Search results for: deep seated gravitational slope deformation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3680

Search results for: deep seated gravitational slope deformation

3350 Prediction of PM₂.₅ Concentration in Ulaanbaatar with Deep Learning Models

Authors: Suriya

Abstract:

Rapid socio-economic development and urbanization have led to an increasingly serious air pollution problem in Ulaanbaatar (UB), the capital of Mongolia. PM₂.₅ pollution has become the most pressing aspect of UB air pollution. Therefore, monitoring and predicting PM₂.₅ concentration in UB is of great significance for the health of the local people and environmental management. As of yet, very few studies have used models to predict PM₂.₅ concentrations in UB. Using data from 0:00 on June 1, 2018, to 23:00 on April 30, 2020, we proposed two deep learning models based on Bayesian-optimized LSTM (Bayes-LSTM) and CNN-LSTM. We utilized hourly observed data, including Himawari8 (H8) aerosol optical depth (AOD), meteorology, and PM₂.₅ concentration, as input for the prediction of PM₂.₅ concentrations. The correlation strengths between meteorology, AOD, and PM₂.₅ were analyzed using the gray correlation analysis method; the comparison of the performance improvement of the model by using the AOD input value was tested, and the performance of these models was evaluated using mean absolute error (MAE) and root mean square error (RMSE). The prediction accuracies of Bayes-LSTM and CNN-LSTM deep learning models were both improved when AOD was included as an input parameter. Improvement of the prediction accuracy of the CNN-LSTM model was particularly enhanced in the non-heating season; in the heating season, the prediction accuracy of the Bayes-LSTM model slightly improved, while the prediction accuracy of the CNN-LSTM model slightly decreased. We propose two novel deep learning models for PM₂.₅ concentration prediction in UB, Bayes-LSTM, and CNN-LSTM deep learning models. Pioneering the use of AOD data from H8 and demonstrating the inclusion of AOD input data improves the performance of our two proposed deep learning models.

Keywords: deep learning, AOD, PM2.5, prediction, Ulaanbaatar

Procedia PDF Downloads 48
3349 Scattering Operator and Spectral Clustering for Ultrasound Images: Application on Deep Venous Thrombi

Authors: Thibaud Berthomier, Ali Mansour, Luc Bressollette, Frédéric Le Roy, Dominique Mottier, Léo Fréchier, Barthélémy Hermenault

Abstract:

Deep Venous Thrombosis (DVT) occurs when a thrombus is formed within a deep vein (most often in the legs). This disease can be deadly if a part or the whole thrombus reaches the lung and causes a Pulmonary Embolism (PE). This disorder, often asymptomatic, has multifactorial causes: immobilization, surgery, pregnancy, age, cancers, and genetic variations. Our project aims to relate the thrombus epidemiology (origins, patient predispositions, PE) to its structure using ultrasound images. Ultrasonography and elastography were collected using Toshiba Aplio 500 at Brest Hospital. This manuscript compares two classification approaches: spectral clustering and scattering operator. The former is based on the graph and matrix theories while the latter cascades wavelet convolutions with nonlinear modulus and averaging operators.

Keywords: deep venous thrombosis, ultrasonography, elastography, scattering operator, wavelet, spectral clustering

Procedia PDF Downloads 479
3348 Analysis of Wall Deformation of the Arterial Plaque Models: Effects of Viscoelasticity

Authors: Eun Kyung Kim, Kyehan Rhee

Abstract:

Viscoelastic wall properties of the arterial plaques change as the disease progresses, and estimation of wall viscoelasticity can provide a valuable assessment tool for plaque rupture prediction. Cross section of the stenotic coronary artery was modeled based on the IVUS image, and the finite element analysis was performed to get wall deformation under pulsatile pressure. The effects of viscoelastic parameters of the plaque on luminal diameter variations were explored. The result showed that decrease of viscous effect reduced the phase angle between the pressure and displacement waveforms, and phase angle was dependent on the viscoelastic properties of the wall. Because viscous effect of tissue components could be identified using the phase angle difference, wall deformation waveform analysis may be applied to predict plaque wall composition change and vascular wall disease progression.

Keywords: atherosclerotic plaque, diameter variation, finite element method, viscoelasticity

Procedia PDF Downloads 215
3347 Calculation of Orbital Elements for Sending Interplanetary Probes

Authors: Jorge Lus Nisperuza Toledo, Juan Pablo Rubio Ospina, Daniel Santiago Umana, Hector Alejandro Alvarez

Abstract:

This work develops and implements computational codes to calculate the optimal launch trajectories for sending a probe from the earth to different planets of the Solar system, making use of trajectories of the Hohmann and No-Hohmann type and gravitational assistance in intermediate steps. Specifically, the orbital elements, the graphs and the dynamic simulations of the trajectories for sending a probe from the Earth towards the planets Mercury, Venus, Mars, Jupiter, and Saturn are obtained. A detailed study was made of the state vectors of the position and orbital velocity of the considered planets in order to determine the optimal trajectories of the probe. For this purpose, computer codes were developed and implemented to obtain the orbital elements of the Mariner 10 (Mercury), Magellan (Venus), Mars Global Surveyor (Mars) and Voyager 1 (Jupiter and Saturn) missions, as an exercise in corroborating the algorithms. This exercise gives validity to computational codes, allowing to find the orbital elements and the simulations of trajectories of three future interplanetary missions with specific launch windows.

