort of competent Monitoring and Evaluation (M&E) practitioners and public servants. The ongoing strides in the evaluation capacity building (ECB) initiatives are a direct response to produce the highly-sought after M&E skills. Notwithstanding the rapid growth of M&E short courses, participants perceived value and expectation of M&E short courses as a panacea for ECB have not been empirically quantified or measured. The objective of this article is to explicitly illustrate the importance of measuring ECB interventions and understanding what works in ECB and why it works. Objectives: This article illustrates the importance of establishing empirical ECB measurement tools to evaluate ECB interventions in order to ascertain its contribution to the broader evaluation practice. Method: The study was primarily a desktop review of existing literature, juxtaposed by a survey of the participants across the African continent based on the 43 M&E short courses hosted by the Centre for Learning on Evaluation and Results Anglophone Africa (CLEAR-AA) in collaboration with the Department of Planning Monitoring and Evaluation (DPME) Results: The article established that participants perceive short course training as a panacea to improve their M&E practical skill critical to executing their organizational duties. In tandem, participants are likely to demand customized training as opposed to general topics in Evaluation. However, the organizational environments constrain the application of the newly acquired skills. Conclusion: This article aims to contribute to the 'how to' measure ECB interventions discourse and contribute towards the improvement to evaluate ECB interventions. The study finds that participants prefer training courses with longer duration to cover more topics. At the same time, whilst organizations call for customization of programmes, the study found that individual participants demand knowledge of generic and popular evaluation topics.

Keywords: evaluation capacity building, effectiveness and training, monitoring and evaluation (M&E) short course training, perceptions and expectations

Procedia PDF Downloads 132
9499 Enhancing Quality Management Systems through Automated Controls and Neural Networks

Authors: Shara Toibayeva, Irbulat Utepbergenov, Lyazzat Issabekova, Aidana Bodesova

Abstract:

The article discusses the importance of quality assessment as a strategic tool in business and emphasizes the significance of the effectiveness of quality management systems (QMS) for enterprises. The evaluation of these systems takes into account the specificity of quality indicators, the multilevel nature of the system, and the need for optimal selection of the number of indicators and evaluation of the system state, which is critical for making rational management decisions. Methods and models of automated enterprise quality management are proposed, including an intelligent automated quality management system integrated with the Management Information and Control System. These systems make it possible to automate the implementation and support of QMS, increasing the validity, efficiency, and effectiveness of management decisions by automating the functions performed by decision makers and personnel. The paper also emphasizes the use of recurrent neural networks to improve automated quality management. Recurrent neural networks (RNNs) are used to analyze and process sequences of data, which is particularly useful in the context of document quality assessment and non-conformance detection in quality management systems. These networks are able to account for temporal dependencies and complex relationships between different data elements, which improves the accuracy and efficiency of automated decisions. The project was supported by a grant from the Ministry of Education and Science of the Republic of Kazakhstan under the Zhas Galym project No. AR 13268939, dedicated to research and development of digital technologies to ensure consistency of QMS regulatory documents.

Keywords: automated control system, quality management, document structure, formal language

Procedia PDF Downloads 45
9498 Enhanced Retrieval-Augmented Generation (RAG) Method with Knowledge Graph and Graph Neural Network (GNN) for Automated QA Systems

Authors: Zhihao Zheng, Zhilin Wang, Linxin Liu

Abstract:

In the research of automated knowledge question-answering systems, accuracy and efficiency are critical challenges. This paper proposes a knowledge graph-enhanced Retrieval-Augmented Generation (RAG) method, combined with a Graph Neural Network (GNN) structure, to automatically determine the correctness of knowledge competition questions. First, a domain-specific knowledge graph was constructed from a large corpus of academic journal literature, with key entities and relationships extracted using Natural Language Processing (NLP) techniques. Then, the RAG method's retrieval module was expanded to simultaneously query both text databases and the knowledge graph, leveraging the GNN to further extract structured information from the knowledge graph. During answer generation, contextual information provided by the knowledge graph and GNN is incorporated to improve the accuracy and consistency of the answers. Experimental results demonstrate that the knowledge graph and GNN-enhanced RAG method perform excellently in determining the correctness of questions, achieving an accuracy rate of 95%. Particularly in cases involving ambiguity or requiring contextual information, the structured knowledge provided by the knowledge graph and GNN significantly enhances the RAG method's performance. This approach not only demonstrates significant advantages in improving the accuracy and efficiency of automated knowledge question-answering systems but also offers new directions and ideas for future research and practical applications.

Keywords: knowledge graph, graph neural network, retrieval-augmented generation, NLP

Procedia PDF Downloads 46
9497 Application of Scanning Electron Microscopy and X-Ray Evaluation of the Main Digestion Methods for Determination of Macroelements in Plant Tissue

Authors: Krasimir I. Ivanov, Penka S. Zapryanova, Stefan V. Krustev, Violina R. Angelova

Abstract:

Three commonly used digestion methods (dry ashing, acid digestion, and microwave digestion) in different variants were compared for digestion of tobacco leaves. Three main macroelements (K, Ca and Mg) were analysed using AAS Spectrometer Spectra АА 220, Varian, Australia. The accuracy and precision of the measurements were evaluated by using Polish reference material CTR-VTL-2 (Virginia tobacco leaves). To elucidate the problems with elemental recovery X-Ray and SEM–EDS analysis of all residues after digestion were performed. The X-ray investigation showed a formation of KClO4 when HClO4 was used as a part of the acids mixture. The use of HF at Ca and Mg determination led to the formation of CaF2 and MgF2. The results were confirmed by energy dispersive X-ray microanalysis. SPSS program for Windows was used for statistical data processing.

