Search results for: efficiency analysis and selection bias
33875 Verbal Prefix Selection in Old Japanese: A Corpus-Based Study
Authors: Zixi You
Abstract:
There are a number of verbal prefixes in Old Japanese. However, the selection or the compatibility of verbs and verbal prefixes is among the least investigated topics on Old Japanese language. Unlike other types of prefixes, verbal prefixes in dictionaries are more often than not listed with very brief information such as ‘unknown meaning’ or ‘rhythmic function only’. To fill in a part of this knowledge gap, this paper presents an exhaustive investigation based on the newly developed ‘Oxford Corpus of Old Japanese’ (OCOJ), which included nearly all existing resource of Old Japanese language, with detailed linguistics information in TEI-XML tags. In this paper, we propose the possibility that the following three prefixes, i-, sa-, ta- (with ta- being considered as a variation of sa-), are relevant to split intransitivity in Old Japanese, with evidence that unergative verbs favor i- and that unergative verbs favor sa-(ta-). This might be undermined by the fact that transitives are also found to follow i-. However, with several manifestations of split intransitivity in Old Japanese discussed, the behavior of transitives in verbal prefix selection is no longer as surprising as it may seem to be when one look at the selection of verbal prefix in isolation. It is possible that there are one or more features that played essential roles in determining the selection of i-, and the attested transitive verbs happen to have these features. The data suggest that this feature is a sense of ‘change’ of location or state involved in the event donated by the verb, which is a feature of typical unaccusatives. This is further discussed in the ‘affectedness’ hierarchy. The presentation of this paper, which includes a brief demonstration of the OCOJ, is expected to be of the interest of both specialists and general audiences.Keywords: old Japanese, split intransitivity, unaccusatives, unergatives, verbal prefix selection
Procedia PDF Downloads 41533874 Enhancing ERP Implementation Processes in South African Retail SMEs: A Study on Operational Efficiency and Customer-Centric Approaches
Authors: Tshepo Mabotja
Abstract:
Purpose: The purpose of this study is to identify and analyse the factors influencing ERP implementation in South African SMEs in the textile & apparel retail sector, with the goal of providing insights that improve decision-making, enhance operational efficiency, and meet customer expectations. Design/Methodology/Approach: A quantitative research methodology was employed, utilising a probability (random) sampling technique to ensure equal opportunity for sample selection. The researcher conducted an extensive review of current literature to identify knowledge gaps and applied data analysis methods, including descriptive statistics, reliability tests, exploratory factor analysis, and normality testing. Findings/Results: The study revealed that South African SMEs in the textile & apparel retail industry must evaluate critical factors before implementing an ERP model. These factors include assessing client requirements, examining the experiences of existing ERP system users, understanding system maintenance needs, and forecasting expected performance outcomes. Practical Implications: The findings provide actionable recommendations for textile and apparel retail SMEs aiming to adopt ERP systems. By focusing on the identified critical factors, businesses can enhance their ERP adoption processes, reduce operational inefficiencies, and better align with customer and sustainability demands. Originality/Value: This study contributes to the limited body of knowledge on ERP implementation challenges in South African textile and apparel retail SMEs. It provides a unique perspective on how strategic ERP adoption can drive operational improvements and support sustainable development practices within the industry.Keywords: retail SMEs, enterprise resource planning, operational efficiency, customer centricity
Procedia PDF Downloads 1333873 Applying Fuzzy Analytic Hierarchy Process for Subcontractor Selection
Authors: Halimi Mohamed Taher, Kordoghli Bassem, Ben Hassen Mohamed, Sakli Faouzi
Abstract:
Textile and clothing manufacturing industry is based largely on subcontracting system. Choosing the right subcontractor became a strategic decision that can affect the financial position of the company and even his market position. Subcontracting firms in Tunisia are lead to define an appropriate selection process which takes into account several quantitative and qualitative criteria. In this study, a methodology is proposed that includes a Fuzzy Analytic Hierarchy Process (AHP) in order to incorporate the ambiguities and uncertainties in qualitative decision. Best subcontractors for two Tunisian firms are determined based on model results.Keywords: AHP, subcontractor, multicriteria, selection
Procedia PDF Downloads 68933872 Dissecting Big Trajectory Data to Analyse Road Network Travel Efficiency
Authors: Rania Alshikhe, Vinita Jindal
Abstract:
Digital innovation has played a crucial role in managing smart transportation. For this, big trajectory data collected from traveling vehicles, such as taxis through installed global positioning system (GPS)-enabled devices can be utilized. It offers an unprecedented opportunity to trace the movements of vehicles in fine spatiotemporal granularity. This paper aims to explore big trajectory data to measure the travel efficiency of road networks using the proposed statistical travel efficiency measure (STEM) across an entire city. Further, it identifies the cause of low travel efficiency by proposed least square approximation network-based causality exploration (LANCE). Finally, the resulting data analysis reveals the causes of low travel efficiency, along with the road segments that need to be optimized to improve the traffic conditions and thus minimize the average travel time from given point A to point B in the road network. Obtained results show that our proposed approach outperforms the baseline algorithms for measuring the travel efficiency of the road network.Keywords: GPS trajectory, road network, taxi trips, digital map, big data, STEM, LANCE
Procedia PDF Downloads 15833871 Designing of Induction Motor Efficiency Monitoring System
Authors: Ali Mamizadeh, Ires Iskender, Saeid Aghaei
Abstract:
Energy is one of the important issues with high priority property in the world. Energy demand is rapidly increasing depending on the growing population and industry. The useable energy sources in the world will be insufficient to meet the need for energy. Therefore, the efficient and economical usage of energy sources is getting more importance. In a survey conducted among electric consuming machines, the electrical machines are consuming about 40% of the total electrical energy consumed by electrical devices and 96% of this consumption belongs to induction motors. Induction motors are the workhorses of industry and have very large application areas in industry and urban systems like water pumping and distribution systems, steel and paper industries and etc. Monitoring and the control of the motors have an important effect on the operating performance of the motor, driver selection and replacement strategy management of electrical machines. The sensorless monitoring system for monitoring and calculating efficiency of induction motors are studied in this study. The equivalent circuit of IEEE is used in the design of this study. The terminal current and voltage of induction motor are used in this motor to measure the efficiency of induction motor. The motor nameplate information and the measured current and voltage are used in this system to calculate accurately the losses of induction motor to calculate its input and output power. The efficiency of the induction motor is monitored online in the proposed method without disconnecting the motor from the driver and without adding any additional connection at the motor terminal box. The proposed monitoring system measure accurately the efficiency by including all losses without using torque meter and speed sensor. The monitoring system uses embedded architecture and does not need to connect to a computer to measure and log measured data. The conclusion regarding the efficiency, the accuracy and technical and economical benefits of the proposed method are presented. The experimental verification has been obtained on a 3 phase 1.1 kW, 2-pole induction motor. The proposed method can be used for optimal control of induction motors, efficiency monitoring and motor replacement strategy.Keywords: induction motor, efficiency, power losses, monitoring, embedded design
Procedia PDF Downloads 35033870 Study on Varying Solar Blocking Depths in the Exploration of Energy-Saving Renovation of the Energy-Saving Design of the External Shell of Existing Buildings: Using Townhouse Residences in Kaohsiung City as an Example
Authors: Kuang Sheng Liu, Yu Lin Shih*, Chun Ta Tzeng, Cheng Chen Chen
Abstract:
Buildings in the 21st century are facing issues such as an extreme climate and low-carbon/energy-saving requirements. Many countries in the world are of the opinion that a building during its medium- and long-term life cycle is an energy-consuming entity. As for the use of architectural resources, including the United Nations-implemented "Global Green Policy" and "Sustainable building and construction initiative", all are working towards "zero-energy building" and "zero-carbon building" policies. Because of this, countries are cooperating with industry development using policies such as "mandatory design criteria", "green procurement policy" and "incentive grants and rebates programme". The results of this study can provide a reference for sustainable building renovation design criteria. Aimed at townhouses in Kaohsiung City, this study uses different levels of solar blocking depth to carry out evaluation of design and energy-saving renovation of the outer shell of existing buildings by using data collection and the selection of representative cases. Using building resources from a building information model (BIM), simulation and efficiency evaluation are carried out and proven with simulation estimation. This leads into the ECO-efficiency model (EEM) for the life cycle cost efficiency (LCCE) evalution. The buildings selected by this research sit in a north-south direction set with different solar blocking depths. The indoor air-conditioning consumption rates are compared. The current balcony depth of 1 metre as the simulated EUI value acts as a reference value of 100%. The solar blocking of the balcony is increased to 1.5, 2, 2.5 and 3 metres for a total of 5 different solar-blocking balcony depths, for comparison of the air-conditioning improvement efficacy. This research uses different solar-blocking balcony depths to carry out air-conditioning efficiency analysis. 1.5m saves 3.08%, 2m saves 6.74%, 2.5m saves 9.80% and 3m saves 12.72% from the air-conditioning EUI value. This shows that solar-blocking balconies have an efficiency-increasing potential for indoor air-conditioning.Keywords: building information model, eco-efficiency model, energy-saving in the external shell, solar blocking depth.
