Search results for: protein extraction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4127

Search results for: protein extraction

587 Unravelling of the TOR Signaling Pathway in Human Fungal Pathogen Cryptococcus neoformans

Authors: Yee-Seul So, Guiseppe Ianiri, Alex Idnurm, Yong-Sun Bahn

Abstract:

Tor1 is a serine/threonine protein kinase that is widely conserved across eukaryotic species. Tor1 was first identified in Saccharomyces cerevisiae as a target of rapamycin (TOR). The TOR pathway has been implicated in regulating cellular responses to nutrients, proliferation, translation, transcription, autophagy, and ribosome biogenesis. Here we identified two homologues of S. cerevisiae Tor proteins, CNAG_06642 (Tor1) and CNAG_05220 (Tlk1, TOR-like kinase 1), in Cryptococcus neoformans causing a life-threatening fungal meningoencephalitis. Both Tor1 and Tlk1 have rapamycin-binding (RB) domains but Tlk1 has truncated RB form. To study the TOR-signaling pathway in the fungal pathogen, we attempt to construct the tor1Δ and tlk1Δ mutants and phenotypically analyze them. Although we failed to construct the tor1Δ mutant, we successfully construct the tlk1Δ mutant. The tlk1Δ mutant does not exhibit any discernable phenotypes, suggesting that Tlk1 is dispensable in C. neoformans. The essentiality of TOR1 is independently confirmed by constructing the TOR1 promoter replacement strain by using a copper transporter 4 (CTR4) promoter and the TOR1/tor1 heterozygous mutant in diploid C. neoformans strain background followed by sporulation analysis. To further analyze the function of Tor1, we construct TOR1 overexpression mutant using a constitutively active histone H3 in C. neoformans. We find that the Tor1 overexpression mutant is resistant to rapamycin but the tlk1Δ mutant does not exhibit any altered resistance to rapamycin, further confirming that Tor1, but not Tlk1, is critical for TOR signaling. Furthermore, we found that Tor1 is involved in response to diverse stresses, including genotoxic stress, oxidative stress, thermo-stress, antifungal drug treatment, and production of melanin. To identify any TOR-related transcription factors, we screened C. neoformans transcription factor library that we constructed in our previous study and identified several potential downstream factors of Tor1, including Atf1, Crg1 and Bzp3. In conclusion, the current study provides insight into the role of the TOR signaling pathway in human fungal pathogens as well as C. neoformans.

Keywords: fungal pathogen, serine/threonine kinase, target of rapamycin, transcription factor

Procedia PDF Downloads 207
586 Biodiesel Production from Edible Oil Wastewater Sludge with Bioethanol Using Nano-Magnetic Catalysis

Authors: Wighens Ngoie Ilunga, Pamela J. Welz, Olewaseun O. Oyekola, Daniel Ikhu-Omoregbe

Abstract:

Currently, most sludge from the wastewater treatment plants of edible oil factories is disposed to landfills, but landfill sites are finite and potential sources of environmental pollution. Production of biodiesel from wastewater sludge can contribute to energy production and waste minimization. However, conventional biodiesel production is energy and waste intensive. Generally, biodiesel is produced from the transesterification reaction of oils with alcohol (i.e., Methanol, ethanol) in the presence of a catalyst. Homogeneously catalysed transesterification is the conventional approach for large-scale production of biodiesel as reaction times are relatively short. Nevertheless, homogenous catalysis presents several challenges such as high probability of soap. The current study aimed to reuse wastewater sludge from the edible oil industry as a novel feedstock for both monounsaturated fats and bioethanol for the production of biodiesel. Preliminary results have shown that the fatty acid profile of the oilseed wastewater sludge is favourable for biodiesel production with 48% (w/w) monounsaturated fats and that the residue left after the extraction of fats from the sludge contains sufficient fermentable sugars after steam explosion followed by an enzymatic hydrolysis for the successful production of bioethanol [29% (w/w)] using a commercial strain of Saccharomyces cerevisiae. A novel nano-magnetic catalyst was synthesised from mineral processing alkaline tailings, mainly containing dolomite originating from cupriferous ores using a modified sol-gel. The catalyst elemental chemical compositions and structural properties were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infra-red (FTIR) and the BET for the surface area with 14.3 m²/g and 34.1 nm average pore diameter. The mass magnetization of the nano-magnetic catalyst was 170 emu/g. Both the catalytic properties and reusability of the catalyst were investigated. A maximum biodiesel yield of 78% was obtained, which dropped to 52% after the fourth transesterification reaction cycle. The proposed approach has the potential to reduce material costs, energy consumption and water usage associated with conventional biodiesel production technologies. It may also mitigate the impact of conventional biodiesel production on food and land security, while simultaneously reducing waste.

