Search results for: axially moving beam
1677 On the Thermal Behavior of the Slab in a Reheating Furnace with Radiation
Authors: Gyo Woo Lee, Man Young Kim
Abstract:
A mathematical heat transfer model for the prediction of transient heating of the slab in a direct-fired walking beam type reheating furnace has been developed by considering the nongray thermal radiation with given furnace environments. The furnace is modeled as radiating nongray medium with carbon dioxide and water with five-zoned gas temperature and the furnace wall is considered as a constant temperature lower than furnace gas one. The slabs are moving with constant velocity depending on the residence time through the non-firing, charging, preheating, heating, and final soaking zones. Radiative heat flux obtained by considering the radiative heat exchange inside the furnace as well as convective one from the surrounding hot gases are introduced as boundary condition of the transient heat conduction within the slab. After validating thermal radiation model adopted in this work, thermal fields in both model and real reheating furnace are investigated in terms of radiative heat flux in the furnace and temperature inside the slab. The results show that the slab in the furnace can be more heated with higher slab emissivity and residence time.Keywords: reheating furnace, steel slab, radiative heat transfer, WSGGM, emissivity, residence time
Procedia PDF Downloads 2881676 Flexural Behavior of Composite Hybrid Beam Models Combining Steel Inverted T-Section and RC Flange
Authors: Abdul Qader Melhem, Hacene Badache
Abstract:
This paper deals with the theoretical and experimental study of shear connection via simple steel reinforcement shear connectors, which are steel reinforcing bars bent into L-shapes, instead of commonly used headed studs. This suggested L-shape connectors are readily available construction material in steel reinforcement. The composite section, therefore, consists of steel inverted T-section being embedded within a lightly reinforced concrete flange at the top slab as a unit. It should be noted that the cross section of these composite models involves steel inverted T-beam, replacing the steel top flange of a standard commonly employed I-beam section. The paper concentrates on the elastic and elastic-plastic behavior of these composite models. Failure modes either by cracking of concrete or shear connection be investigated in details. Elastic and elastoplastic formulas of the composite model have been computed for different locations of NA. Deflection formula has been derived, its value was close to the test value. With a supportive designing curve, this curve is valuable for both designing engineers and researchers. Finally, suggested designing curves and valuable equations will be presented. A check is made between theoretical and experimental outcomes.Keywords: composite, elastic-plastic, failure, inverted T-section, L-Shape connectors
Procedia PDF Downloads 2271675 Thermo-Mechanical Analysis of Composite Structures Utilizing a Beam Finite Element Based on Global-Local Superposition
Authors: Andre S. de Lima, Alfredo R. de Faria, Jose J. R. Faria
Abstract:
Accurate prediction of thermal stresses is particularly important for laminated composite structures, as large temperature changes may occur during fabrication and field application. The normal transverse deformation plays an important role in the prediction of such stresses, especially for problems involving thick laminated plates subjected to uniform temperature loads. Bearing this in mind, the present study aims to investigate the thermo-mechanical behavior of laminated composite structures using a new beam element based on global-local superposition, accounting for through-the-thickness effects. The element formulation is based on a global-local superposition in the thickness direction, utilizing a cubic global displacement field in combination with a linear layerwise local displacement distribution, which assures zig-zag behavior of the stresses and displacements. By enforcing interlaminar stress (normal and shear) and displacement continuity, as well as free conditions at the upper and lower surfaces, the number of degrees of freedom in the model is maintained independently of the number of layers. Moreover, the proposed formulation allows for the determination of transverse shear and normal stresses directly from the constitutive equations, without the need of post-processing. Numerical results obtained with the beam element were compared to analytical solutions, as well as results obtained with commercial finite elements, rendering satisfactory results for a range of length-to-thickness ratios. The results confirm the need for an element with through-the-thickness capabilities and indicate that the present formulation is a promising alternative to such analysis.Keywords: composite beam element, global-local superposition, laminated composite structures, thermal stresses
Procedia PDF Downloads 1561674 Wireless Optic Last Mile Multi-Gbit/s Communication System
Authors: Manea Viorel, Puscoci Sorin, Stoichescu Dan Alexandru
Abstract:
Free Space Optics (FSO) is an optical telecommunication system that uses laser beam to transmit data at high bit rates via terrestrial atmosphere. This article describes a method to obtain higher bit rates, under unfavorable weather conditions using multiple optical beams, which carry information with low optical power. Optical link quality assessment is given by the attenuation on different weather conditions. The goal of this paper is to compare two transmission techniques: mono and multi beam, both affected by atmospheric attenuation, using OOK and L-PPM modulation. Link availability is evaluated using eye-diagram that provides information about the overall bit error rate of the system.Keywords: free space optics, wireless optic, laser communication, spatial diversity
Procedia PDF Downloads 5051673 Coupled Flexural-Lateral-Torsional of Shear Deformable Thin-Walled Beams with Asymmetric Cross-Section–Closed Form Exact Solution
Authors: Mohammed Ali Hjaji, Magdi Mohareb
Abstract:
This paper develops the exact solutions for coupled flexural-lateral-torsional static response of thin-walled asymmetric open members subjected to general loading. Using the principle of stationary total potential energy, the governing differential equations of equilibrium are formulated as well as the associated boundary conditions. The formulation is based on a generalized Timoshenko-Vlasov beam theory and accounts for the effects of shear deformation due to bending and warping, and captures the effects of flexural–torsional coupling due to cross-section asymmetry. Closed-form solutions are developed for cantilever and simply supported beams under various forces. In order to demonstrate the validity and the accuracy of this solution, numerical examples are presented and compared with well-established ABAQUS finite element solutions and other numerical results available in the literature. In addition, the results are compared against non-shear deformable beam theories in order to demonstrate the shear deformation effects.Keywords: asymmetric cross-section, flexural-lateral-torsional response, Vlasov-Timoshenko beam theory, closed form solution
Procedia PDF Downloads 4701672 Residual Plastic Deformation Capacity in Reinforced Concrete Beams Subjected to Drop Weight Impact Test
Authors: Morgan Johansson, Joosef Leppanen, Mathias Flansbjer, Fabio Lozano, Josef Makdesi
Abstract:
Concrete is commonly used for protective structures and how impact loading affects different types of concrete structures is an important issue. Often the knowledge gained from static loading is also used in the design of impulse loaded structures. A large plastic deformation capacity is essential to obtain a large energy absorption in an impulse loaded structure. However, the structural response of an impact loaded concrete beam may be very different compared to a statically loaded beam. Consequently, the plastic deformation capacity and failure modes of the concrete structure can be different when subjected to dynamic loads; and hence it is not sure that the observations obtained from static loading are also valid for dynamic loading. The aim of this paper is to investigate the residual plastic deformation capacity in reinforced concrete beams subjected to drop weight impact tests. A test-series consisting of 18 simply supported beams (0.1 x 0.1 x 1.18 m, ρs = 0.7%) with a span length of 1.0 m and subjected to a point load in the beam mid-point, was carried out. 2x6 beams were first subjected to drop weight impact tests, and thereafter statically tested until failure. The drop in weight had a mass of 10 kg and was dropped from 2.5 m or 5.0 m. During the impact tests, a high-speed camera was used with 5 000 fps and for the static tests, a camera was used with 0.5 fps. Digital image correlation (DIC) analyses were conducted and from these the velocities of the beam and the drop weight, as well as the deformations and crack propagation of the beam, were effectively measured. Additionally, for the static tests, the applied load and midspan deformation were measured. The load-deformation relations for the beams subjected to an impact load were compared with 6 reference beams that were subjected to static loading only. The crack pattern obtained were compared using DIC, and it was concluded that the resulting crack formation depended much on the test method used. For the static tests, only bending cracks occurred. For the impact loaded beams, though, distinctive diagonal shear cracks also formed below the zone of impact and less wide shear cracks were observed in the region half-way to the support. Furthermore, due to wave propagation effects, bending cracks developed in the upper part of the beam during initial loading. The results showed that the plastic deformation capacity increased for beams subjected to drop weight impact tests from a high drop height of 5.0 m. For beams subjected to an impact from a low drop height of 2.5 m, though, the plastic deformation capacity was in the same order of magnitude as for the statically loaded reference beams. The beams tested were designed to fail due to bending when subjected to a static load. However, for the impact tested beams, one beam exhibited a shear failure at a significantly reduced load level when it was tested statically; indicating that there might be a risk of reduced residual load capacity for impact loaded structures.Keywords: digital image correlation (DIC), drop weight impact, experiments, plastic deformation capacity, reinforced concrete
Procedia PDF Downloads 1491671 Nano Effects of Nitrogen Ion Implantation on TiN Hard Coatings Deposited by Physical Vapour Deposition and Ion Beam Assisted Deposition
Authors: Branko Skoric, Aleksandar Miletic, Pal Terek, Lazar Kovacevic, Milan Kukuruzovic
Abstract:
In this paper, we present the results of a study of TiN thin films which are deposited by a Physical Vapour Deposition (PVD) and Ion Beam Assisted Deposition (IBAD). In the present investigation the subsequent ion implantation was provided with N5+ ions. The ion implantation was applied to enhance the mechanical properties of surface. The thin film deposition process exerts a number of effects such as crystallographic orientation, morphology, topography, densification of the films. A variety of analytic techniques were used for characterization, such as scratch test, calo test, Scanning electron microscopy (SEM), Atomic Force Microscope (AFM), X-ray diffraction (XRD) and Energy Dispersive X-ray analysis (EDAX).Keywords: coating, super hard, ion implantation, nanohardness
Procedia PDF Downloads 3461670 Fem Models of Glued Laminated Timber Beams Enhanced by Bayesian Updating of Elastic Moduli
Authors: L. Melzerová, T. Janda, M. Šejnoha, J. Šejnoha
Abstract:
Two finite element (FEM) models are presented in this paper to address the random nature of the response of glued timber structures made of wood segments with variable elastic moduli evaluated from 3600 indentation measurements. This total database served to create the same number of ensembles as was the number of segments in the tested beam. Statistics of these ensembles were then assigned to given segments of beams and the Latin Hypercube Sampling (LHS) method was called to perform 100 simulations resulting into the ensemble of 100 deflections subjected to statistical evaluation. Here, a detailed geometrical arrangement of individual segments in the laminated beam was considered in the construction of two-dimensional FEM model subjected to in four-point bending to comply with the laboratory tests. Since laboratory measurements of local elastic moduli may in general suffer from a significant experimental error, it appears advantageous to exploit the full scale measurements of timber beams, i.e. deflections, to improve their prior distributions with the help of the Bayesian statistical method. This, however, requires an efficient computational model when simulating the laboratory tests numerically. To this end, a simplified model based on Mindlin’s beam theory was established. The improved posterior distributions show that the most significant change of the Young’s modulus distribution takes place in laminae in the most strained zones, i.e. in the top and bottom layers within the beam center region. Posterior distributions of moduli of elasticity were subsequently utilized in the 2D FEM model and compared with the original simulations.Keywords: Bayesian inference, FEM, four point bending test, laminated timber, parameter estimation, prior and posterior distribution, Young’s modulus
Procedia PDF Downloads 2831669 Shear Behaviour of RC Deep Beams with Openings Strengthened with Carbon Fiber Reinforced Polymer
Authors: Mannal Tariq
Abstract:
Construction industry is making progress at a high pace. The trend of the world is getting more biased towards the high rise buildings. Deep beams are one of the most common elements in modern construction having small span to depth ratio. Deep beams are mostly used as transfer girders. This experimental study consists of 16 reinforced concrete (RC) deep beams. These beams were divided into two groups; A and B. Groups A and B consist of eight beams each, having 381 mm (15 in) and 457 mm (18 in) depth respectively. Each group was further subdivided into four sub groups each consisting of two identical beams. Each subgroup was comprised of solid/control beam (without opening), opening above neutral axis (NA), at NA and below NA. Except for control beams, all beams with openings were strengthened with carbon fibre reinforced polymer (CFRP) vertical strips. These eight groups differ from each other based on depth and location of openings. For testing sake, all beams have been loaded with two symmetrical point loads. All beams have been designed based on strut and tie model concept. The outcome of experimental investigation elaborates the difference in the shear behaviour of deep beams based on depth and location of circular openings variation. 457 mm (18 in) deep beam with openings above NA show the highest strength and 381 mm (15 in) deep beam with openings below NA show the least strength. CFRP sheets played a vital role in increasing the shear capacity of beams.Keywords: CFRP, deep beams, openings in deep beams, strut and tie modal, shear behaviour
Procedia PDF Downloads 3041668 Effect of Particles Size and Volume Fraction Concentration on the Thermal Conductivity and Thermal Diffusivity of Al2O3 Nanofluids Measured Using Transient Hot–Wire Laser Beam Deflection Technique
Authors: W. Mahmood Mat Yunus, Faris Mohammed Ali, Zainal Abidin Talib
Abstract:
In this study we present new data for the thermal conductivity enhancement in four nanofluids containing 11, 25, 50, 63 nm diameter aluminum oxide (Al2O3) nanoparticles in distilled water. The nanofluids were prepared using single step method (i.e. by dispersing nanoparticle directly in base fluid) which was gathered in ultrasonic device for approximately 7 hours. The transient hot-wire laser beam displacement technique was used to measure the thermal conductivity and thermal diffusivity of the prepared nanofluids. The thermal conductivity and thermal diffusivity were obtained by fitting the experimental data to the numerical data simulated for aluminum oxide in distilled water. The results show that the thermal conductivity and thermal diffusivity of nanofluids increases in non-linear behavior as the particle size increases. While, the thermal conductivity and thermal diffusivity of Al2O3 nanofluids was observed increasing linearly with concentration as the volume fraction concentration increases. We believe that the interfacial layer between solid/fluid is the main factor for the enhancement of thermal conductivity and thermal diffusivity of Al2O3 nanofluids in the present work.Keywords: transient hot wire-laser beam technique, Al2O3 nanofluid, particle size, volume fraction concentration
Procedia PDF Downloads 5531667 Tribological Behavior Of 17-4PH Steel Produced Via Binder Jetting And Low Energy High Current Pulsed Electron Beam Surface Treated
Authors: Lorenza Fabiocchi, Marco Mariani, Andrea Lucchini Huspek, Matteo Pozzi, Massimiliano Bestetti, Serena Graziosi, Nora Lecis
Abstract:
Additive manufacturing of stainless steels is rapidly developing thanks to the ability to achieve complex designs effortlessly. Stainless steel 17-4PH is valued for its high strength and corrosion resistance, however intricate geometries are challenging to obtain due to rapid tool wear when machined. Binder jetting additive manufacturing was used to produce 17–4PH samples and pulsed electron beam surface treatment was investigated to enhance surface properties of components. The aim is to improve the tribological performance compared to the as-sintered condition and the H900 aging process, which optimizes hardness and wear resistance. Printed samples were sintered in a reducing atmosphere and superficially treated with an electron beam by varying the voltage (20 - 25 - 30 kV) and pulse count (20 – 40 pulses). Then, the surface was characterized from a microstructural and mechanical standpoint. Scratch tests were performed, and a reciprocating linear pin-on-disk wear test was conducted at 2 N and 10 Hz. Results showed that the voltage affects the roughness and thickness of the treated layer, whilst the number of pulses influences the hardening of the microstructure and consequently the wear resistance. Treated samples exhibited lower coefficients of friction compared to as-printed surfaces, though the values approached those of aged samples after the abrasion of the melted layer, indicating a deeper heat-affected zone formation. Different amounts of residual stress in the heat effected zone were individuated through the scratch tests. Still, the friction remained lower than that of as-printed specimens. This study demonstrates that optimizing electron beam parameters is vital for achieving surface performance comparable to bulk aging treatments, with significant implications for long-term wear resistance.Keywords: low energy high current pulsed electron beam, tribology, binder jetting 3D printing, 17-4PH stainless steel