Procedia PDF Downloads 40333869 Thermal Analysis of Photovoltaic Integrated Greenhouse Solar Dryer
Authors: Sumit Tiwari, Rohit Tripathi, G. N. Tiwari
Abstract:
Present study focused on the utilization of solar energy by the help of photovoltaic greenhouse solar dryer under forced mode. A single slope photovoltaic greenhouse solar dryer has been proposed and thermal modelling has been developed. Various parameters have been calculated by thermal modelling such as greenhouse room temperature, cell temperature, crop temperature and air temperature at exit of greenhouse. Further cell efficiency, thermal efficiency, and overall thermal efficiency have been calculated for a typical day of May and November. It was found that system can generate equivalent thermal energy up to 7.65 kW and 6.66 kW per day for clear day of May and November respectively.Keywords: characteristics curve, photovoltaic, thermal modelling, thermal efficiency
Procedia PDF Downloads 45833868 Public Economic Efficiency and Case-Based Reasoning: A Theoretical Framework to Police Performance
Authors: Javier Parra-Domínguez, Juan Manuel Corchado
Abstract:
At present, public efficiency is a concept that intends to maximize return on public investment focus on minimizing the use of resources and maximizing the outputs. The concept takes into account statistical criteria drawn up according to techniques such as DEA (Data Envelopment Analysis). The purpose of the current work is to consider, more precisely, the theoretical application of CBR (Case-Based Reasoning) from economics and computer science, as a preliminary step to improving the efficiency of law enforcement agencies (public sector). With the aim of increasing the efficiency of the public sector, we have entered into a phase whose main objective is the implementation of new technologies. Our main conclusion is that the application of computer techniques, such as CBR, has become key to the efficiency of the public sector, which continues to require economic valuation based on methodologies such as DEA. As a theoretical result and conclusion, the incorporation of CBR systems will reduce the number of inputs and increase, theoretically, the number of outputs generated based on previous computer knowledge.Keywords: case-based reasoning, knowledge, police, public efficiency
Procedia PDF Downloads 13733867 The Effect of Gender Differences on Mate Selection in Private University
Authors: Hui Min Kong, Rajalakshmi A/P Ganesan
Abstract:
The present study was conducted to investigate the effect of gender differences in mate selection in a private university. Mate selection is an important process and decision to the people around the world, especially for single people. The future partner we have chosen could be our lifetime friend, supporter, and lover. Mate selection is important to us, but we have never fully understood the evolution of gender differences in mate selection. Besides, there was an insufficient empirical finding of gender differences in mate selection in Malaysia. Hence, the research would allow us to understand our feelings and thoughts about our future partners. The research null hypotheses have stated that there was no significant difference on 18 mate selections characteristics between males and females. A quantitative method was performed to test the hypotheses through independent t-test. There was a total of 373 heterosexual participants with the age range of 18 to 35 in the study. The instrument used was Factors in choosing a mate developed by Buss and Barnes (1986). Results indicated that females (M= 26.69) were found to be highly valued on refinement and neatness, good financial prospect, dependable character, emotional stability and maturity, desire for home and children, favorable social status or rating, similar religious background, ambition and industriousness, mutual attraction, good health and education and intelligence than males (M= 23.25). These results demonstrated that there were 61.11% significant gender differences in mate selections characteristics. Findings of this research have highlighted the importance of human mate selections in Malaysia. Further research is needed to identify the factors that could have a possible moderating effect of gender differences in mate selection.Keywords: gender differences, mate selections, evolution, future partner
Procedia PDF Downloads 11333866 An Experimental Study for Assessing Email Classification Attributes Using Feature Selection Methods
Authors: Issa Qabaja, Fadi Thabtah
Abstract:
Email phishing classification is one of the vital problems in the online security research domain that have attracted several scholars due to its impact on the users payments performed daily online. One aspect to reach a good performance by the detection algorithms in the email phishing problem is to identify the minimal set of features that significantly have an impact on raising the phishing detection rate. This paper investigate three known feature selection methods named Information Gain (IG), Chi-square and Correlation Features Set (CFS) on the email phishing problem to separate high influential features from low influential ones in phishing detection. We measure the degree of influentially by applying four data mining algorithms on a large set of features. We compare the accuracy of these algorithms on the complete features set before feature selection has been applied and after feature selection has been applied. After conducting experiments, the results show 12 common significant features have been chosen among the considered features by the feature selection methods. Further, the average detection accuracy derived by the data mining algorithms on the reduced 12-features set was very slight affected when compared with the one derived from the 47-features set.Keywords: data mining, email classification, phishing, online security
Procedia PDF Downloads 43333865 Morphological Parameters and Selection of Turkish Edible Seed Pumpkins (Cucurbita pepo L.) Germplasm
Authors: Onder Turkmen, Musa Seymen, Sali Fidan, Mustafa Paksoy
Abstract:
There is a requirement for registered edible seed pumpkin suitable for eating in Turkey. A total of 81 genotypes collected from the researchers in 2005 originated from Eskisehir, Konya, Nevsehir, Tekirdag, Sakarya, Kayseri and Kirsehir provinces were utilized. The used genetic materials were brought to S5 generation by the research groups among 2006 and 2010 years. In this research, S5 stage reached in the genotype given some of the morphological features, and selection of promising genotypes generated scale were made. Results showed that the A-1 (420), A-7 (410), A-8 (420), A-32 (420), B-17 (410), B-24 (410), B-25 (420), B-33 (400), C-24 (420), C-25 (410), C-26 (410) and C-30 (420) genotypes are expected to be promising varieties.Keywords: candidate cultivar, edible seed pumpkin, morphologic parameters, selection
Procedia PDF Downloads 38333864 Possibility Theory Based Multi-Attribute Decision-Making: Application in Facility Location-Selection Problem under Uncertain and Extreme Environment
Authors: Bezhan Ghvaberidze
Abstract:
A fuzzy multi-objective facility location-selection problem (FLSP) under uncertain and extreme environments based on possibility theory is developed. The model’s uncertain parameters in the q-rung orthopair fuzzy values are presented and transformed in the Dempster-Shaper’s belief structure environment. An objective function – distribution centers’ selection ranking index as an extension of Dempster’s extremal expectations under discrimination q-rung orthopair fuzzy information is constructed. Experts evaluate each humanitarian aid from distribution centers (HADC) against each of the uncertain factors. HADCs location problem is reduced to the bicriteria problem of partitioning the set of customers by the set of centers: (1) – Minimization of transportation costs; (2) – Maximization of centers’ selection ranking indexes. Partitioning type constraints are also constructed. For an illustration of the obtained results, a numerical example is created from the facility location-selection problem.Keywords: FLSP, multi-objective combinatorial optimization problem, evidence theory, HADC, q-rung orthopair fuzzy set, possibility theory
Procedia PDF Downloads 12133863 Effect of the Applied Bias on Mini-Band Structures in Dimer Fibonacci InAs/Ga1-XInXAs Superlattices
Authors: Z. Aziz, S. Terkhi, Y. Sefir, R. Djelti, S. Bentata
Abstract:
The effect of a uniform electric field across multi-barrier systems (InAs/InxGa1-xAs) is exhaustively explored by a computational model using exact Airy function formalism and the transfer-matrix technique. In the case of biased DFHBSL structure a strong reduction in transmission properties was observed and the width of the mini-band structure linearly decreases with the increase of the applied bias. This is due to the confinement of the states in the mini-band structure, which becomes increasingly important (Wannier-Stark Effect).Keywords: dimer fibonacci height barrier superlattices, singular extended state, exact Airy function and transfer matrix formalism, bioinformatics
Procedia PDF Downloads 29033862 The Staff Performance Efficiency of the Faculty of Management Science, Suan Sunandha Rajabhat University
Authors: Nipawan Tharasak, Ladda Hirunyava
Abstract:
The objective of the research was to study factors affecting working efficiency and the relationship between working environment, satisfaction to human resources management and operation employees’ working efficiency of Faculty of Management Science, Suan Sunandha Rajabhat University. The sample size of the research was based on 33 employees of Faculty of Management Science. The researcher had classified the support employees into 4 divisions by using Stratified Random Sampling. Individual sample was randomized by using Simple Random Sampling. Data was collected through the instrument. The Statistical Package for the Windows was utilized for data processing. Percentage, mean, standard deviation, the t-test, One-way ANOVA, and Pearson product moment correlation coefficient were applied. The result found the support employees’ satisfaction in human resources management of Faculty of Management Science in following areas: remuneration; employee recruitment & selection; manpower planning; performance evaluation; staff training & developing; and spirit & fairness were overall in good level.Keywords: faculty of management science, operational factors, practice performance, staff working
Procedia PDF Downloads 23533861 Thermodynamic Analysis of an Ejector-Absorption Refrigeration Cycle with Using NH3-H2O
Authors: Samad Jafarmadar, Amin Habibzadeh, Mohammad Mehdi Rashidi, Sayed Sina Rezaei, Abbas Aghagoli
Abstract:
In this paper, the ejector-absorption refrigeration cycle is presented. This article deals with the thermodynamic simulation and the first and second law analysis of an ammonia-water. The effects of parameters such as condenser, absorber, generator, and evaporator temperatures have been investigated. The influence of the various operating parameters on the performance coefficient and exergy efficiency of this cycle has been studied. The results show that when the temperature of different parts increases, the performance coefficient and the exergy efficiency of the cycle decrease, except for evaporator and generator, that causes an increase in coefficient of performance (COP). According to the results, absorber and ejector have the highest exergy losses in the studied conditions.Keywords: absorption refrigeration, COP, ejector, exergy efficiency
Procedia PDF Downloads 32433860 Gender Bias After Failure: How Crowd Lenders Disadvantage Female-Led Social Ventures
Authors: Caroline Lindlar, Eva Jakob
Abstract:
Female entrepreneurs often face significant barriers in accessing funding due to biases from business angels, venture capitalists, and financial institutions, which tend to favor male entrepreneurs. These biases contribute to persistent funding disparities, with female entrepreneurs receiving less financial support than their male counterparts. The situation worsens when female entrepreneurs have prior experiences with venture failure, which diminishes their attractiveness to traditional investors. Venture failure, defined as the cessation of operations due to declining revenues, rising costs, or ownership changes, plays a substantial role in shaping funding opportunities. In response, female entrepreneurs frequently turn to alternative funding sources such as crowdlending, where gender biases are often reversed in favor of women, particularly when their ventures emphasize social value creation. While existing research highlights the positive impact of gender on crowdfunding success, it remains unclear how venture failure, known to negatively bias female entrepreneurs in traditional funding contexts, interacts with the positive effects of gender in crowdlending. This interaction is particularly relevant because crowdlending often involves non-professional funders who make repeated investment decisions under uncertainty, based on limited information and past experiences. Given that approximately one-third of ventures fail to deliver promised returns, the role of gender bias after failure in crowdlending is an important area of investigation. This study addresses How failure affects crowd funders’ gender bias in future funding decisions? Drawing on social role and role congruity theory, we posit that societal perceptions of women as more communal conflict with the agentic qualities traditionally associated with entrepreneurship. This incongruence may result in reduced confidence in the success of female entrepreneurs after failure, limiting their access to future funding. However, we also hypothesize that social framing may mitigate this bias by aligning perceptions of female entrepreneurs with traits such as warmth and caring, enhancing their appeal after failure. To test these assertions, it conducted a between-subject audio vignette experiment with 155 participants who listened to entrepreneur pitches manipulated by gender (male vs. female) and venture framing (social vs. commercial). Participants made initial investment decisions, received failure-related news about the venture, and then made subsequent investment decisions. Pre-tests with 159 participants ensured the validity and reliability of the experimental manipulations. Moreover, we did a metric conjoint analysis with 100 participants, and they had to decide between different crowdfunding campaigns based on the attributes of previous failure, gender, and venture mission. it findings reveal that failure activates gender biases in crowdlending. Female-led ventures receive significantly less funding after failure compared to male-led ventures, suggesting the positive bias toward female entrepreneurs in the pre-funding phase does not persist post-failure. Moreover, framing a venture as socially oriented exacerbates the negative effect of failure for female entrepreneurs, as they secure fewer funds after failure compared to male entrepreneurs leading similar social ventures. This indicates that role-congruent framing does not mitigate gender bias after failure. This study contributes to research on gender in entrepreneurship by exploring how failure impacts future funding for female entrepreneurs. It also expands social crowdfunding literature by examining social value framing and adds to the entrepreneurial failure literature by focusing on crowd funders’ post-failure behavior.Keywords: gender bias, crowdfunding, investment failure, investment behavior, social entrepreneurship
Procedia PDF Downloads 1933859 Machine Learning Approach for Yield Prediction in Semiconductor Production
Authors: Heramb Somthankar, Anujoy Chakraborty
Abstract:
This paper presents a classification study on yield prediction in semiconductor production using machine learning approaches. A complicated semiconductor production process is generally monitored continuously by signals acquired from sensors and measurement sites. A monitoring system contains a variety of signals, all of which contain useful information, irrelevant information, and noise. In the case of each signal being considered a feature, "Feature Selection" is used to find the most relevant signals. The open-source UCI SECOM Dataset provides 1567 such samples, out of which 104 fail in quality assurance. Feature extraction and selection are performed on the dataset, and useful signals were considered for further study. Afterward, common machine learning algorithms were employed to predict whether the signal yields pass or fail. The most relevant algorithm is selected for prediction based on the accuracy and loss of the ML model.Keywords: deep learning, feature extraction, feature selection, machine learning classification algorithms, semiconductor production monitoring, signal processing, time-series analysis
Procedia PDF Downloads 11033858 Performance Evaluation of the CSAN Pronto Point-of-Care Whole Blood Analyzer for Regular Hematological Monitoring During Clozapine Treatment
Authors: Farzana Esmailkassam, Usakorn Kunanuvat, Zahraa Mohammed Ali
Abstract:
Objective: The key barrier in Clozapine treatment of treatment-resistant schizophrenia (TRS) includes frequent bloods draws to monitor neutropenia, the main drug side effect. WBC and ANC monitoring must occur throughout treatment. Accurate WBC and ANC counts are necessary for clinical decisions to halt, modify or continue clozapine treatment. The CSAN Pronto point-of-care (POC) analyzer generates white blood cells (WBC) and absolute neutrophils (ANC) through image analysis of capillary blood. POC monitoring offers significant advantages over central laboratory testing. This study evaluated the performance of the CSAN Pronto against the Beckman DxH900 Hematology laboratory analyzer. Methods: Forty venous samples (EDTA whole blood) with varying concentrations of WBC and ANC as established on the DxH900 analyzer were tested in duplicates on three CSAN Pronto analyzers. Additionally, both venous and capillary samples were concomitantly collected from 20 volunteers and assessed on the CSAN Pronto and the DxH900 analyzer. The analytical performance including precision using liquid quality controls (QCs) as well as patient samples near the medical decision points, and linearity using a mix of high and low patient samples to create five concentrations was also evaluated. Results: In the precision study for QCs and whole blood, WBC and ANC showed CV inside the limits established according to manufacturer and laboratory acceptability standards. WBC and ANC were found to be linear across the measurement range with a correlation of 0.99. WBC and ANC from all analyzers correlated well in venous samples on the DxH900 across the tested