Keywords: gravitational assistance, Hohmann’s trajectories, interplanetary mission, orbital elements

Procedia PDF Downloads 182
3346 Efficient Deep Neural Networks for Real-Time Strawberry Freshness Monitoring: A Transfer Learning Approach

Authors: Mst. Tuhin Akter, Sharun Akter Khushbu, S. M. Shaqib

Abstract:

A real-time system architecture is highly effective for monitoring and detecting various damaged products or fruits that may deteriorate over time or become infected with diseases. Deep learning models have proven to be effective in building such architectures. However, building a deep learning model from scratch is a time-consuming and costly process. A more efficient solution is to utilize deep neural network (DNN) based transfer learning models in the real-time monitoring architecture. This study focuses on using a novel strawberry dataset to develop effective transfer learning models for the proposed real-time monitoring system architecture, specifically for evaluating and detecting strawberry freshness. Several state-of-the-art transfer learning models were employed, and the best performing model was found to be Xception, demonstrating higher performance across evaluation metrics such as accuracy, recall, precision, and F1-score.

Keywords: strawberry freshness evaluation, deep neural network, transfer learning, image augmentation

Procedia PDF Downloads 90
3345 Effect of Hypertension Exercise and Slow Deep Breathing Combination to Blood Pressure: A Mini Research in Elderly Community

Authors: Prima Khairunisa, Febriana Tri Kusumawati, Endah Luthfiana

Abstract:

Background: Hypertension in elderly, caused by cardiovascular system cannot work normally, because the valves thickened and inelastic blood vessels. It causes vasoconstriction of the blood vessels. Hypertension exercise, increase cardiovascular function and the elasticity of the blood vessels. While slow deep breathing helps the body and mind feel relax. Combination both of them will decrease the blood pressure. Objective: To know the effect of hypertension exercise and slow deep breathing combination to blood pressure in elderly. Method: The study conducted with one group pre-post test experimental design. The samples were 10 elderly both male and female in a Village in Semarang, Central Java, Indonesia. The tool was manual sphygmomanometer to measure blood pressure. Result: Based on paired t-test between hypertension exercise and slow deep breathing with systole blood pressure showed sig (2-tailed) was 0.045, while paired t-test between hypertension exercise hypertension exercise and slow deep breathing with diastole blood pressure showed sig (2-tailed) was 0,343. The changes of systole blood pressure were 127.5 mmHg, and diastole blood pressure was 80 mmHg. Systole blood pressure decreases significantly because the average of systole blood pressure before implementation was 135-160 mmHg. While diastole blood pressure was not decreased significantly. It was influenced by the average of diastole blood pressure before implementation of hypertension exercise was not too high. It was between 80- 90 mmHg. Conclusion: There was an effect of hypertension exercise and slow deep breathing combination to the blood pressure in elderly after 6 times implementations.

Keywords: hypertension exercise, slow deep breathing, elderly, blood pressure

Procedia PDF Downloads 339
3344 Establishing Sequence Stratigraphic Framework and Hydrocarbon Potential of the Late Cretaceous Strata: A Case Study from Central Indus Basin, Pakistan

Authors: Bilal Wadood, Suleman Khan, Sajjad Ahmed

Abstract:

The Late Cretaceous strata (Mughal Kot Formation) exposed in Central Indus Basin, Pakistan is evaluated for establishing sequence stratigraphic framework and potential of hydrocarbon accumulation. The petrographic studies and SEM analysis were carried out to infer the hydrocarbon potential of the rock unit. The petrographic details disclosed 4 microfacies including Pelagic Mudstone, OrbitoidalWackestone, Quartz Arenite, and Quartz Wacke. The lowermost part of the rock unit consists of OrbitoidalWackestone which shows deposition in the middle shelf environment. The Quartz Arenite and Quartz Wacke suggest deposition on the deep slope settings while the Pelagic Mudstone microfacies point toward deposition in the distal deep marine settings. Based on the facies stacking patterns and cyclicity in the chronostratigraphic context, the strata is divided into two 3rd order cycles. One complete sequence i.e Transgressive system tract (TST), Highstand system tract (HST) and Lowstand system tract (LST) are again replaced by another Transgressive system tract and Highstant system tract with no markers of sequence boundary. The LST sands are sandwiched between TST and HST shales but no potential porosity/permeability values have been determined. Microfacies and SEM studies revealed very fewer chances for hydrocarbon accumulation and overall reservoir potential is characterized as low.

Keywords: cycle, deposition, microfacies, reservoir

Procedia PDF Downloads 150
3343 Deep Neck Infection Associated with Peritoneal Sepsis: A Rare Death Case

Authors: Sait Ozsoy, Asude Gokmen, Mehtap Yondem, Hanife A. Alkan, Gulnaz T. Javan

Abstract:

Deep neck infection often develops due to upper respiratory tract and odontogenic infections. Gastrointestinal System perforation can occur for many reasons and is in need of the early diagnosis and prompt surgical treatment. In both cases late or incorrect diagnosis may lead to increase morbidity and high mortality. A patient with a diagnosis of deep neck abscess died while under treatment due to sepsis and multiple organ failure. Autopsy finding showed duodenal ulcer and this is reported in the literature.