Keywords: digestion methods, plant tissue, determination of macroelements, K, Ca, Mg

Procedia PDF Downloads 322
9496 Application of Federated Learning in the Health Care Sector for Malware Detection and Mitigation Using Software-Defined Networking Approach

Authors: A. Dinelka Panagoda, Bathiya Bandara, Chamod Wijetunga, Chathura Malinda, Lakmal Rupasinghe, Chethana Liyanapathirana

Abstract:

This research takes us forward with the concepts of Federated Learning and Software-Defined Networking (SDN) to introduce an efficient malware detection technique and provide a mitigation mechanism to give birth to a resilient and automated healthcare sector network system by also adding the feature of extended privacy preservation. Due to the daily transformation of new malware attacks on hospital Integrated Clinical Environment (ICEs), the healthcare industry is at an undefinable peak of never knowing its continuity direction. The state of blindness by the array of indispensable opportunities that new medical device inventions and their connected coordination offer daily, a factor that should be focused driven is not yet entirely understood by most healthcare operators and patients. This solution has the involvement of four clients in the form of hospital networks to build up the federated learning experimentation architectural structure with different geographical participation to reach the most reasonable accuracy rate with privacy preservation. While the logistic regression with cross-entropy conveys the detection, SDN comes in handy in the second half of the research to stack up the initial development phases of the system with malware mitigation based on policy implementation. The overall evaluation sums up with a system that proves the accuracy with the added privacy. It is no longer needed to continue with traditional centralized systems that offer almost everything but not privacy.

Keywords: software-defined network, federated learning, privacy, integrated clinical environment, decentralized learning, malware detection, malware mitigation

Procedia PDF Downloads 192
9495 Empirical Study of Correlation between the Cost Performance Index Stability and the Project Cost Forecast Accuracy in Construction Projects

Authors: Amin AminiKhafri, James M. Dawson-Edwards, Ryan M. Simpson, Simaan M. AbouRizk

Abstract:

Earned value management (EVM) has been introduced as an integrated method to combine schedule, budget, and work breakdown structure (WBS). EVM provides various indices to demonstrate project performance including the cost performance index (CPI). CPI is also used to forecast final project cost at completion based on the cost performance during the project execution. Knowing the final project cost during execution can initiate corrective actions, which can enhance project outputs. CPI, however, is not constant during the project, and calculating the final project cost using a variable index is an inaccurate and challenging task for practitioners. Since CPI is based on the cumulative progress values and because of the learning curve effect, CPI variation dampens and stabilizes as project progress. Although various definitions for the CPI stability have been proposed in literature, many scholars have agreed upon the definition that considers a project as stable if the CPI at 20% completion varies less than 0.1 from the final CPI. While 20% completion point is recognized as the stability point for military development projects, construction projects stability have not been studied. In the current study, an empirical study was first conducted using construction project data to determine the stability point for construction projects. Early findings have demonstrated that a majority of construction projects stabilize towards completion (i.e., after 70% completion point). To investigate the effect of CPI stability on cost forecast accuracy, the correlation between CPI stability and project cost at completion forecast accuracy was also investigated. It was determined that as projects progress closer towards completion, variation of the CPI decreases and final project cost forecast accuracy increases. Most projects were found to have 90% accuracy in the final cost forecast at 70% completion point, which is inlined with findings from the CPI stability findings. It can be concluded that early stabilization of the project CPI results in more accurate cost at completion forecasts.

Keywords: cost performance index, earned value management, empirical study, final project cost

Procedia PDF Downloads 160
9494 Enabling Participation of Deaf People in the Co-Production of Services: An Example in Service Design, Commissioning and Delivery in a London Borough

Authors: Stephen Bahooshy

Abstract:

Co-producing services with the people that access them is considered best practice in the United Kingdom, with the Care Act 2014 arguing that people who access services and their carers should be involved in the design, commissioning and delivery of services. Co-production is a way of working with the community, breaking down barriers of access and providing meaningful opportunity for people to engage. Unfortunately, owing to a number of reported factors such as time constraints, practitioner experience and departmental budget restraints, this process is not always followed. In 2019, in a south London borough, d/Deaf people who access services were engaged in the design, commissioning and delivery of an information and advice service that would support their community to access local government services. To do this, sensory impairment social workers and commissioners collaborated to host a series of engagement events with the d/Deaf community. Interpreters were used to enable communication between the commissioners and d/Deaf participants. Initially, the community’s opinions, ideas and requirements were noted. This was then summarized and fed back to the community to ensure accuracy. Subsequently, a service specification was developed which included performance metrics, inclusive of qualitative and quantitative indicators, such as ‘I statements’, whereby participants respond on an adapted Likert scale how much they agree or disagree with a particular statement in relation to their experience of the service. The service specification was reviewed by a smaller group of d/Deaf residents and social workers, to ensure that it met the community’s requirements. The service was then tendered using the local authority’s e-tender process. Bids were evaluated and scored in two parts; part one was by commissioners and social workers and part two was a presentation by prospective providers to an evaluation panel formed of four d/Deaf residents. The internal evaluation panel formed 75% of the overall score, whilst the d/Deaf resident evaluation panel formed 25% of the overall tender score. Co-producing the evaluation panel with social workers and the d/Deaf community meant that commissioners were able to meet the requirements of this community by developing evaluation questions and tools that were easily understood and use by this community. For example, the wording of questions were reviewed and the scoring mechanism consisted of three faces to reflect the d/Deaf residents’ scores instead of traditional numbering. These faces were a happy face, a neutral face and a sad face. By making simple changes to the commissioning and tender evaluation process, d/Deaf people were able to have meaningful involvement in the design and commissioning process for a service that would benefit their community. Co-produced performance metrics means that it is incumbent on the successful provider to continue to engage with people accessing the service and ensure that the feedback is utilized. d/Deaf residents were grateful to have been involved in this process as this was not an opportunity that they had previously been afforded. In recognition of their time, each d/Deaf resident evaluator received a £40 gift voucher, bringing the total cost of this co-production to £160.