sample ranges with a correlation of > 0.95. Mean bias in ANC obtained on the CSAN pronto versus the DxH900 was 0.07× 109 cells/L (95% L.O.A -0.25 to 0.49) for concentrations <4.0 × 109 cells/L, which includes decision-making cut-offs for continuing clozapine treatment. Mean bias in WBC obtained on the CSAN pronto versus the DxH900 was 0.34× 109 cells/L (95% L.O.A -0.13 to 0.72) for concentrations <5.0 × 109 cells/L. The mean bias was higher (-11% for ANC, 5% for WBC) at higher concentrations. The correlations between capillary and venous samples showed more variability with mean bias of 0.20 × 109 cells/L for the ANC. Conclusions: The CSAN pronto showed acceptable performance in WBC and ANC measurements from venous and capillary samples and was approved for clinical use. This testing will facilitate treatment decisions and improve clozapine uptake and compliance.Keywords: absolute neutrophil counts, clozapine, point of care, white blood cells
Procedia PDF Downloads 9733857 Efficiency Enhancement of Photovoltaic Panels Using an Optimised Air Cooled Heat Sink
Authors: Wisam K. Hussam, Ali Alfeeli, Gergory J. Sheard
Abstract:
Solar panels that use photovoltaic (PV) cells are popular for converting solar radiation into electricity. One of the major problems impacting the performance of PV panels is the overheating caused by excessive solar radiation and high ambient temperatures, which degrades the efficiency of the PV panels remarkably. To overcome this issue, an aluminum heat sink was used to dissipate unwanted heat from PV cells. The dimensions of the heat sink were determined considering the optimal fin spacing that fulfils hot climatic conditions. In this study, the effects of cooling on the efficiency and power output of a PV panel were studied experimentally. Two PV modules were used: one without and one with a heat sink. The experiments ran for 11 hours from 6:00 a.m. to 5:30 p.m. where temperature readings in the rear and front of both PV modules were recorded at an interval of 15 minutes using sensors and an Arduino microprocessor. Results are recorded for both panels simultaneously for analysis, temperate comparison, and for power and efficiency calculations. A maximum increase in the solar to electrical conversion efficiency of 35% and almost 55% in the power output were achieved with the use of a heat sink, while temperatures at the front and back of the panel were reduced by 9% and 11%, respectively.Keywords: photovoltaic cell, natural convection, heat sink, efficiency
Procedia PDF Downloads 15333856 Game of Funds: Efficiency and Policy Implications of the United Kingdom Research Excellence Framework
Authors: Boon Lee
Abstract:
Research publication is an essential output of universities because it not only promotes university recognition, it also receives government funding. The history of university research culture has been one of ‘publish or perish’ and universities have consistently encouraged their academics and researchers to produce research articles in reputable journals in order to maintain a level of competitiveness. In turn, the United Kingdom (UK) government funding is determined by the number and quality of research publications. This paper aims to investigate on whether more government funding leads to more quality papers. To that end, the paper employs a Network DEA model to evaluate the UK higher education performance over a period. Sources of efficiency are also determined via second stage regression analysis.Keywords: efficiency, higher education, network data envelopment analysis, universities
Procedia PDF Downloads 11433855 Faults Diagnosis by Thresholding and Decision tree with Neuro-Fuzzy System
Authors: Y. Kourd, D. Lefebvre
Abstract:
The monitoring of industrial processes is required to ensure operating conditions of industrial systems through automatic detection and isolation of faults. This paper proposes a method of fault diagnosis based on a neuro-fuzzy hybrid structure. This hybrid structure combines the selection of threshold and decision tree. The validation of this method is obtained with the DAMADICS benchmark. In the first phase of the method, a model will be constructed that represents the normal state of the system to fault detection. Signatures of the faults are obtained with residuals analysis and selection of appropriate thresholds. These signatures provide groups of non-separable faults. In the second phase, we build faulty models to see the flaws in the system that cannot be isolated in the first phase. In the latest phase we construct the tree that isolates these faults.Keywords: decision tree, residuals analysis, ANFIS, fault diagnosis
Procedia PDF Downloads 62733854 Artificial Intelligence: Reimagining Education
Authors: Silvia Zanazzi
Abstract:
Artificial intelligence (AI) has become an integral part of our world, transitioning from scientific exploration to practical applications that impact daily life. The emergence of generative AI is reshaping education, prompting new questions about the role of teachers, the nature of learning, and the overall purpose of schooling. While AI offers the potential for optimizing teaching and learning processes, concerns about discrimination and bias arising from training data and algorithmic decisions persist. There is a risk of a disconnect between the rapid development of AI and the goals of building inclusive educational environments. The prevailing discourse on AI in education often prioritizes efficiency and individual skill acquisition. This narrow focus can undermine the importance of collaborative learning and shared experiences. A growing body of research challenges this perspective, advocating for AI that enhances, rather than replaces, human interaction in education. This study aims to examine the relationship between AI and education critically. Reviewing existing research will identify both AI implementation’s potential benefits and risks. The goal is to develop a framework that supports the ethical and effective integration of AI into education, ensuring it serves the needs of all learners. The theoretical reflection will be developed based on a review of national and international scientific literature on artificial intelligence in education. The primary objective is to curate a selection