Keywords: peptic ulcer perforation, peritonitis, retropharyngeal abscess, sepsis

Procedia PDF Downloads 498
3342 On Cold Roll Bonding of Polymeric Films

Authors: Nikhil Padhye

Abstract:

Recently a new phenomenon for bonding of polymeric films in solid-state, at ambient temperatures well below the glass transition temperature of the polymer, has been reported. This is achieved by bulk plastic compression of polymeric films held in contact. Here we analyze the process of cold-rolling of polymeric films via finite element simulations and illustrate a flexible and modular experimental rolling-apparatus that can achieve bonding of polymeric films through cold-rolling. Firstly, the classical theory of rolling a rigid-plastic thin-strip is utilized to estimate various deformation fields such as strain-rates, velocities, loads etc. in rolling the polymeric films at the specified feed-rates and desired levels of thickness-reduction(s). Predicted magnitudes of slow strain-rates, particularly at ambient temperatures during rolling, and moderate levels of plastic deformation (at which Bauschinger effect can be neglected for the particular class of polymeric materials studied here), greatly simplifies the task of material modeling and allows us to deploy a computationally efficient, yet accurate, finite deformation rate-independent elastic-plastic material behavior model (with inclusion of isotropic-hardening) for analyzing the rolling of these polymeric films. The interfacial behavior between the roller and polymer surfaces is modeled using Coulombic friction; consistent with the rate-independent behavior. The finite deformation elastic-plastic material behavior based on (i) the additive decomposition of stretching tensor (D = De + Dp, i.e. a hypoelastic formulation) with incrementally objective time integration and, (ii) multiplicative decomposition of deformation gradient (F = FeFp) into elastic and plastic parts, are programmed and carried out for cold-rolling within ABAQUS Explicit. Predictions from both the formulations, i.e., hypoelastic and multiplicative decomposition, exhibit a close match. We find that no specialized hyperlastic/visco-plastic model is required to describe the behavior of the blend of polymeric films, under the conditions described here, thereby speeding up the computation process .

Keywords: Polymer Plasticity, Bonding, Deformation Induced Mobility, Rolling

Procedia PDF Downloads 189
3341 Numerical Investigation of Embankment Settlement Improved by Method of Preloading by Vertical Drains

Authors: Seyed Abolhasan Naeini, Saeideh Mohammadi

Abstract:

Time dependent settlement due to loading on soft saturated soils produces many problems such as high consolidation settlements and low consolidation rates. Also, long term consolidation settlement of soft soil underlying the embankment leads to unpredicted settlements and cracks on soil surface. Preloading method is an effective improvement method to solve this problem. Using vertical drains in preloading method is an effective method for improving soft soils. Applying deep soil mixing method on soft soils is another effective method for improving soft soils. There are little studies on using two methods of preloading and deep soil mixing simultaneously. In this paper, the concurrent effect of preloading with deep soil mixing by vertical drains is investigated through a finite element code, Plaxis2D. The influence of parameters such as deep soil mixing columns spacing, existence of vertical drains and distance between them, on settlement and stability factor of safety of embankment embedded on soft soil is investigated in this research.

Keywords: preloading, soft soil, vertical drains, deep soil mixing, consolidation settlement

Procedia PDF Downloads 216
3340 Finite Deformation of a Dielectric Elastomeric Spherical Shell Based on a New Nonlinear Electroelastic Constitutive Theory

Authors: Odunayo Olawuyi Fadodun

Abstract:

Dielectric elastomers (DEs) are a type of intelligent materials with salient features like electromechanical coupling, lightweight, fast actuation speed, low cost and high energy density that make them good candidates for numerous engineering applications. This paper adopts a new nonlinear electroelastic constitutive theory to examine radial deformation of a pressurized thick-walled spherical shell of soft dielectric material with compliant electrodes on its inner and outer surfaces. A general formular for the internal pressure, which depends on the deformation and a potential difference between boundary electrodes or uniform surface charge distributions, is obtained in terms of special function. To illustrate the effects of an applied electric field on the mechanical behaviour of the shell, three different energy functions with distinct mechanical properties are employed for numerical purposes. The observed behaviour of the shells is preserved in the presence of an applied electric field, and the influence of the field due to a potential difference declines more slowly with the increasing deformation to that produced by a surface charge. Counterpart results are then presented for the thin-walled shell approximation as a limiting case of a thick-walled shell without restriction on the energy density. In the absence of internal pressure, it is obtained that inflation is caused by the application of an electric field. The resulting numerical solutions of the theory presented in this work are in agreement with those predicted by the generally adopted Dorfmann and Ogden model.