Procedia PDF Downloads 121666 The Rail Traffic Management with Usage of C-OTDR Monitoring Systems
Authors: Andrey V. Timofeev, Dmitry V. Egorov
Abstract:
This paper presents development results of usage of C-OTDR monitoring systems for rail traffic management. The C-OTDR method is based on vibrosensitive properties of optical fibers. Analysis of Rayleigh backscattering radiation parameters changes which take place due to microscopic seismoacoustic impacts on the optical fiber allows to determine seismoacoustic emission source positions and to identify their types. This approach proved successful for rail traffic management (moving block system, weigh- in-motion system etc).Keywords: C-OTDR systems, moving block-sections, rail traffic management, Rayleigh backscattering, weigh-in-motion
Procedia PDF Downloads 5841665 Ion Beam Writing and Implantation in Graphene Oxide, Reduced Graphene Oxide and Polyimide Through Polymer Mask for Sensorics Applications
Authors: Jan Luxa, Vlastimil Mazanek, Petr Malinsky, Alexander Romanenko, Mariapompea Cutroneo, Vladimir Havranek, Josef Novak, Eva Stepanovska, Anna Mackova, Zdenek Sofer
Abstract:
Using accelerated energetic ions is an interesting method for the introduction of structural changes in various carbon-based materials. This way, the properties can be altered in two ways: a) the ions lead to the formation of conductive pathways in graphene oxide structures due to the elimination of oxygen functionalities and b) doping with selected ions to form metal nanoclusters, thus increasing the conductivity. In this work, energetic beams were employed in two ways to prepare capacitor structures in graphene oxide (GO), reduced graphene oxide (rGO) and polyimide (PI) on a micro-scale. The first method revolved around using ion beam writing with a focused ion beam, and the method involved ion implantation via a polymeric mask. To prepare the polymeric mask, a direct spin-coating of PMMA on top of the foils was used. Subsequently, proton beam writing and development in isopropyl alcohol were employed. Finally, the mask was removed using acetone solvent. All three materials were exposed to ion beams with an energy of 2.5-5 MeV and an ion fluence of 3.75x10¹⁴ cm-² (1800 nC.mm-²). Thus, prepared microstructures were thoroughly characterized by various analytical methods, including Scanning electron microscopy (SEM) with Energy-Dispersive X-ray spectroscopy (EDS), X-ray Photoelectron spectroscopy (XPS), micro-Raman spectroscopy, Rutherford Back-scattering Spectroscopy (RBS) and Elastic Recoil Detection Analysis (ERDA) spectroscopy. Finally, these materials were employed and tested as sensors for humidity using electrical conductivity measurements. The results clearly demonstrate that the type of ions, their energy and fluence all have a significant influence on the sensory properties of thus prepared sensors.Keywords: graphene, graphene oxide, polyimide, ion implantation, sensors
Procedia PDF Downloads 851664 Treatment of Septic Tank Effluent Using Moving Bed Biological Reactor
Authors: Fares Almomani, Majeda Khraisheh, Rahul Bhosale, Anand Kumar, Ujjal Gosh
Abstract:
Septic tanks (STs) are very commonly used wastewater collection systems in the world especially in rural areas. In this study, the use of moving bed biological reactors (MBBR) for the treatment of septic tanks effluents (STE) was studied. The study was included treating septic tank effluent from one house hold using MBBRs. Significant ammonia removal rate was observed in all the reactors throughout the 180 days of operation suggesting that the MBBRs were successful in reducing the concentration of ammonia from septic tank effluent. The average ammonia removal rate at 25◦C for the reactor operated at hydraulic retention time of 5.7 hr (R1) was 0.540 kg-N/m3and for the reactor operated at hydraulic retention time of 13.3hr (R2) was 0.279 kg-N/m3. Ammonia removal rates were decreased to 0.3208 kg-N/m3 for R1 and 0.212 kg-N/m3 for R3 as the temperature of reactor was decreased to 8 ◦C. A strong correlation exists between theta model and the rates of ammonia removal for the reactors operated in continuous flow. The average ϴ values for the continuous flow reactors during the temperature change from 8°C to 20 °C were found to be 1.053±0.051. MBBR technology can be successfully used as a polishing treatment for septic tank effluent.Keywords: septic tanks, wastewater treatment, morphology, moving biological reactors, nitrification
Procedia PDF Downloads 3421663 A Hybrid Heuristic for the Team Orienteering Problem
Authors: Adel Bouchakhchoukha, Hakim Akeb
Abstract:
In this work, we propose a hybrid heuristic in order to solve the Team Orienteering Problem (TOP). Given a set of points (or customers), each with associated score (profit or benefit), and a team that has a fixed number of members, the problem to solve is to visit a subset of points in order to maximize the total collected score. Each member performs a tour starting at the start point, visiting distinct customers and the tour terminates at the arrival point. In addition, each point is visited at most once, and the total time in each tour cannot be greater than a given value. The proposed heuristic combines beam search and a local optimization strategy. The algorithm was tested on several sets of instances and encouraging results were obtained.Keywords: team orienteering problem, vehicle routing, beam search, local search
Procedia PDF Downloads 4181662 Exploration of Slow-Traffic System Strategies for New Urban Areas Under the Integration of Industry and City - Taking Qianfeng District of Guang’an City as an Example
Authors: Qikai Guan
Abstract:
With the deepening of China's urbanization process, the development of urban industry has entered a new period, due to the gradual compounding and diversification of urban industrial functions, urban planning has shifted from the previous single industrial space arrangement and functional design to focusing on the upgrading of the urban structure, and on the diversified needs of people. As an important part of urban activity space, ‘slow moving space’ is of great significance in alleviating urban traffic congestion, optimizing residents' travel experience and improving urban ecological space. Therefore, this paper takes the slow-moving transportation system under the perspective of industry-city integration as the starting point, through sorting out the development needs of the city in the process of industry-city integration, analyzing the characteristics of the site base, sorting out a series of compatibility between the layout of the new industrial zone and the urban slow-moving system, and integrating the design concepts. At the same time, through the analysis and summarization of domestic and international experience, the construction ideas are proposed. Finally, the following aspects of planning strategy optimization are proposed: industrial layout, urban vitality, ecological pattern, regional characteristics and landscape image. In terms of specific design, on the one hand, it builds a regional slow-moving network, puts forward a diversified design strategy for the industry-oriented and multi-functional composite central area, realizes the coexistence of pedestrian-oriented and multiple transportation modes, basically covers the public facilities, and enhances the vitality of the city. On the other hand, it improves the landscape ecosystem, creates a healthy, diversified and livable superline landscape system, helps the construction of the ‘green core’ of the central city, and improves the travel experience of the residents.Keywords: industry-city integration, slow-moving system, public space, functional integration
Procedia PDF Downloads 121661 Beam Deflection with Unidirectionality Due to Zeroth Order and Evanescent Wave Coupling in a Photonic Crystal with a Defect Layer without Corrugations under Oblique Incidence
Authors: Evrim Colak, Andriy E. Serebryannikov, Thore Magath, Ekmel Ozbay
Abstract:
Single beam deflection and unidirectional transmission are examined for oblique incidence in a Photonic Crystal (PC) structure which employs defect layer instead of surface corrugations at the interfaces. In all of the studied cases, the defect layer is placed such that the symmetry is broken. Two types of deflection are observed depending on whether the zeroth order is coupled or not. These two scenarios can be distinguished from each other by considering the simulated field distribution in PC. In the first deflection type, Floquet-Bloch mode enables zeroth order coupling. The energy of the zeroth order is redistributed between the diffraction orders at the defect layer, providing deflection. In the second type, when zeroth order is not coupled, strong diffractions cause blazing and the evanescent waves deliver energy to higher order diffraction modes. Simulated isofrequency contours can be utilized to estimate the coupling behavior. The defect layer is placed at varying rows, preserving the asymmetry of PC while evancescent waves can still couple to higher order modes. Even for deeply buried defect layer, asymmetric transmission and beam deflection are still encountered when the zeroth order is not coupled. We assume ε=11.4 (refractive index close to that of GaAs and Si) for the PC rods. A possible operation wavelength can be within microwave and infrared range. Since the suggested material is low loss, the structure can be scaled down to operate higher frequencies. Thus, a sample operation wavelength is selected as 1.5μm. Although the structure employs no surface corrugations transmission value T≈0.97 can be achieved by means of diffraction order m=-1. Moreover, utilizing an extra line defect, T value can be increased upto 0.99, under oblique incidence even if the line defect layer is deeply embedded in the photonic crystal. The latter configuration can be used to obtain deflection in one frequency range and can also be utilized for the realization of another functionality like defect-mode wave guiding in another frequency range but still using the same structure.Keywords: asymmetric transmission, beam deflection, blazing, bi-directional splitting, defect layer, dual beam splitting, Floquet-Bloch modes, isofrequency contours, line defect, oblique incidence, photonic crystal, unidirectionality
Procedia PDF Downloads 2621660 On Influence of Web Openings Presence on Structural Performance of Steel and Concrete Beams
Authors: Jakub Bartus, Jaroslav Odrobinak
Abstract:
In general, composite steel and concrete structures present an effective structural solution utilizing the full potential of both materials. As they have numerous advantages on the construction side, they can greatly reduce the overall cost of construction, which has been the main objective of the last decade, highlighted by the current economic and social crisis. The study represents not only an analysis of composite beams’ behavior having web openings but emphasizes the influence of these openings on the total strain distribution at the level of the steel bottom flange as well. The major investigation was focused on a change in structural performance with respect to various layouts of openings. Examining this structural modification, an improvement of load carrying capacity of composite beams was a prime objective. The study is divided into analytical and numerical parts. The analytical part served as an initial step into the design process of composite beam samples, in which optimal dimensions and specific levels of utilization in individual stress states were taken into account. The numerical part covered the discretization of the preset structural issue in the form of a finite element (FE) model using beam and shell elements accounting for material non–linearities. As an outcome, several conclusions were drawn describing and explaining the effect of web opening presence on the structural performance of composite beams.Keywords: beam, steel flange, total strain, web opening
Procedia PDF Downloads 771659 Verification of Dosimetric Commissioning Accuracy of Flattening Filter Free Intensity Modulated Radiation Therapy and Volumetric Modulated Therapy Delivery Using Task Group 119 Guidelines
Authors: Arunai Nambi Raj N., Kaviarasu Karunakaran, Krishnamurthy K.