of critical contributions from diverse disciplinary perspectives and/or an inter- and transdisciplinary viewpoint, providing a state-of-the-art overview and a critical analysis of potential future developments. Subsequently, the thematic analysis of these contributions will enable the creation of a framework for understanding and critically analyzing the role of artificial intelligence in schools and education, highlighting promising directions and potential pitfalls. The expected results are (1) a classification of the cognitive biases present in representations of AI in education and the associated risks and (2) a categorization of potentially beneficial interactions between AI applications and teaching and learning processes, including those already in use or under development. While not exhaustive, the proposed framework will serve as a guide for critically exploring the complexity of AI in education. It will help to reframe dystopian visions often associated with technology and facilitate discussions on fostering synergies that balance the ‘dream’ of quality education for all with the realities of AI implementation. The discourse on artificial intelligence in education, highlighting reductionist models rooted in fragmented and utilitarian views of knowledge, has the merit of stimulating the construction of alternative perspectives that can ‘return’ teaching and learning to education, human growth, and the well-being of individuals and communities.Keywords: education, artificial intelligence, teaching, learning
Procedia PDF Downloads 2233853 Joint Optimization of Carsharing Stations with Vehicle Relocation and Demand Selection
Authors: Jiayuan Wu. Lu Hu
Abstract:
With the development of the sharing economy and mobile technology, carsharing becomes more popular. In this paper, we focus on the joint optimization of one-way station-based carsharing systems. We model the problem as an integer linear program with six elements: station locations, station capacity, fleet size, initial vehicle allocation, vehicle relocation, and demand selection. A greedy-based heuristic is proposed to address the model. Firstly, initialization based on the location variables relaxation using Gurobi solver is conducted. Then, according to the profit margin and demand satisfaction of each station, the number of stations is downsized iteratively. This method is applied to real data from Chengdu, Sichuan taxi data, and it’s efficient when dealing with a large scale of candidate stations. The result shows that with vehicle relocation and demand selection, the profit and demand satisfaction of carsharing systems are increased.Keywords: one-way carsharing, location, vehicle relocation, demand selection, greedy algorithm
Procedia PDF Downloads 13733852 Problem of Services Selection in Ubiquitous Systems
Authors: Malika Yaici, Assia Arab, Betitra Yakouben, Samia Zermani
Abstract:
Ubiquitous computing is nowadays a reality through the networking of a growing number of computing devices. It allows providing users with context aware information and services in a heterogeneous environment, anywhere and anytime. Selection of the best context-aware service, between many available services and providers, is a tedious problem. In this paper, a service selection method based on Constraint Satisfaction Problem (CSP) formalism is proposed. The services are considered as variables and domains; and the user context, preferences and providers characteristics are considered as constraints. The Backtrack algorithm is used to solve the problem to find the best service and provider which matches the user requirements. Even though this algorithm has an exponential complexity, but its use guarantees that the service, that best matches the user requirements, will be found. A comparison of the proposed method with the existing solutions finishes the paper.Keywords: ubiquitous computing, services selection, constraint satisfaction problem, backtrack algorithm
Procedia PDF Downloads 24533851 Classification of Political Affiliations by Reduced Number of Features
Authors: Vesile Evrim, Aliyu Awwal
Abstract:
By the evolvement in technology, the way of expressing opinions switched the direction to the digital world. The domain of politics as one of the hottest topics of opinion mining research merged together with the behavior analysis for affiliation determination in text which constitutes the subject of this paper. This study aims to classify the text in news/blogs either as Republican or Democrat with the minimum number of features. As an initial set, 68 features which 64 are constituted by Linguistic Inquiry and Word Count (LIWC) features are tested against 14 benchmark classification algorithms. In the later experiments, the dimensions of the feature vector reduced based on the 7 feature selection algorithms. The results show that Decision Tree, Rule Induction and M5 Rule classifiers when used with SVM and IGR feature selection algorithms performed the best up to 82.5% accuracy on a given dataset. Further tests on a single feature and the linguistic based feature sets showed the similar results. The feature “function” as an aggregate feature of the linguistic category, is obtained as the most differentiating feature among the 68 features with 81% accuracy by itself in classifying articles either as Republican or Democrat.Keywords: feature selection, LIWC, machine learning, politics
Procedia PDF Downloads 38333850 Feature Based Unsupervised Intrusion Detection
Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein
Abstract:
The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.Keywords: information gain (IG), intrusion detection system (IDS), k-means clustering, Weka
Procedia PDF Downloads 29633849 Effect of Asymmetric Amphiphilic Dicationic Ionic Liquids as Oil Spill Dispersants in Red Sea
Authors: Raghda El-Nagara, Maher I. Nessim, Carmen E. Elshafee, Renee I. Abdallah, Yasser M. Moustafa
Abstract:
Three asymmetric dicationic ionic liquids (ADILs), 1-(2-(1-dodecyl-2-methyl-1H-imidazolium-3-yl)ethyl)-3-methyl pyridinium bromide (IL₁), 1-(6-(1-dodecyl-2-methyl-1H-imidazolium-3-yl)hexyl)-3-methyl pyridinium bromide (IL₂) and 1-(10-(1-dodecyl-2-methyl-1H-imidazolium-3-yl)decyl)-3-methyl pyridinium bromide (IL₃) were synthesized with yield of 83.54, 84.12 & 83.05% respectively. They were elucidated via conventional tools of analysis (elemental analysis, FT-IR, and 1H-NMR). The thermogravimetric analysis confirmed that the three ADILs possessed high thermal stability (up to 500ᵒC). Their critical micelle concentration (CMC) was investigated and exhibited values of 5.5-1*10⁻³ Mol./L. They were evaluated as oil spill dispersants were at different temperatures (10, 30 & 50ᵒC) with different concentrations (750, 1500, 2000, 3000 ppm). Data reveals that the efficiency is ranked as follows: IL₂ > IL₁ > IL₃, which showed high dispersion efficiency reached to 63% with the concentration of 1500 ppm.Keywords: ionic liquids, amphiphilic, oil spill dispersants, dicationic, efficiency test
Procedia PDF Downloads 15233848 Time Bound Parallel Processing of a Disaster Management Alert System Using Random Selection of Target Audience: Bangladesh Context
Authors: Hasan Al Bashar Abul Ulayee, AKM Saifun Nabi, MD Mesbah-Ul-Awal
Abstract:
Alert system for disaster management is common now a day and can play a vital role reducing devastation and saves lives and costs. An alert in right time can save thousands of human life, help to take shelter, manage other assets including live stocks and above all, a right time alert will help to take preparation to face and early recovery of the situation. In a country like Bangladesh where populations is more than 170 million and always facing different types of natural calamities and disasters, an early right time alert is very effective and implementation of alert system is challenging. The challenge comes from the time constraint of alerting the huge number of population. The other method of existing disaster management pre alert is traditional, sequential and non-selective so efficiency is not good enough. This paper describes a way by which alert can be provided to maximum number of people within the short time bound using parallel processing as well as random selection of selective target audience.Keywords: alert system, Bangladesh, disaster management, parallel processing, SMS
Procedia PDF Downloads 47033847 Enhancing a Recidivism Prediction Tool with Machine Learning: Effectiveness and Algorithmic Fairness
Authors: Marzieh Karimihaghighi, Carlos Castillo
Abstract:
This work studies how Machine Learning (ML) may be used to increase the effectiveness of a criminal recidivism risk assessment tool, RisCanvi. The two key dimensions of this analysis are predictive accuracy and algorithmic fairness. ML-based prediction models obtained in this study are more accurate at predicting criminal recidivism than the manually-created formula used in RisCanvi, achieving an AUC of 0.76 and 0.73 in predicting violent and general recidivism respectively. However, the improvements are small, and it is noticed that algorithmic discrimination can easily be introduced between groups such as national vs foreigner, or young vs old. It is described how effectiveness and algorithmic fairness objectives can be balanced, applying a method in which a single error disparity in terms of generalized false positive rate is minimized, while calibration is maintained across groups. Obtained results show that this bias mitigation procedure can substantially reduce generalized false positive rate disparities across multiple groups. Based on these results, it is proposed that ML-based criminal recidivism risk prediction should not be introduced without applying algorithmic bias mitigation procedures.Keywords: algorithmic fairness, criminal risk assessment, equalized odds, recidivism
Procedia PDF Downloads 15233846 Association between Anemia and Maternal Depression during Pregnancy: Systematic Review
Authors: Gebeyaw Molla Wondim, Damen Haile Mariam, Wubegzier Mekonnen, Catherine Arsenault
Abstract:
Introduction: Maternal depression is a common psychological disorder that mostly occurs during pregnancy and after childbirth. It affects approximately one in four women worldwide. There is inconsistent evidence regarding the association between anemia and maternal depression. The objective of this systematic review was to examine the association between anemia and depression during pregnancy. Method: A comprehensive search of articles published before March 8, 2024, was conducted in seven databases such as PubMed, Scopus, Web of Science, PsycINFO, CINAHL, Cochrane Library, and Google Scholar. The Boolean operators “AND” or “OR” and “NOT” were used to connect the MeSH terms and keywords. Rayyan software was used to screen articles for final retrieval, and the PRISMA diagram was used to show the article selection process. Data extraction and risk bias assessment were done by two reviewers independently. JBI critical appraisal tool was used to assess the methodological quality of the retrieved articles. Heterogenicity was assessed through visual inspection of the extracted result, and narrative analysis was used to synthesize the result. Result: A total of 2,413 articles were obtained from seven electronic databases. Among these articles, a total of 2,398 were removed due to duplication (702 articles), by title and abstract selection criteria (1,678 articles), and by full-text review (18 articles). Finally, in this systematic review, 15 articles with a total of 628,781 pregnant women were included: seven articles were cohort studies, two were case-control, and six studies were cross-sectional. All included studies were published between 2013 and 2022. Studies conducted in the United States, South Korea, Finland, and one in South India found no significant association between anemia and maternal depression during pregnancy. On the other hand, studies conducted in Australia, Canada, Finland, Israel, Turkey, Vietnam, Ethiopia, and South India showed a significant association between anemia and depression during pregnancy. Conclusion: The overall finding of the systematic review shows the burden of anemia and antenatal depression is much higher among pregnant women in developing countries. Around three-fourths of the studies show that anemia is positively associated with antenatal depression. Almost all studies conducted in LMICs show anemia positively associated with antenatal depression.Keywords: pregnant, women, anemia, depression
Procedia PDF Downloads 43