Keywords: constitutive theory, elastic dielectric, electroelasticity, finite deformation, nonlinear response, spherical shell

Procedia PDF Downloads 93
3339 Design of Raw Water Reservoir on Sandy Soil

Authors: Venkata Ramana Pamu

Abstract:

This paper is a case study of a 5310 ML capacity Raw Water Reservoir (RWR), situated in Indian state Rajasthan, which is a part of Rajasthan Rural Water Supply & Fluorosis Mitigation Project. This RWR embankment was constructed by locally available material on natural ground profile. Height of the embankment was varying from 2m to 10m.This is due to existing ground level was varying. Reservoir depth 9m including 1.5m free board and 1V:3H slopes were provided both upstream and downstream side. Proper soil investigation, tests were done and it was confirmed that the existing soil is sandy silt. The existing excavated earth was used as filling material for embankment construction, due to this controlling seepage from upstream to downstream be a challenging task. Slope stability and Seismic analysis of the embankment done by Conventional method for both full reservoir condition and rapid drawdown. Horizontal filter at toe level was provided along with upstream side PCC (Plain Cement Concrete) block and HDPE (High Density poly ethylene) lining as a remedy to control seepage. HDPE lining was also provided at storage area of the reservoir bed level. Mulching was done for downstream side slope protection.

Keywords: raw water reservoir, seepage, seismic analysis, slope stability

Procedia PDF Downloads 497
3338 A Case Study on the Numerical-Probability Approach for Deep Excavation Analysis

Authors: Komeil Valipourian

Abstract:

Urban advances and the growing need for developing infrastructures has increased the importance of deep excavations. In this study, after the introducing probability analysis as an important issue, an attempt has been made to apply it for the deep excavation project of Bangkok’s Metro as a case study. For this, the numerical probability model has been developed based on the Finite Difference Method and Monte Carlo sampling approach. The results indicate that disregarding the issue of probability in this project will result in an inappropriate design of the retaining structure. Therefore, probabilistic redesign of the support is proposed and carried out as one of the applications of probability analysis. A 50% reduction in the flexural strength of the structure increases the failure probability just by 8% in the allowable range and helps improve economic conditions, while maintaining mechanical efficiency. With regard to the lack of efficient design in most deep excavations, by considering geometrical and geotechnical variability, an attempt was made to develop an optimum practical design standard for deep excavations based on failure probability. On this basis, a practical relationship is presented for estimating the maximum allowable horizontal displacement, which can help improve design conditions without developing the probability analysis.

Keywords: numerical probability modeling, deep excavation, allowable maximum displacement, finite difference method (FDM)

Procedia PDF Downloads 127
3337 Study of the Buckling of Sandwich Beams Consider Stretching Effect

Authors: R. Bennai, H. Ait Atmane, H. Fourne, B. Ayache

Abstract:

In this work, an analytical approach using a refined theory of hyperbolic shear deformation of a beam was developed to study the buckling of graduated sandwiches beams under different boundary conditions. The effects of transverse shear strains and the transverse normal deformation are considered. The constituent materials of the beam are supposed gradually variable depending on the height direction based on a simple power distribution law in terms of the volume fractions of the constituents; the two materials with which we worked are metals and ceramics. The core layer is taken homogeneous and made of an isotropic material; while the banks layers consist of functionally graded materials with a homogeneous fraction compared to the middle layer. In the end, illustrative examples are presented to show the effects of changes in different parameters such as (material graduation, the stretching effect of the thickness, boundary conditions and thickness ratio-length) on the vibration free of an FGM sandwich beams.

Keywords: FGM materials, refined shear deformation theory, stretching effect, buckling

Procedia PDF Downloads 178
3336 A Review on New Additives in Deep Soil Mixing Method

Authors: Meysam Mousakhani, Reza Ziaie Moayed

Abstract:

Considering the population growth and the needs of society, the improvement of problematic soils and the study of the application of different improvement methods have been considered. One of these methods is deep soil mixing, which has been developed in the past decade, especially in soft soils due to economic efficiency, simple implementation, and other benefits. The use of cement is criticized for its cost and the damaging environmental effects, so these factors lead us to use other additives along with cement in the deep soil mixing. Additives that are used today include fly ash, blast-furnace slag, glass powder, and potassium hydroxide. The present study provides a literature review on the application of different additives in deep soil mixing so that the best additives can be introduced from strength, economic, environmental and other perspectives. The results show that by replacing fly ash and slag with about 40 to 50% of cement, not only economic and environmental benefits but also a long-term strength comparable to cement would be achieved. The use of glass powder, especially in 3% mixing, results in desirable strength. In addition to the other benefits of these additives, potassium hydroxide can also be transported over longer distances, leading to wider soil improvement. Finally, this paper suggests further studies in terms of using other additives such as nanomaterials and zeolite, with different ratios, in different conditions and soils (silty sand, clayey sand, carbonate sand, sandy clay and etc.) in the deep mixing method.