Keywords: co-production, community engagement, deaf and hearing impaired, service design

Procedia PDF Downloads 275
9493 Predicting Indonesia External Debt Crisis: An Artificial Neural Network Approach

Authors: Riznaldi Akbar

Abstract:

In this study, we compared the performance of the Artificial Neural Network (ANN) model with back-propagation algorithm in correctly predicting in-sample and out-of-sample external debt crisis in Indonesia. We found that exchange rate, foreign reserves, and exports are the major determinants to experiencing external debt crisis. The ANN in-sample performance provides relatively superior results. The ANN model is able to classify correctly crisis of 89.12 per cent with reasonably low false alarms of 7.01 per cent. In out-of-sample, the prediction performance fairly deteriorates compared to their in-sample performances. It could be explained as the ANN model tends to over-fit the data in the in-sample, but it could not fit the out-of-sample very well. The 10-fold cross-validation has been used to improve the out-of-sample prediction accuracy. The results also offer policy implications. The out-of-sample performance could be very sensitive to the size of the samples, as it could yield a higher total misclassification error and lower prediction accuracy. The ANN model could be used to identify past crisis episodes with some accuracy, but predicting crisis outside the estimation sample is much more challenging because of the presence of uncertainty.

Keywords: debt crisis, external debt, artificial neural network, ANN

Procedia PDF Downloads 447
9492 Mastering Multiplication Tables: Unlocking Academic Excellence in Speed and Accuracy

Authors: Chidozie Gabriel Uzoigwe

Abstract:

Mastery of multiplication tables is a critical foundation for mathematical proficiency, influencing both academic speed and accuracy. This study examines the impact of multiplication table mastery on academic performance, drawing on data from the 2024 National Multiplication Table Challenge (NMTC) held in Ebonyi State, Nigeria. The competition involved 500 pupils and evaluated their speed and accuracy in solving multiplication-related problems. Notably, the top 12 participants exhibited exceptional performance, demonstrating a strong correlation between mastery of multiplication tables and enhanced academic capabilities. This paper delves into the factors contributing to multiplication table mastery, including teaching methodologies, cognitive development, and access to resources, while also identifying educational gaps that hinder foundational mathematics learning. The analysis underscores the need for targeted interventions such as innovative instructional strategies, early exposure to multiplication concepts, and structured assessment programs to address these challenges. The findings reinforce the pivotal role of multiplication table mastery in fostering academic excellence and provide actionable recommendations for educators, policymakers, and stakeholders in mathematics education. By prioritizing foundational skills, this study advocates for a global emphasis on improving mathematics education to support students' academic success.

Keywords: academic performance, academic speed and accuracy, foundational mathematics, mathematical proficiency, multiplication table mastery, teaching methodologies

Procedia PDF Downloads 7
9491 Ecotoxicity Evaluation and Suggestion of Remediation Method of ZnO Nanoparticles in Aqueous Phase

Authors: Hyunsang Kim, Younghun Kim, Younghee Kim, Sangku Lee

Abstract:

We investigated ecotoxicity and performed an experiment for removing ZnO nanoparticles in water. Short-term exposure of hatching test using fertilized eggs (O. latipes) showed deformity in 5 ppm of ZnO nanoparticles solution, and in 10ppm ZnO nanoparticles solution delayed hatching was observed. Herein, chemical precipitation method was suggested for removing ZnO nanoparticles in water. The precipitated ZnO nanoparticles showed the form of ZnS after addition of Na2S, and the form of Zn3(PO4)2 for Na2HPO4. The removal efficiency of ZnO nanoparticles in water was closed to 100% for two case. In ecotoxicity evaluation of as-precipitated ZnS and Zn3(PO4)2, they did not cause any acute toxicity for D. magna. It is noted that this precipitation treatment of ZnO is effective to reduce the potential cytotoxicity.