Keywords: biodiesel, bioethanol, edible oil wastewater sludge, nano-magnetism

Procedia PDF Downloads 127
585 Investigation Two Polymorphism of hTERT Gene (Rs 2736098 and Rs 2736100) and miR- 146a rs2910164 Polymorphism in Cervical Cancer

Authors: Hossein Rassi, Alaheh Gholami Roud-Majany, Zahra Razavi, Massoud Hoshmand

Abstract:

Cervical cancer is multi step disease that is thought to result from an interaction between genetic background and environmental factors. Human papillomavirus (HPV) infection is the leading risk factor for cervical intraepithelial neoplasia (CIN)and cervical cancer. In other hand, some of hTERT and miRNA polymorphism may plays an important role in carcinogenesis. This study attempts to clarify the relation of hTERT genotypes and miR-146a genotypes in cervical cancer. Forty two archival samples with cervical lesion retired from Khatam hospital and 40 sample from healthy persons used as control group. A simple and rapid method was used to detect the simultaneous amplification of the HPV consensus L1 region and HPV-16,-18, -11, -31, 33 and -35 along with the b-globin gene as an internal control. We use Multiplex PCR for detection of hTERT and miR-146a rs2910164 genotypes in our lab. Finally, data analysis was performed using the 7 version of the Epi Info(TM) 2012 software and test chi-square(x2) for trend. Cervix lesions were collected from 42 patients with Squamous metaplasia, cervical intraepithelial neoplasia, and cervical carcinoma. Successful DNA extraction was assessed by PCR amplification of b-actin gene (99bp). According to the results, hTERT ( rs 2736098) GG genotype and miR-146a rs2910164 CC genotype was significantly associated with increased risk of cervical cancer in the study population. In this study, we detected 13 HPV 18 from 42 cervical cancer. The connection between several SNP polymorphism and human virus papilloma in rare researches were seen. The reason of these differences in researches' findings can result in different kinds of races and geographic situations and also differences in life grooves in every region. The present study provided preliminary evidence that a p53 GG genotype and miR-146a rs2910164 CC genotype may effect cervical cancer risk in the study population, interacting synergistically with HPV 18 genotype. Our results demonstrate that the testing of hTERT rs 2736098 genotypes and miR-146a rs2910164 genotypes in combination with HPV18 can serve as major risk factors in the early identification of cervical cancers. Furthermore, the results indicate the possibility of primary prevention of cervical cancer by vaccination against HPV18 in Iran.

Keywords: polymorphism of hTERT gene, miR-146a rs2910164 polymorphism, cervical cancer, virus

Procedia PDF Downloads 300
584 Correlative Study of Serum Interleukin-18 and Disease Activity, Functional Disability and Quality of Life in Rheumatoid Arthritis Patients

Authors: Hamdy Khamis Korayem, Manal Yehia Tayel, Abeer Shawky El Hadedy, Emmanuel Kamal Aziz Saba, Shimaa Badr Abdelnaby Badr

Abstract:

The aim of the current study was to demonstrate whether serum Interleukin-18 (IL-18) is increased in rheumatoid arthritis (RA) and its correlation with disease activity, functional disability and quality of life in RA patients. The study included 30 RA patients and 20 healthy normal control subjects. The RA patients were diagnosed according to the 2010 ACR/EULAR classification criteria for RA with the exclusion of those who had diabetes mellitus, endocrine disorders, associated rheumatologic diseases, viral hepatitis B or C and other diseases with increased serum IL-18 level. All patients were subjected to clinical evaluation of the musculoskeletal system. Disease activity was assessed by disease activity score 28 with 4 variables (DAS 28). Functional disability was assessed by health assessment questionnaire disability index (HAQ-DI). The quality of life was assessed by Short form-36 (SF-36) questionnaire. Radiological assessment of both hands and feet by Sharp/van der Heijde (SvH) scoring method. Laboratory parameters including erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), rheumatoid factor (RF) and anti-cyclic citrullinated peptide antibody (ACPA) were assessed in patients and serum level of IL-18 in both patients and control subjects. There was no statistically significant difference between patient and control group as regards age and sex. Among patients, 29 % were females and the age range was between 25 to 55 years. Extra-articular manifestations were presented in 56.7% of the patients. The mean of DAS 28 score was 5.73±1.46 and that of HAQ-DI was 1.22±0.72 while that of SF-36 was 40.03±13.96. The level of serum IL-18 was significantly higher in patients than in the control subjects (P= 0.030). Serum IL-18 was correlated with ACPA among the patient group. There were no statistically significant correlations between serum IL-18 and DAS28, HAQ-DI, SF-36, total SvH score and the other laboratory results. In conclusion, IL-18 is significantly higher in RA patient than in healthy control subjects and positively correlated with ACPA level. IL-18 is associated with extra-articular manifestations. However, it is not correlated with other laboratory parameters, disease activity, functional disability, quality of life nor radiological severity.

Keywords: disease activity score, Interleukin-18, quality of life assessment, rheumatoid arthritis

Procedia PDF Downloads 306
583 Determination of Pesticides Residues in Tissue of Two Freshwater Fish Species by Modified QuEChERS Method

Authors: Iwona Cieślik, Władysław Migdał, Kinga Topolska, Ewa Cieślik

Abstract:

The consumption of fish is recommended as a means of preventing serious diseases, especially cardiovascular problems. Fish is known to be a valuable source of protein (rich in essential amino acids), unsaturated fatty acids, fat-soluble vitamins, macro- and microelements. However, it can also contain several contaminants (e.g. pesticides, heavy metals) that may pose considerable risks for humans. Among others, pesticide are of special concern. Their widespread use has resulted in the contamination of environmental compartments, including water. The occurrence of pesticides in the environment is a serious problem, due to their potential toxicity. Therefore, a systematic monitoring is needed. The aim of the study was to determine the organochlorine and organophosphate pesticide residues in fish muscle tissues of the pike (Esox lucius, L.) and the rainbow trout (Oncorhynchus mykkis, Walbaum) by a modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method, using Gas Chromatography Quadrupole Mass Spectrometry (GC/Q-MS), working in selected-ion monitoring (SIM) mode. The analysis of α-HCH, β-HCH, lindane, diazinon, disulfoton, δ-HCH, methyl parathion, heptachlor, malathion, aldrin, parathion, heptachlor epoxide, γ-chlordane, endosulfan, α-chlordane, o,p'-DDE, dieldrin, endrin, 4,4'-DDD, ethion, endrin aldehyde, endosulfan sulfate, 4,4'-DDT, and metoxychlor was performed in the samples collected in the Carp Valley (Malopolska region, Poland). The age of the pike (n=6) was 3 years and its weight was 2-3 kg, while the age of the rainbow trout (n=6) was 0.5 year and its weight was 0.5-1.0 kg. Detectable pesticide (HCH isomers, endosulfan isomers, DDT and its metabolites as well as metoxychlor) residues were present in fish samples. However, all these compounds were below the limit of quantification (LOQ). The other examined pesticide residues were below the limit of detection (LOD). Therefore, the levels of contamination were - in all cases - below the default Maximum Residue Levels (MRLs), established by Regulation (EC) No 396/2005 of the European Parliament and of the Council. The monitoring of pesticide residues content in fish is required to minimize potential adverse effects on the environment and human exposure to these contaminants.