Keywords: deep soil mix, soil stabilization, fly ash, ground improvement

Procedia PDF Downloads 148
3335 Neural Style Transfer Using Deep Learning

Authors: Shaik Jilani Basha, Inavolu Avinash, Alla Venu Sai Reddy, Bitragunta Taraka Ramu

Abstract:

We can use the neural style transfer technique to build a picture with the same "content" as the beginning image but the "style" of the picture we've chosen. Neural style transfer is a technique for merging the style of one image into another while retaining its original information. The only change is how the image is formatted to give it an additional artistic sense. The content image depicts the plan or drawing, as well as the colors of the drawing or paintings used to portray the style. It is a computer vision programme that learns and processes images through deep convolutional neural networks. To implement software, we used to train deep learning models with the train data, and whenever a user takes an image and a styled image, the output will be as the style gets transferred to the original image, and it will be shown as the output.

Keywords: neural networks, computer vision, deep learning, convolutional neural networks

Procedia PDF Downloads 95
3334 Improved Super-Resolution Using Deep Denoising Convolutional Neural Network

Authors: Pawan Kumar Mishra, Ganesh Singh Bisht

Abstract:

Super-resolution is the technique that is being used in computer vision to construct high-resolution images from a single low-resolution image. It is used to increase the frequency component, recover the lost details and removing the down sampling and noises that caused by camera during image acquisition process. High-resolution images or videos are desired part of all image processing tasks and its analysis in most of digital imaging application. The target behind super-resolution is to combine non-repetition information inside single or multiple low-resolution frames to generate a high-resolution image. Many methods have been proposed where multiple images are used as low-resolution images of same scene with different variation in transformation. This is called multi-image super resolution. And another family of methods is single image super-resolution that tries to learn redundancy that presents in image and reconstruction the lost information from a single low-resolution image. Use of deep learning is one of state of art method at present for solving reconstruction high-resolution image. In this research, we proposed Deep Denoising Super Resolution (DDSR) that is a deep neural network for effectively reconstruct the high-resolution image from low-resolution image.

Keywords: resolution, deep-learning, neural network, de-blurring

Procedia PDF Downloads 517
3333 Use Cloud-Based Watson Deep Learning Platform to Train Models Faster and More Accurate

Authors: Susan Diamond

Abstract:

Machine Learning workloads have traditionally been run in high-performance computing (HPC) environments, where users log in to dedicated machines and utilize the attached GPUs to run training jobs on huge datasets. Training of large neural network models is very resource intensive, and even after exploiting parallelism and accelerators such as GPUs, a single training job can still take days. Consequently, the cost of hardware is a barrier to entry. Even when upfront cost is not a concern, the lead time to set up such an HPC environment takes months from acquiring hardware to set up the hardware with the right set of firmware, software installed and configured. Furthermore, scalability is hard to achieve in a rigid traditional lab environment. Therefore, it is slow to react to the dynamic change in the artificial intelligent industry. Watson Deep Learning as a service, a cloud-based deep learning platform that mitigates the long lead time and high upfront investment in hardware. It enables robust and scalable sharing of resources among the teams in an organization. It is designed for on-demand cloud environments. Providing a similar user experience in a multi-tenant cloud environment comes with its own unique challenges regarding fault tolerance, performance, and security. Watson Deep Learning as a service tackles these challenges and present a deep learning stack for the cloud environments in a secure, scalable and fault-tolerant manner. It supports a wide range of deep-learning frameworks such as Tensorflow, PyTorch, Caffe, Torch, Theano, and MXNet etc. These frameworks reduce the effort and skillset required to design, train, and use deep learning models. Deep Learning as a service is used at IBM by AI researchers in areas including machine translation, computer vision, and healthcare. 

Keywords: deep learning, machine learning, cognitive computing, model training

Procedia PDF Downloads 209
3332 Probing Syntax Information in Word Representations with Deep Metric Learning

Authors: Bowen Ding, Yihao Kuang

Abstract:

In recent years, with the development of large-scale pre-trained lan-guage models, building vector representations of text through deep neural network models has become a standard practice for natural language processing tasks. From the performance on downstream tasks, we can know that the text representation constructed by these models contains linguistic information, but its encoding mode and extent are unclear. In this work, a structural probe is proposed to detect whether the vector representation produced by a deep neural network is embedded with a syntax tree. The probe is trained with the deep metric learning method, so that the distance between word vectors in the metric space it defines encodes the distance of words on the syntax tree, and the norm of word vectors encodes the depth of words on the syntax tree. The experiment results on ELMo and BERT show that the syntax tree is encoded in their parameters and the word representations they produce.

Keywords: deep metric learning, syntax tree probing, natural language processing, word representations

Procedia PDF Downloads 68
3331 Study on the Stability of Large Space Expandable Parabolic Cylindrical Antenna

Authors: Chuanzhi Chen, Wenjing Yu

Abstract:

Parabolic cylindrical deployable antenna has the characteristics of wide cutting width, strong directivity, high gain, and easy automatic beam scanning. While, due to its large size, high flexibility, and strong coupling, the deployment process of parabolic cylindrical deployable antenna presents such problems as unsynchronized deployment speed, large local deformation and discontinuous switching of deployment state. A large deployable parabolic cylindrical antenna is taken as the research object, and the problem of unfolding process instability of cylindrical antenna is studied in the paper, which is caused by multiple factors such as multiple closed loops, elastic deformation, motion friction, and gap collision. Firstly, the multi-flexible system dynamics model of large-scale parabolic cylindrical antenna is established to study the influence of friction and elastic deformation on the stability of large multi-closed loop antenna. Secondly, the evaluation method of antenna expansion stability is studied, and the quantitative index of antenna configuration design is proposed to provide a theoretical basis for improving the overall performance of the antenna. Finally, through simulation analysis and experiment, the development dynamics and stability of large-scale parabolic cylindrical antennas are verified by in-depth analysis, and the principles for improving the stability of antenna deployment are summarized.