Keywords: ZnO nanopraticles, ZnS, Zn3(PO4)2, ecotoxicity evaluation, chemical precipitation

Procedia PDF Downloads 281
9490 The Implementation of Teaching and Learning Quality Assurance System at the Chaoyang University of Technology for Academic Year 2013-2015

Authors: Ting Hsiang Chang

Abstract:

Nowadays in Taiwan, higher education, which was previously more emphasized on teaching-oriented approaches, has gradually shifted to an approach more focusing on students learning outcomes. With student employment rate as an important indicator for University Program Evaluation periodically held by the Ministry of Education, it becomes extremely critical for a university to build up a teaching and learning quality assurance system to bridge the gap between learning and practice. Teaching and Learning Quality Assurance System has been built and implemented at Chaoyang University of Technology for years and has received substantial results. By employing various forms of evaluation and performance appraisals, the effectiveness of teaching and learning can consistently be tracked as a means of ensuring teaching and learning quality. This study aims to explore the evaluation system of teaching and learning quality assurance system at the Chaoyang University of Technology by means of content analysis. The study contents the evaluation reports on the teaching and learning quality assurance at the Chaoyang University of Technology in the Academic Year 2013-2015. The quantitative results of the assessment were analyzed using the five-point Likert Scale. Quality assurance Committee meetings were further held for examining and discussions on the results. To the end, the annual evaluation report is to be produced as references used to improve approaches in both teaching and learning. The findings indicate that there is a respective relationship between the overall teaching evaluation items and the teaching goals and core competencies. In addition, graduates’ feedbacks were also collected for further analysis to examine if the current educational planning is able to achieve the university’s teaching goal and cultivation of core competencies.

Keywords: core competencies, teaching and learning quality assurance system, teaching goals, university program evaluation

Procedia PDF Downloads 297
9489 High Accuracy Analytic Approximation for Special Functions Applied to Bessel Functions J₀(x) and Its Zeros

Authors: Fernando Maass, Pablo Martin, Jorge Olivares

Abstract:

The Bessel function J₀(x) is very important in Electrodynamics and Physics, as well as its zeros. In this work, a method to obtain high accuracy approximation is presented through an application to that function. In most of the applications of this function, the values of the zeros are very important. In this work, analytic approximations for this function have been obtained valid for all positive values of the variable x, which have high accuracy for the function as well as for the zeros. The approximation is determined by the simultaneous used of the power series and asymptotic expansion. The structure of the approximation is a combination of two rational functions with elementary functions as trigonometric and fractional powers. Here us in Pade method, rational functions are used, but now there combined with elementary functions us fractional powers hyperbolic or trigonometric functions, and others. The reason of this is that now power series of the exact function are used, but together with the asymptotic expansion, which usually includes fractional powers trigonometric functions and other type of elementary functions. The approximation must be a bridge between both expansions, and this can not be accomplished using only with rational functions. In the simplest approximation using 4 parameters the maximum absolute error is less than 0.006 at x ∼ 4.9. In this case also the maximum relative error for the zeros is less than 0.003 which is for the second zero, but that value decreases rapidly for the other zeros. The same kind of behaviour happens for the relative error of the maximum and minimum of the functions. Approximations with higher accuracy and more parameters will be also shown. All the approximations are valid for any positive value of x, and they can be calculated easily.

Keywords: analytic approximations, asymptotic approximations, Bessel functions, quasirational approximations

Procedia PDF Downloads 258
9488 Evaluation of Alternative Approaches for Additional Damping in Dynamic Calculations of Railway Bridges under High-Speed Traffic

Authors: Lara Bettinelli, Bernhard Glatz, Josef Fink

Abstract:

Planning engineers and researchers use various calculation models with different levels of complexity, calculation efficiency and accuracy in dynamic calculations of railway bridges under high-speed traffic. When choosing a vehicle model to depict the dynamic loading on the bridge structure caused by passing high-speed trains, different goals are pursued: On the one hand, the selected vehicle models should allow the calculation of a bridge’s vibrations as realistic as possible. On the other hand, the computational efficiency and manageability of the models should be preferably high to enable a wide range of applications. The commonly adopted and straightforward vehicle model is the moving load model (MLM), which simplifies the train to a sequence of static axle loads moving at a constant speed over the structure. However, the MLM can significantly overestimate the structure vibrations, especially when resonance events occur. More complex vehicle models, which depict the train as a system of oscillating and coupled masses, can reproduce the interaction dynamics between the vehicle and the bridge superstructure to some extent and enable the calculation of more realistic bridge accelerations. At the same time, such multi-body models require significantly greater processing capacities and precise knowledge of various vehicle properties. The European standards allow for applying the so-called additional damping method when simple load models, such as the MLM, are used in dynamic calculations. An additional damping factor depending on the bridge span, which should take into account the vibration-reducing benefits of the vehicle-bridge interaction, is assigned to the supporting structure in the calculations. However, numerous studies show that when the current standard specifications are applied, the calculation results for the bridge accelerations are in many cases still too high compared to the measured bridge accelerations, while in other cases, they are not on the safe side. A proposal to calculate the additional damping based on extensive dynamic calculations for a parametric field of simply supported bridges with a ballasted track was developed to address this issue. In this contribution, several different approaches to determine the additional damping of the supporting structure considering the vehicle-bridge interaction when using the MLM are compared with one another. Besides the standard specifications, this includes the approach mentioned above and two additional recently published alternative formulations derived from analytical approaches. For a bridge catalogue of 65 existing bridges in Austria in steel, concrete or composite construction, calculations are carried out with the MLM for two different high-speed trains and the different approaches for additional damping. The results are compared with the calculation results obtained by applying a more sophisticated multi-body model of the trains used. The evaluation and comparison of the results allow assessing the benefits of different calculation concepts for the additional damping regarding their accuracy and possible applications. The evaluation shows that by applying one of the recently published redesigned additional damping methods, the calculation results can reflect the influence of the vehicle-bridge interaction on the design-relevant structural accelerations considerably more reliable than by using normative specifications.