Abstract:
The purpose of this study was to create American Association of Physicist in Medicine (AAPM) Task Group 119 (TG 119) benchmark plans for flattening filter free beam (FFF) deliveries of intensity modulated radiation therapy (IMRT) and volumetric arc therapy (VMAT) in the Eclipse treatment planning system. The planning data were compared with the flattening filter (FF) IMRT & VMAT plan data to verify the dosimetric commissioning accuracy of FFF deliveries. AAPM TG 119 proposed a set of test cases called multi-target, mock prostate, mock head and neck, and C-shape to ascertain the overall accuracy of IMRT planning, measurement, and analysis. We used these test cases to investigate the performance of the Eclipse Treatment planning system for the flattening filter free beam deliveries. For these test cases, we generated two sets of treatment plans, the first plan using 7–9 IMRT fields and a second plan utilizing two arc VMAT technique for both the beam deliveries (6 MV FF, 6MV FFF, 10 MV FF and 10 MV FFF). The planning objectives and dose were set as described in TG 119. The dose prescriptions for multi-target, mock prostate, mock head and neck, and C-shape were taken as 50, 75.6, 50 and 50 Gy, respectively. The point dose (mean dose to the contoured chamber volume) at the specified positions/locations was measured using compact (CC‑13) ion chamber. The composite planar dose and per-field gamma analysis were measured with IMatriXX Evaluation 2D array with OmniPro IMRT Software (version 1.7b). FFF beam deliveries of IMRT and VMAT plans were comparable to flattening filter beam deliveries. Our planning and quality assurance results matched with TG 119 data. AAPM TG 119 test cases are useful to generate FFF benchmark plans. From the obtained data in this study, we conclude that the commissioning of FFF IMRT and FFF VMAT delivery were found within the limits of TG-119 and the performance of the Eclipse treatment planning system for FFF plans were found satisfactorily.Keywords: flattening filter free beams, intensity modulated radiation therapy, task group 119, volumetric modulated arc therapy
Procedia PDF Downloads 1461658 Copper Doped P-Type Nickel Oxide Transparent Conducting Oxide Thin Films
Authors: Kai Huang, Assamen Ayalew Ejigu, Mu-Jie Lin, Liang-Chiun Chao
Abstract:
Nickel oxide and copper-nickel oxide thin films have been successfully deposited by reactive ion beam sputter deposition. Experimental results show that nickel oxide deposited at 300°C is single phase NiO while best crystalline quality is achieved with an O_pf of 0.5. XRD analysis of nickel-copper oxide deposited at 300°C shows a Ni2O3 like crystalline structure at low O_pf while changes to NiO like crystalline structure at high O_pf. EDS analysis shows that nickel-copper oxide deposited at low O_pf is CuxNi2-xO3 with x = 1, while nickel-copper oxide deposited at high O_pf is CuxNi1-xO with x = 0.5, which is supported by Raman analysis. The bandgap of NiO is ~ 3.5 eV regardless of O_pf while the band gap of nickel-copper oxide decreases from 3.2 to 2.3 eV as Opf reaches 1.0.Keywords: copper, ion beam, NiO, oxide, resistivity, transparent
Procedia PDF Downloads 3121657 Toxicities associated with EBRT and Brachytherapy for Intermediate and High Risk Prostate Cancer, Correlated with Intra-operative Dosing
Authors: Rebecca Dunne, Cormac Small, Geraldine O'Boyle, Nazir Ibrahim, Anisha
Abstract:
Prostate cancer is the most common cancer among men, excluding non-melanoma skin cancers. It is estimated that approximately 12% of men will develop prostate cancer during their lifetime. Patients with intermediate, high risk, and very-high risk prostate cancer often undergo a combination of radiation treatments. These treatments include external beam radiotherapy with a low-dose rate or high-dose rate brachytherapy boost, often with concomitant androgen deprivation therapy. The literature on follow-up of patients that receive brachytherapy is scarce, particularly follow-up of patients that undergo high-dose rate brachytherapy. This retrospective study aims to investigate the biochemical failure and toxicities associated with triple therapy and external beam radiotherapy given in combination with brachytherapy. Reported toxicities and prostate specific antigen (PSA) were retrospectively evaluated in eighty patients that previously underwent external beam radiotherapy with a low-dose rate or high dose-rate brachytherapy boost. The severity of toxicities were correlated with intra-operative dosing during brachytherapy on ultrasound and CT scan. The results of this study will provide further information for clinicians and patients when considering treatment options.Keywords: toxicities, combination, brachytherapy, intra-operative dosing, biochemical failure
Procedia PDF Downloads 2441656 Recent Studies on Strengthening of Reinforced Concrete Members by Ferrocement
Authors: E. Lam, Z. D. Yang, B. Li, I. Ho, T. Wong, V. Wong
Abstract:
This paper reports some of the recent studies on strengthening of reinforced concrete members by ferrocement. Using mortar in ferrocement with high tensile strength, tensile properties of (high performance) ferrocement can be enhanced. In the proposed strengthening strategy, defective concrete cover of structural members is replaced by ferrocement so as to increase the load carrying capacity. This has been successfully applied to strengthen columns and beam-column joints. To facilitate the ease of application of the proposed strengthening strategy, mortar in ferrocement is applied through dry spray shotcrete.Keywords: ferrocement, high performance ferrocement, dry, spray shotcrete, column, beam-column joint, strengthening
Procedia PDF Downloads 4441655 Transient Analysis of Laminated Rubber Bearing Bridge during High Intensity Earthquake
Authors: N. M. Amin, W. N. A. W. Sulaiman
Abstract:
The effectiveness of the seismic response between 3D solid elements model and simplified beam elements model has been investigated. At present, the studies of the numerical modelling using 3D solid element are minimal due to numerical software constraint. The finite element analysis using 3D solid element was chosen to study displacement response of laminated rubber bearing (LRB) during high intensity Kobe earthquake. In this research a simply supported bridge (single span), fixed at support was analysed by using transient analysis subjected to real time history loading of Kobe earthquake.Keywords: laminated rubber bearing, solid element, simplified beam element, transient analysis
Procedia PDF Downloads 4291654 Performance Assessment in a Voice Coil Motor for Maximizing the Energy Harvesting with Gait Motions
Authors: Hector A. Tinoco, Cesar Garcia-Diaz, Olga L. Ocampo-Lopez
Abstract:
In this study, an experimental approach is established to assess the performance of different beams coupled to a Voice Coil Motor (VCM) with the aim to maximize mechanically the energy harvesting in the inductive transducer that is included on it. The VCM is extracted from a recycled hard disk drive (HDD) and it is adapted for carrying out experimental tests of energy harvesting. Two individuals were selected for walking with the VCM-beam device as well as to evaluate the performance varying two parameters in the beam; length of the beams and a mass addition. Results show that the energy harvesting is maximized with specific beams; however, the harvesting efficiency is improved when a mass is added to the end of the beams.Keywords: hard disk drive, energy harvesting, voice coil motor, energy harvester, gait motions
Procedia PDF Downloads 3511653 Effects of Moisture on Fatigue Behavior of Asphalt Concrete Mixtures Using Four-Point Bending Test
Authors: Mohit Chauhan, Atul Narayan
Abstract:
Moisture damage is the continuous deterioration of asphalt concrete mixtures by the loss of adhesive bond between the asphalt binder and aggregates, or loss of cohesive bonds within the asphalt binder in the presence of moisture. Moisture has been known to either cause or exacerbates distresses in asphalt concrete pavements. Since moisture would often retain for a relatively long duration at the bottom of asphalt concrete layer, the movement of traffic loading in this saturated condition would cause excess stresses or strains within the mixture. This would accelerate the degradation of the adhesion and cohesion within the mixture and likely to contribute the development of fatigue cracking in asphalt concrete pavements. In view of this, it is important to investigate the effect of moisture on the fatigue behavior of asphalt concrete mixtures. In this study, changes in fatigue characteristics after moisture conditioning were evaluated by conducting four-point beam fatigue tests on dry and moisture conditioned specimens. For this purpose, mixtures with two different types of binders were prepared and saturated with moisture using 700 mm Hg vacuum. Beam specimens, in this way, were taken to a saturation level of 65-75 percent. After preconditioning specimens in this degree of saturation and 60°C for a period of 24 hours, they were subjected to four point beam fatigue tests in strain-controlled mode with a strain amplitude of 400 microstrain. The results were then compared with the fatigue test results obtained with beam specimens that were not subjected to moisture conditioning. Test results show that the conditioning reduces both fatigue life and initial flexural stiffness of specimen significantly. The moisture conditioning was also found to increase the rate of reduction of flexural stiffness. Moreover, it was observed that the fatigue life ratio (FLR), the ratio of the fatigue life of the moisture conditioned sample to that of the dry sample, is significantly lower than the flexural stiffness ratio (FSR). The study indicates that four-point bending test is an appropriate tool with FLR and FSR as the potential parameters for moisture-sensitivity evaluation.Keywords: asphalt concrete, fatigue cracking, moisture damage, preconditioning
Procedia PDF Downloads 1401652 Accidents and Close Call Situations Due to Cell Phone Use While Moving, Driving, and Working
Authors: L. Korpinen, R. Pääkkönen, F. Gobba
Abstract:
Accidents and close call situations involving cell phones are nowadays possible. The objective of this study was to investigate the accidents and close call situations due to cell phone use while moving, driving, and working among Finns aged between 18 and 65. This work is part of a large cross-sectional study that was carried out on 15,000 working-age Finns. About 26% of people who had an accident, and about half of the people including close call situation with the mobile phone, answered that use of the phone influenced. In the future, it is important to take into account that the use of a mobile phone can be distracting while driving.Keywords: blue-collar workers, accident, cell phone, close call situation
Procedia PDF Downloads 3081651 Development of Fem Code for 2-D Elasticity Problems Using Quadrilateral and Triangular Elements
Authors: Muhammad Umar Kiani, Waseem Sakawat
Abstract:
This study presents the development of FEM code using Quadrilateral 4-Node (Q4) and Triangular 3-Node (T3) elements. Code is formulated using MATLAB language. Instead of using both elements in the same code, two separate codes are written. Quadrilateral element is difficult to handle directly, that is why natural coordinates (eta, ksi) are used. Due to this, Q4 code includes numerical integration (Gauss quadrature). In this case, complete numerical integration is performed using 2 points. On the other hand, T3 element can be modeled directly, by using direct stiffness approach. Axially loaded element, cantilever (special constraints) and Patch test cases were analyzed using both codes and the results were verified by using Ansys.Keywords: FEM code, MATLAB, numerical integration, ANSYS
Procedia PDF Downloads 4191650 Non Classical Photonic Nanojets in near Field of Metallic and Negative-Index Scatterers, Purely Electric and Magnetic Nanojets
Authors: Dmytro O. Plutenko, Alexei D. Kiselev, Mikhail V. Vasnetsov
Abstract:
We present the results of our analytical and computational study of Laguerre-Gaussian (LG) beams scattering by spherical homogeneous isotropic particles located on the axis of the beam. We consider different types of scatterers (dielectric, metallic and double negative metamaterials) and different polarizations of the LG beams. A possibility to generate photonic nanojets using metallic and double negative metamaterial Mie scatterers is shown. We have studied the properties of such nonclassical nanojets and discovered new types of the nanojets characterized by zero on-axes magnetic (or electric) field with the electric (or magnetic) field polarized along the z-axis.Keywords: double negative metamaterial, Laguerre-Gaussian beam, Mie scattering, optical vortices, photonic nanojets
Procedia PDF Downloads 2211649 A Finite Element Model to Study the Behaviour of Corroded Reinforced Concrete Beams Repaired with near Surface Mounted Technique
Authors: B. Almassri, F. Almahmoud, R. Francois
Abstract:
Near surface mounted reinforcement (NSM) technique is one of the promising techniques used nowadays to strengthen reinforced concrete (RC) structures. In the NSM technique, the Carbon Fibre Reinforced Polymer (CFRP) rods are placed inside pre-cut grooves and are bonded to the concrete with epoxy adhesive. This paper studies the non-classical mode of failure ‘the separation of concrete cover’ according to experimental and numerical FE modelling results. Experimental results and numerical modelling results of a 3D finite element (FE) model using the commercial software Abaqus and 2D FE model FEMIX were obtained on two beams, one corroded (25 years of corrosion procedure) and one control (A1CL3-R and A1T-R) were each repaired in bending using NSM CFRP rod and were then tested up to failure. The results showed that the NSM technique increased the overall capacity of control and corroded beams despite a non-classical mode of failure with separation of the concrete cover occurring in the corroded beam due to damage induced by corrosion. Another FE model used external steel stirrups around the repaired corroded beam A1CL3-R which failed with the separation of concrete cover, this model showed a change in the mode of failure form a non-classical mode of failure by the separation of concrete cover to the same mode of failure of the repaired control beam by the crushing of compressed concrete.Keywords: corrosion, repair, Reinforced Concrete, FEM, CFRP, FEMIX
Procedia PDF Downloads 1651648 Vision Based People Tracking System
Authors: Boukerch Haroun, Luo Qing Sheng, Li Hua Shi, Boukraa Sebti
Abstract:
In this paper we present the design and the implementation of a target tracking system where the target is set to be a moving person in a video sequence. The system can be applied easily as a vision system for mobile robot. The system is composed of two major parts the first is the detection of the person in the video frame using the SVM learning machine based on the “HOG” descriptors. The second part is the tracking of a moving person it’s done by using a combination of the Kalman filter and a modified version of the Camshift tracking algorithm by adding the target motion feature to the color feature, the experimental results had shown that the new algorithm had overcame the traditional Camshift algorithm in robustness and in case of occlusion.Keywords: camshift algorithm, computer vision, Kalman filter, object tracking
Procedia PDF Downloads 447