Keywords: multibody dynamics, expandable parabolic cylindrical antenna, stability, flexible deformation

Procedia PDF Downloads 146
3330 Deep Neural Network Approach for Navigation of Autonomous Vehicles

Authors: Mayank Raj, V. G. Narendra

Abstract:

Ever since the DARPA challenge on autonomous vehicles in 2005, there has been a lot of buzz about ‘Autonomous Vehicles’ amongst the major tech giants such as Google, Uber, and Tesla. Numerous approaches have been adopted to solve this problem, which can have a long-lasting impact on mankind. In this paper, we have used Deep Learning techniques and TensorFlow framework with the goal of building a neural network model to predict (speed, acceleration, steering angle, and brake) features needed for navigation of autonomous vehicles. The Deep Neural Network has been trained on images and sensor data obtained from the comma.ai dataset. A heatmap was used to check for correlation among the features, and finally, four important features were selected. This was a multivariate regression problem. The final model had five convolutional layers, followed by five dense layers. Finally, the calculated values were tested against the labeled data, where the mean squared error was used as a performance metric.

Keywords: autonomous vehicles, deep learning, computer vision, artificial intelligence

Procedia PDF Downloads 158
3329 Electric Field-Induced Deformation of Particle-Laden Drops and Structuring of Surface Particles

Authors: Alexander Mikkelsen, Khobaib Khobaib, Zbigniew Rozynek

Abstract:

Drops covered by particles have found important uses in various fields, ranging from stabilization of emulsions to production of new advanced materials. Particles at drop interfaces can be interlocked to form solid capsules with properties tailored for a myriad of applications. Despite the huge potential of particle-laden drops and capsules, the knowledge of their deformation and stability are limited. In this regard, we contribute with experimental studies on the deformation and manipulation of silicone oil drops covered with micrometer-sized particles subjected to electric fields. A mixture of silicone oil and particles were immersed in castor oil using a mechanical pipette, forming millimeter sized drops. The particles moved and adsorbed at the drop interfaces by sedimentation, and were structured at the interface by electric field-induced electrohydrodynamic flows. When applying a direct current electric field, free charges accumulated at the drop interfaces, yielding electric stress that deformed the drops. In our experiments, we investigated how particle properties affected drop deformation, break-up, and particle structuring. We found that by increasing the size of weakly-conductive clay particles, the drop shape can go from compressed to stretched out in the direction of the electric field. Increasing the particle size and electrical properties were also found to weaken electrohydrodynamic flows, induce break-up of drops at weaker electric field strengths and structure particles in chains. These particle parameters determine the dipolar force between the interfacial particles, which can yield particle chaining. We conclude that the balance between particle chaining and electrohydrodynamic flows governs the observed drop mechanics.

Keywords: drop deformation, electric field induced stress, electrohydrodynamic flows, particle structuring at drop interfaces

Procedia PDF Downloads 208
3328 First-Year Undergraduate Students' Dilemma with Kinematics Graphs

Authors: Itumeleng Phage

Abstract:

Students’ comprehension of graphs may be affected by the characteristics of the discipline in which the graph is used, the type of the task as well as the background of the students who are the readers or interpreters of the graph. This research study investigated these aspects of the graph comprehension of 152 first-year undergraduate physics students by comparing their responses to corresponding tasks in the mathematics and physics disciplines. The discipline characteristics were analysed for four task-related constructs namely coordinates, representations, area and slope. Students’ responses to corresponding visual decoding and judgement tasks set in mathematics and kinematics contexts were statistically compared. The effects of the participants’ gender, year of school completion and study course were determined as reader characteristics. The results of the empirical study indicated that participants generally transferred their mathematics knowledge on coordinates and representation of straight line graphs to the physics contexts, but not in the cases of parabolic and hyperbolic functions or area under graphs. Insufficient understanding of the slope concept contributed to weak performances on this construct in both mathematics and physics contexts. Discipline characteristics seem to play a vital role in students’ understanding, while reader characteristics had insignificant to medium effects on their responses.

Keywords: kinematics graph, discipline characteristics, constructs, coordinates, representations, area and slope

Procedia PDF Downloads 260
3327 Efficient Fake News Detection Using Machine Learning and Deep Learning Approaches

Authors: Chaima Babi, Said Gadri

Abstract:

The rapid increase in fake news continues to grow at a very fast rate; this requires implementing efficient techniques that allow testing the re-liability of online content. For that, the current research strives to illuminate the fake news problem using deep learning DL and machine learning ML ap-proaches. We have developed the traditional LSTM (Long short-term memory), and the bidirectional BiLSTM model. A such process is to perform a training task on almost of samples of the dataset, validate the model on a subset called the test set to provide an unbiased evaluation of the final model fit on the training dataset, then compute the accuracy of detecting classifica-tion and comparing the results. For the programming stage, we used Tensor-Flow and Keras libraries on Python to support Graphical Processing Units (GPUs) that are being used for developing deep learning applications.