Keywords: Additional Damping Method, Bridge Dynamics, High-Speed Railway Traffic, Vehicle-Bridge-Interaction

Procedia PDF Downloads 162
9487 Limits of the Dot Counting Test: A Culturally Responsive Approach to Neuropsychological Evaluations and Treatment

Authors: Erin Curtis, Avraham Schwiger

Abstract:

Neuropsychological testing and evaluation is a crucial step in providing patients with effective diagnoses and treatment while in clinical care. The variety of batteries used in these evaluations can help clinicians better understand the nuanced declivities in a patient’s cognitive, behavioral, or emotional functioning, consequently equipping clinicians with the insights to make intentional choices about a patient’s care. Despite the knowledge these batteries can yield, some aspects of neuropsychological testing remain largely inaccessible to certain patient groups as a result of fundamental cultural, educational, or social differences. One such battery includes the Dot Counting Test (DCT), during which patients are required to count a series of dots on a page as rapidly and accurately as possible. As the battery progresses, the dots appear in clusters that are designed to be easily multiplied. This task evaluates a patient’s cognitive functioning, attention, and level of effort exerted on the evaluation as a whole. However, there is evidence to suggest that certain social groups, particularly Latinx groups, may perform worse on this task as a result of cultural or educational differences, not reduced cognitive functioning or effort. As such, this battery fails to account for baseline differences among patient groups, thus creating questions surrounding the accuracy, generalizability, and value of its results. Accessibility and cultural sensitivity are critical considerations in the testing and treatment of marginalized groups, yet have been largely ignored in the literature and in clinical settings to date. Implications and improvements to applications are discussed.

Keywords: culture, latino, neuropsychological assessment, neuropsychology, accessibility

Procedia PDF Downloads 115
9486 Electrodermal Activity Measurement Using Constant Current AC Source

Authors: Cristian Chacha, David Asiain, Jesús Ponce de León, José Ramón Beltrán

Abstract:

This work explores and characterizes the behavior of the AFE AD5941 in impedance measurement using an embedded algorithm with a constant current AC source. The main aim of this research is to improve the exact measurement of impedance values for their application in EDA-focused wearable devices. Through comprehensive study and characterization, it has been observed that employing a measurement sequence with a constant current source produces results with increased dispersion but higher accuracy. As a result, this approach leads to a more accurate system for impedance measurement.

Keywords: EDA, constant current AC source, wearable, precision, accuracy, impedance

Procedia PDF Downloads 113
9485 Experimental Evaluation of UDP in Wireless LAN

Authors: Omar Imhemed Alramli

Abstract:

As Transmission Control Protocol (TCP), User Datagram Protocol (UDP) is transfer protocol in the transportation layer in Open Systems Interconnection model (OSI model) or in TCP/IP model of networks. The UDP aspects evaluation were not recognized by using the pcattcp tool on the windows operating system platform like TCP. The study has been carried out to find a tool which supports UDP aspects evolution. After the information collection about different tools, iperf tool was chosen and implemented on Cygwin tool which is installed on both Windows XP platform and also on Windows XP on virtual box machine on one computer only. Iperf is used to make experimental evaluation of UDP and to see what will happen during the sending the packets between the Host and Guest in wired and wireless networks. Many test scenarios have been done and the major UDP aspects such as jitter, packet losses, and throughput are evaluated.

Keywords: TCP, UDP, IPERF, wireless LAN

Procedia PDF Downloads 360
9484 High-Fidelity Materials Screening with a Multi-Fidelity Graph Neural Network and Semi-Supervised Learning

Authors: Akeel A. Shah, Tong Zhang

Abstract:

Computational approaches to learning the properties of materials are commonplace, motivated by the need to screen or design materials for a given application, e.g., semiconductors and energy storage. Experimental approaches can be both time consuming and costly. Unfortunately, computational approaches such as ab-initio electronic structure calculations and classical or ab-initio molecular dynamics are themselves can be too slow for the rapid evaluation of materials, often involving thousands to hundreds of thousands of candidates. Machine learning assisted approaches have been developed to overcome the time limitations of purely physics-based approaches. These approaches, on the other hand, require large volumes of data for training (hundreds of thousands on many standard data sets such as QM7b). This means that they are limited by how quickly such a large data set of physics-based simulations can be established. At high fidelity, such as configuration interaction, composite methods such as G4, and coupled cluster theory, gathering such a large data set can become infeasible, which can compromise the accuracy of the predictions - many applications require high accuracy, for example band structures and energy levels in semiconductor materials and the energetics of charge transfer in energy storage materials. In order to circumvent this problem, multi-fidelity approaches can be adopted, for example the Δ-ML method, which learns a high-fidelity output from a low-fidelity result such as Hartree-Fock or density functional theory (DFT). The general strategy is to learn a map between the low and high fidelity outputs, so that the high-fidelity output is obtained a simple sum of the physics-based low-fidelity and correction, Although this requires a low-fidelity calculation, it typically requires far fewer high-fidelity results to learn the correction map, and furthermore, the low-fidelity result, such as Hartree-Fock or semi-empirical ZINDO, is typically quick to obtain, For high-fidelity outputs the result can be an order of magnitude or more in speed up. In this work, a new multi-fidelity approach is developed, based on a graph convolutional network (GCN) combined with semi-supervised learning. The GCN allows for the material or molecule to be represented as a graph, which is known to improve accuracy, for example SchNet and MEGNET. The graph incorporates information regarding the numbers of, types and properties of atoms; the types of bonds; and bond angles. They key to the accuracy in multi-fidelity methods, however, is the incorporation of low-fidelity output to learn the high-fidelity equivalent, in this case by learning their difference. Semi-supervised learning is employed to allow for different numbers of low and high-fidelity training points, by using an additional GCN-based low-fidelity map to predict high fidelity outputs. It is shown on 4 different data sets that a significant (at least one order of magnitude) increase in accuracy is obtained, using one to two orders of magnitude fewer low and high fidelity training points. One of the data sets is developed in this work, pertaining to 1000 simulations of quinone molecules (up to 24 atoms) at 5 different levels of fidelity, furnishing the energy, dipole moment and HOMO/LUMO.

Keywords: .materials screening, computational materials, machine learning, multi-fidelity, graph convolutional network, semi-supervised learning

Procedia PDF Downloads 46
9483 Real-Time Pedestrian Detection Method Based on Improved YOLOv3

Authors: Jingting Luo, Yong Wang, Ying Wang

Abstract:

Pedestrian detection in image or video data is a very important and challenging task in security surveillance. The difficulty of this task is to locate and detect pedestrians of different scales in complex scenes accurately. To solve these problems, a deep neural network (RT-YOLOv3) is proposed to realize real-time pedestrian detection at different scales in security monitoring. RT-YOLOv3 improves the traditional YOLOv3 algorithm. Firstly, the deep residual network is added to extract vehicle features. Then six convolutional neural networks with different scales are designed and fused with the corresponding scale feature maps in the residual network to form the final feature pyramid to perform pedestrian detection tasks. This method can better characterize pedestrians. In order to further improve the accuracy and generalization ability of the model, a hybrid pedestrian data set training method is used to extract pedestrian data from the VOC data set and train with the INRIA pedestrian data set. Experiments show that the proposed RT-YOLOv3 method achieves 93.57% accuracy of mAP (mean average precision) and 46.52f/s (number of frames per second). In terms of accuracy, RT-YOLOv3 performs better than Fast R-CNN, Faster R-CNN, YOLO, SSD, YOLOv2, and YOLOv3. This method reduces the missed detection rate and false detection rate, improves the positioning accuracy, and meets the requirements of real-time detection of pedestrian objects.

Keywords: pedestrian detection, feature detection, convolutional neural network, real-time detection, YOLOv3

Procedia PDF Downloads 147
9482 MRCP as a Pre-Operative Tool for Predicting Variant Biliary Anatomy in Living Related Liver Donors

Authors: Awais Ahmed, Atif Rana, Haseeb Zia, Maham Jahangir, Rashed Nazir, Faisal Dar

Abstract:

Purpose: Biliary complications represent the most common cause of morbidity in living related liver donor transplantation and detailed preoperative evaluation of biliary anatomic variants is crucial for safe patient selection and improved surgical outcomes. Purpose of this study is to determine the accuracy of preoperative MRCP in predicting biliary variations when compared to intraoperative cholangiography in living related liver donors. Materials and Methods: From 44 potential donors, 40 consecutive living related liver donors (13 females and 28 males) underwent donor hepatectomy at our centre from April 2012 to August 2013. MRCP and IOC of all patients were retrospectively reviewed separately by two radiologists and a transplant surgeon.MRCP was performed on 1.5 Tesla MR magnets using breath-hold heavily T2 weighted radial slab technique. One patient was excluded due to suboptimal MRCP. The accuracy of MRCP for variant biliary anatomy was calculated. Results: MRCP accurately predicted the biliary anatomy in 38 of 39 cases (97 %). Standard biliary anatomy was predicted by MRCP in 25 (64 %) donors (100% sensitivity). Variant biliary anatomy was noted in 14 (36 %) IOCs of which MRCP predicted precise anatomy of 13 variants (93 % sensitivity). The two most common variations were drainage of the RPSD into the LHD (50%) and the triple confluence of the RASD, RPSD and LHD (21%). Conclusion: MRCP is a sensitive imaging tool for precise pre-operative mapping of biliary variations which is critical to surgical decision making in living related liver transplantation.

Keywords: intraoperative cholangiogram, liver transplantation, living related donors, magnetic resonance cholangio-pancreaticogram (MRCP)

Procedia PDF Downloads 401
9481 Selection of Social and Sustainability Criteria for Public Investment Project Evaluation in Developing Countries

Authors: Pintip Vajarothai, Saad Al-Jibouri, Johannes I. M. Halman

Abstract:

Public investment projects are primarily aimed at achieving development strategies to increase national economies of scale and overall improvement in a country. However, experience shows that public projects, particularly in developing countries, struggle or fail to fulfill the immediate needs of local communities. In many cases, the reason for that is that projects are selected in a subjective manner and that a major part of the problem is related to the evaluation criteria and techniques used. The evaluation process is often based on a broad strategic economic effects rather than real benefits of projects to society or on the various needs from different levels (e.g. national, regional, local) and conditions (e.g. long-term and short-term requirements). In this paper, an extensive literature review of the types of criteria used in the past by various researchers in project evaluation and selection process is carried out and the effectiveness of such criteria and techniques is discussed. The paper proposes substitute social and project sustainability criteria to improve the conditions of local people and in particular the disadvantaged groups of the communities. Furthermore, it puts forward a way for modelling the interaction between the selected criteria and the achievement of the social goals of the affected community groups. The described work is part of developing a broader decision model for public investment project selection by integrating various aspects and techniques into a practical methodology. The paper uses Thailand as a case to review what and how the various evaluation techniques are currently used and how to improve the project evaluation and selection process related to social and sustainability issues in the country. The paper also uses an example to demonstrates how to test the feasibility of various criteria and how to model the interaction between projects and communities. The proposed model could be applied to other developing and developed countries in the project evaluation and selection process to improve its effectiveness in the long run.