Keywords: machine learning, deep learning, natural language, fake news, Bi-LSTM, LSTM, multiclass classification

Procedia PDF Downloads 95
3326 The Effect of Foundation on the Earth Fill Dam Settlement

Authors: Masoud Ghaemi, Mohammadjafar Hedayati, Faezeh Yousefzadeh, Hoseinali Heydarzadeh

Abstract:

Careful monitoring in the earth dams to measure deformation caused by settlement and movement has always been a concern for engineers in the field. In order to measure settlement and deformation of earth dams, usually, the precision instruments of settlement set and combined Inclinometer that is commonly referred to IS instrument will be used. In some dams, because the thickness of alluvium is high and there is no possibility of alluvium removal (technically and economically and in terms of performance), there is no possibility of placing the end of IS instrument (precision instruments of Inclinometer-settlement set) in the rock foundation. Inevitably, have to accept installing pipes in the weak and deformable alluvial foundation that leads to errors in the calculation of the actual settlement (absolute settlement) in different parts of the dam body. The purpose of this paper is to present new and refine criteria for predicting settlement and deformation in earth dams. The study is based on conditions in three dams with a deformation quite alluvial (Agh Chai, Narmashir and Gilan-e Gharb) to provide settlement criteria affected by the alluvial foundation. To achieve this goal, the settlement of dams was simulated by using the finite difference method with FLAC3D software, and then the modeling results were compared with the reading IS instrument. In the end, the caliber of the model and validate the results, by using regression analysis techniques and scrutinized modeling parameters with real situations and then by using MATLAB software and CURVE FITTING toolbox, new criteria for the settlement based on elasticity modulus, cohesion, friction angle, the density of earth dam and the alluvial foundation was obtained. The results of these studies show that, by using the new criteria measures, the amount of settlement and deformation for the dams with alluvial foundation can be corrected after instrument readings, and the error rate in reading IS instrument can be greatly reduced.

Keywords: earth-fill dam, foundation, settlement, finite difference, MATLAB, curve fitting

Procedia PDF Downloads 195
3325 Sleep Tracking AI Application in Smart-Watches

Authors: Sumaiya Amir Khan, Shayma Al-Sharif, Samiha Mazher, Neha Intikhab Khan

Abstract:

This research paper aims to evaluate the effectiveness of sleep-tracking AI applications in smart-watches. It focuses on comparing the sleep analyses of two different smartwatch brands, Samsung and Fitbit, and measuring sleep at three different stages – REM (Rapid-Eye-Movement), NREM (Non-Rapid-Eye-Movement), and deep sleep. The methodology involves the participation of different users and analyzing their sleep data. The results reveal that although light sleep is the longest stage, deep sleep is higher than average in the participants. The study also suggests that light sleep is not uniform, and getting higher levels of deep sleep can prevent debilitating health conditions. Based on the findings, it is recommended that individuals should aim to achieve higher levels of deep sleep to maintain good health. Overall, this research contributes to the growing literature on the effectiveness of sleep-tracking AI applications and their potential to improve sleep quality.

Keywords: sleep tracking, lifestyle, accuracy, health, AI, AI features, ML

Procedia PDF Downloads 79
3324 Cantilever Secant Pile Constructed in Sand: Capping Beam Analysis and Deformation Limitations

Authors: Khaled R. Khater

Abstract:

This paper fits in soil-structure interaction division. Its theme is soil retaining structures. Hence, the cantilever secant-pile wall imposed itself, focusing on the capping beam. Four research questions are prompted and beg an answer. How to calculate the forces that control capping beam design? What is the statical system of ‘capping beam-secant pile’ as one unit? Is it possible to design it to satisfy pre-specific lateral deformation? Is it possible to suggest permissible lateral deformation limits? Briefly, pile head displacements induced by Plaxis-2D are converted to forces needed for STAAD-Pro 3D models. Those models are constructed based on the proposed structural system. This is the paper’s idea and methodology. Parametric study performed considered three sand densities, one pile rigidity, and two excavation depths, i.e., 3.0 m and 5.0 m. The research questions are satisfactorily answered. This paper could be a first step towards standardizing analysis, design, and lateral deformations checks.