Keywords: evaluation criteria, developing countries, public investment, project selection methodology

Procedia PDF Downloads 279
9480 Integration of EEG and Motion Tracking Sensors for Objective Measure of Attention-Deficit Hyperactivity Disorder in Pre-Schoolers

Authors: Neha Bhattacharyya, Soumendra Singh, Amrita Banerjee, Ria Ghosh, Oindrila Sinha, Nairit Das, Rajkumar Gayen, Somya Subhra Pal, Sahely Ganguly, Tanmoy Dasgupta, Tanusree Dasgupta, Pulak Mondal, Aniruddha Adhikari, Sharmila Sarkar, Debasish Bhattacharyya, Asim Kumar Mallick, Om Prakash Singh, Samir Kumar Pal

Abstract:

Background: We aim to develop an integrated device comprised of single-probe EEG and CCD-based motion sensors for a more objective measure of Attention-deficit Hyperactivity Disorder (ADHD). While the integrated device (MAHD) relies on the EEG signal (spectral density of beta wave) for the assessment of attention during a given structured task (painting three segments of a circle using three different colors, namely red, green and blue), the CCD sensor depicts movement pattern of the subjects engaged in a continuous performance task (CPT). A statistical analysis of the attention and movement patterns was performed, and the accuracy of the completed tasks was analysed using indigenously developed software. The device with the embedded software, called MAHD, is intended to improve certainty with criterion E (i.e. whether symptoms are better explained by another condition). Methods: We have used the EEG signal from a single-channel dry sensor placed on the frontal lobe of the head of the subjects (3-5 years old pre-schoolers). During the painting of three segments of a circle using three distinct colors (red, green, and blue), absolute power for delta and beta EEG waves from the subjects are found to be correlated with relaxation and attention/cognitive load conditions. While the relaxation condition of the subject hints at hyperactivity, a more direct CCD-based motion sensor is used to track the physical movement of the subject engaged in a continuous performance task (CPT) i.e., separation of the various colored balls from one table to another. We have used our indigenously developed software for the statistical analysis to derive a scale for the objective assessment of ADHD. We have also compared our scale with clinical ADHD evaluation. Results: In a limited clinical trial with preliminary statistical analysis, we have found a significant correlation between the objective assessment of the ADHD subjects with that of the clinician’s conventional evaluation. Conclusion: MAHD, the integrated device, is supposed to be an auxiliary tool to improve the accuracy of ADHD diagnosis by supporting greater criterion E certainty.

Keywords: ADHD, CPT, EEG signal, motion sensor, psychometric test

Procedia PDF Downloads 103
9479 Quantification Model for Capability Evaluation of Optical-Based in-Situ Monitoring System for Laser Powder Bed Fusion (LPBF) Process

Authors: Song Zhang, Hui Wang, Johannes Henrich Schleifenbaum

Abstract:

Due to the increasing demand for quality assurance and reliability for additive manufacturing, the development of an advanced in-situ monitoring system is required to monitor the process anomalies as input for further process control. Optical-based monitoring systems, such as CMOS cameras and NIR cameras, are proved as effective ways to monitor the geometrical distortion and exceptional thermal distribution. Therefore, many studies and applications are focusing on the availability of the optical-based monitoring system for detecting varied types of defects. However, the capability of the monitoring setup is not quantified. In this study, a quantification model to evaluate the capability of the monitoring setups for the LPBF machine based on acquired monitoring data of a designed test artifact is presented, while the design of the relevant test artifacts is discussed. The monitoring setup is evaluated based on its hardware properties, location of the integration, and light condition. Methodology of data processing to quantify the capacity for each aspect is discussed. The minimal capability of the detectable size of the monitoring set up in the application is estimated by quantifying its resolution and accuracy. The quantification model is validated using a CCD camera-based monitoring system for LPBF machines in the laboratory with different setups. The result shows the model to quantify the monitoring system's performance, which makes the evaluation of monitoring systems with the same concept but different setups possible for the LPBF process and provides the direction to improve the setups.

Keywords: data processing, in-situ monitoring, LPBF process, optical system, quantization model, test artifact

Procedia PDF Downloads 200
9478 Comparison of Wet and Microwave Digestion Methods for the Al, Cu, Fe, Mn, Ni, Pb and Zn Determination in Some Honey Samples by ICPOES in Turkey

Authors: Huseyin Altundag, Emel Bina, Esra Altıntıg

Abstract:

The aim of this study is determining amount of Al, Cu, Fe, Mn, Ni, Pb and Zn in the samples of honey which are gathered from Sakarya and Istanbul regions. In this study the evaluation of the trace elements in honeys samples are gathered from Sakarya and Istanbul, Turkey. The sample preparation phase is performed via wet decomposition method and microwave digestion system. The accuracy of the method was corrected by the standard reference material, Tea Leaves (INCY-TL-1) and NIST SRM 1515 Apple leaves. The comparison between gathered data and literature values has made and possible resources of the contamination to the samples of honey have handled. The obtained results will be presented in ICCIS 2015: XIII International Conference on Chemical Industry and Science.

Keywords: Wet decomposition, Microwave digestion, Trace element, Honey, ICP-OES

Procedia PDF Downloads 468
9477 The Mediator as an Evaluator: An Analysis of Evaluation as a Method for the Lawyer’s Reform to Mediation

Authors: Dionne Coley B. A.

Abstract:

The role of a lawyer as a mediator is to be impartial in assisting parties to arrive at a decision. This decision should be made in a voluntary and mutually acceptable manner where the mediator encourages the parties to communicate, identify their interests, assess risks and consider settlement options. One of the key components to mediation is impartiality where mediators are to have a duty to remain impartial throughout the course of mediation and uphold an “objective” demeanor with both parties. The question is whether a mediator should take on evaluative role while encouraging the parties to come to a decision. This means that the mediator would not only encourage dialogue and responses between the parties but also assess and provide an opinion on the matter. This paper submits the argument that the role of a mediator should not be one of evaluation as this does not encourage the dialogue, process or desired outcomes associated with mediation.

Keywords: evaluation, lawyer, mediation, reform

Procedia PDF Downloads 424
9476 An Ergonomic Handle Design for Instruments in Laparoscopic Surgery

Authors: Ramon Sancibrian, Carlos Redondo-Figuero, Maria C. Gutierrez-Diez, Esther G. Sarabia, Maria A. Benito-Gonzalez, Jose C. Manuel-Palazuelos

Abstract:

In this paper, the design and evaluation of a handle for laparoscopic surgery is presented. The design of the handle is based on ergonomic principles and tries to avoid awkward postures for surgeons. The handle combines the so-called power-grip and accurate-grip in order to provide strength and accuracy in the performance of surgery. The handle is tested using both objective and subjective approaches. The objective approach uses motion capture techniques to obtain the angles of forearm, arm, wrist and hand. The muscular effort is obtained with electromyography electrodes. On the other hand, a subjective survey has been carried out using questionnaires. Results confirm that the handle is preferred by the majority of the surgeons.

Keywords: laparoscopic surgery, ergonomics, mechanical design, biomechanics

Procedia PDF Downloads 505
9475 Land Cover Mapping Using Sentinel-2, Landsat-8 Satellite Images, and Google Earth Engine: A Study Case of the Beterou Catchment

Authors: Ella Sèdé Maforikan

Abstract:

Accurate land cover mapping is essential for effective environmental monitoring and natural resources management. This study focuses on assessing the classification performance of two satellite datasets and evaluating the impact of different input feature combinations on classification accuracy in the Beterou catchment, situated in the northern part of Benin. Landsat-8 and Sentinel-2 images from June 1, 2020, to March 31, 2021, were utilized. Employing the Random Forest (RF) algorithm on Google Earth Engine (GEE), a supervised classification categorized the land into five classes: forest, savannas, cropland, settlement, and water bodies. GEE was chosen due to its high-performance computing capabilities, mitigating computational burdens associated with traditional land cover classification methods. By eliminating the need for individual satellite image downloads and providing access to an extensive archive of remote sensing data, GEE facilitated efficient model training on remote sensing data. The study achieved commendable overall accuracy (OA), ranging from 84% to 85%, even without incorporating spectral indices and terrain metrics into the model. Notably, the inclusion of additional input sources, specifically terrain features like slope and elevation, enhanced classification accuracy. The highest accuracy was achieved with Sentinel-2 (OA = 91%, Kappa = 0.88), slightly surpassing Landsat-8 (OA = 90%, Kappa = 0.87). This underscores the significance of combining diverse input sources for optimal accuracy in land cover mapping. The methodology presented herein not only enables the creation of precise, expeditious land cover maps but also demonstrates the prowess of cloud computing through GEE for large-scale land cover mapping with remarkable accuracy. The study emphasizes the synergy of different input sources to achieve superior accuracy. As a future recommendation, the application of Light Detection and Ranging (LiDAR) technology is proposed to enhance vegetation type differentiation in the Beterou catchment. Additionally, a cross-comparison between Sentinel-2 and Landsat-8 for assessing long-term land cover changes is suggested.

Keywords: land cover mapping, Google Earth Engine, random forest, Beterou catchment

Procedia PDF Downloads 68
9474 Evaluation of Wind Fragility for Set Anchor Used in Sign Structure in Korea

Authors: WooYoung Jung, Buntheng Chhorn, Min-Gi Kim

Abstract:

Recently, damage to domestic facilities by strong winds and typhoons are growing. Therefore, this study focused on sign structure among various vulnerable facilities. The evaluation of the wind fragility was carried out considering the destruction of the anchor, which is one of the various failure modes of the sign structure. The performance evaluation of the anchor was carried out to derive the wind fragility. Two parameters were set and four anchor types were selected to perform the pull-out and shear tests. The resistance capacity was estimated based on the experimental results. Wind loads were estimated using Monte Carlo simulation method. Based on these results, we derived the wind fragility according to anchor type and wind exposure category. Finally, the evaluation of the wind fragility was performed according to the experimental parameters such as anchor length and anchor diameter. This study shows that the depth of anchor was more significant for the safety of structure compare to diameter of anchor.

Keywords: sign structure, wind fragility, set anchor, pull-out test, shear test, Monte Carlo simulation

Procedia PDF Downloads 291