Keywords: capping beam, secant pile, numerical, design aids, sandy soil

Procedia PDF Downloads 108
3323 Isolated Contraction of Deep Lumbar Paraspinal Muscle with Magnetic Nerve Root Stimulation: A Pilot Study

Authors: Shi-Uk Lee, Chae Young Lim

Abstract:

Objective: The aim of this study was to evaluate the changes of lumbar deep muscle thickness and cross-sectional area using ultrasonography with magnetic stimulation. Methods: To evaluate the changes of lumbar deep muscle by using magnetic stimulation, 12 healthy volunteers (39.6±10.0 yrs) without low back pain during 3 months participated in this study. All the participants were checked with X-ray and electrophysiologic study to confirm that they had no problems with their back. Magnetic stimulation was done on the L5 and S1 root with figure-eight coil as previous study. To confirm the proper motor root stimulation, the surface electrode was put on the tibialis anterior (L5) and abductor hallucis muscles (S1) and the hot spots of magnetic stimulation were found with 50% of maximal magnetic stimulation and determined the stimulation threshold lowering the magnetic intensity by 5%. Ultrasonography was used to assess the changes of L5 and S1 lumbar multifidus (superficial and deep) cross-sectional area and thickness with maximal magnetic stimulation. Cross-sectional area (CSA) and thickness was evaluated with image acquisition program, ImageJ software (National Institute of Healthy, USA). Wilcoxon signed-rank was used to compare outcomes between before and after stimulations. Results: The mean minimal threshold was 29.6±3.8% of maximal stimulation intensity. With minimal magnetic stimulation, thickness of L5 and S1 deep multifidus (DM) were increased from 1.25±0.20, 1.42±0.23 cm to 1.40±0.27, 1.56±0.34 cm, respectively (P=0.005, P=0.003). CSA of L5 and S1 DM were also increased from 2.26±0.18, 1.40±0.26 cm2 to 2.37±0.18, 1.56±0.34 cm2, respectively (P=0.002, P=0.002). However, thickness of L5 and S1 superficial multifidus (SM) were not changed from 1.92±0.21, 2.04±0.20 cm to 1.91±0.33, 1.96±0.33 cm (P=0.211, P=0.199) and CSA of L5 and S1 were also not changed from 4.29±0.53, 5.48±0.32 cm2 to 4.42±0.42, 5.64±0.38 cm2. With maximal magnetic stimulation, thickness of L5, S1 of DM and SM were increased (L5 DM, 1.29±0.26, 1.46±0.27 cm, P=0.028; L5 SM, 2.01±0.42, 2.24±0.39 cm, P=0.005; S1 DM, 1.29±0.19, 1.67±0.29 P=0.002; S1 SM, 1.90±0.36, 2.30±0.36, P=0.002). CSA of L5, S1 of DM and SM were also increased (all P values were 0.002). Conclusions: Deep lumbar muscles could be stimulated with lumbar motor root magnetic stimulation. With minimal stimulation, thickness and CSA of lumbosacral deep multifidus were increased in this study. Further studies are needed to confirm whether the similar results in chronic low back pain patients are represented. Lumbar magnetic stimulation might have strengthening effect of deep lumbar muscles with no discomfort.

Keywords: magnetic stimulation, lumbar multifidus, strengthening, ultrasonography

Procedia PDF Downloads 371
3322 Breast Cancer Prediction Using Score-Level Fusion of Machine Learning and Deep Learning Models

Authors: Sam Khozama, Ali M. Mayya

Abstract:

Breast cancer is one of the most common types in women. Early prediction of breast cancer helps physicians detect cancer in its early stages. Big cancer data needs a very powerful tool to analyze and extract predictions. Machine learning and deep learning are two of the most efficient tools for predicting cancer based on textual data. In this study, we developed a fusion model of two machine learning and deep learning models. To obtain the final prediction, Long-Short Term Memory (LSTM) and ensemble learning with hyper parameters optimization are used, and score-level fusion is used. Experiments are done on the Breast Cancer Surveillance Consortium (BCSC) dataset after balancing and grouping the class categories. Five different training scenarios are used, and the tests show that the designed fusion model improved the performance by 3.3% compared to the individual models.

Keywords: machine learning, deep learning, cancer prediction, breast cancer, LSTM, fusion

Procedia PDF Downloads 163
3321 A Study on the Strategy of Pocket Park in the Renewal of Old City in China

Authors: Xian Chen

Abstract:

In recent years, the tendency that the decline of material and social vitality of old city in China becomes more and more serious. Nowadays, transformation and renewal of the old city have become a hot topic in urban research. The traditional mode of large-scale promotion has been criticized. Thus, exploration of new ways to update the city turns to be a necessity on the way of sustainable urban development. Pocket Park is a small city open space, its location choose is based on abandoned or idle lands on urban structure, is scattered or hidden in corner of the urban. It has a great significance on improving the old city environment. Based on the theory of ‘pocket park’, this paper summarizes the successful experience of domestic and foreign practice, and discusses the update strategies which are suitable for China's national conditions according to the characteristics and predicament of the old city in China. The main methods and results are as follows: 1)Based on the conception of ‘pocket park’, though describing the research status in domestic and foreign, summarizing the experience which is worth learning and existing problems. 2) From the analysis of ‘pocket park’ function, general design principles and types of the deep-seated difficulties in renewal the old city and the possibility of the application of ‘pocket park’,the varied implementation of ‘pocket park’ form are established, and application value in the old city renewal are summed up. 3) It can’t be denied that pocket park plays an irreplaceable role in solving the recession and renewing the vitality of the old city. Anymore, It is recommended to develop corresponding supportive development policies.

Keywords: sustainable development, strategy, old city renewal, pocket park

Procedia PDF Downloads 350