Keywords: contaminants, fish, pesticides residues, QuEChERS method

Procedia PDF Downloads 194
582 Fusarium Wilt of Tomato: Plant Growth, Physiology and Biological Disease Management

Authors: Amna Shoaib, Sidrah Hanif, Rashid Mehmood

Abstract:

Current research work was carried out to check influence of farmyard manure (FYM) in Lycopersicon esculentum L. against Fusarium oxysporum f. sp. lycopersici (FO) in copper polluted soil. Silt-loam soil naturally enriched with 70 ppm of Cu was inoculated with 1 x 106 spore suspensions of FO and incorporated with 0%, 1%, 1.5% or 2% FYM. The multilateral interaction of host-pathogen-metal-organic amendment was assessed in terms of morphology, growth, yield, physiology, biochemistry and metal uptake in tomato plant after 30 and 60 days of sowing. When soil was inoculated with FO, plant growth and biomass were significantly increased during vegetative stage, while declining during flowering stage with substantial increase in productivity over control. Infected plants exhibited late wilting and disease severity was found on 26-50% of plant during reproductive stage. Incorporation of up to 1% FYM suppressed disease severity, improved plant growth and biomass, while it decreased yield. Rest of manure doses was found ineffective in suppressing disease. Content of total chlorophyll, sugar and protein were significantly declined in FO inoculated plants and incorporation of FYM caused significant reduction or no influence on sugar and chlorophyll content, and no pronounced difference among different FYM doses were observed. On the other hand, proline, peroxidase, catalase and nitrate reductase activity were found to be increased in infected plants and incorporation of 1-2% FYM further enhanced the activity of these enzymes. Tomato plant uptake of 30-40% of copper naturally present in the soil and incorporation of 1-2% FYM markedly decreased plant uptake of metal by 15-30%, while increased Cu retention in soil. Present study concludes that lower dose (1%) of FYM could be used to manage disease, increase growth and biomass, while being ineffective for yield and productivity in Cu-polluted soil. Altered physiology/biochemistry of plant in response to any treatment could be served as basis for resistant against pathogen and metal homeostasis in plants.

Keywords: Lycopersicon esculentum, copper, Fusarium wilt, farm yard manure

Procedia PDF Downloads 394
581 Construction and Demolition Waste Management in Indian Cities

Authors: Vaibhav Rathi, Soumen Maity, Achu R. Sekhar, Abhijit Banerjee

Abstract:

Construction sector in India is extremely resource and carbon intensive. It contributes to significantly to national greenhouse emissions. At the resource end the industry consumes significant portions of the output from mining. Resources such as sand and soil are most exploited and their rampant extraction is becoming constant source of impact on environment and society. Cement is another resource that is used in abundance in building and construction and has a direct impact on limestone resources. Though India is rich in cement grade limestone resource, efforts have to be made for sustainable consumption of this resource to ensure future availability. Use of these resources in high volumes in India is a result of rapid urbanization. More cities have grown to a population of million plus in the last decade and million plus cities are growing further. To cater to needs of growing urban population of construction activities are inevitable in the coming future thereby increasing material consumption. Increased construction will also lead to substantial increase in end of life waste generation from Construction and Demolition (C&D). Therefore proper management of C&D waste has the potential to reduce environmental pollution as well as contribute to the resource efficiency in the construction sector. The present study deals with estimation, characterisation and documenting current management practices of C&D waste in 10 Indian cities of different geographies and classes. Based on primary data the study draws conclusions on the potential of C&D waste to be used as an alternative to primary raw materials. The estimation results show that India generates 716 million tons of C&D waste annually, placing the country as second largest C&D waste generator in the world after China. The study also aimed at utilization of C&D waste in to building materials. The waste samples collected from various cities have been used to replace 100% stone aggregates in paver blocks without any decrease in strength. However, management practices of C&D waste in cities still remains poor instead of notification of rules and regulations notified for C&D waste management. Only a few cities have managed to install processing plant and set up management systems for C&D waste. Therefore there is immense opportunity for management and reuse of C&D waste in Indian cities.

Keywords: building materials, construction and demolition waste, cities, environmental pollution, resource efficiency

Procedia PDF Downloads 290
580 Down Regulation of Smad-2 Transcription and TGF-B1 Signaling in Nano Sized Titanium Dioxide-Induced Liver Injury in Mice by Potent Antioxidants

Authors: Maha Z. Rizk, Sami A. Fattah, Heba M. Darwish, Sanaa A. Ali, Mai O. Kadry

Abstract:

Although it is known that nano-TiO2 and other nanoparticles can induce liver toxicity, the mechanisms and the molecular pathogenesis are still unclear. The present study investigated some biochemical indices of nano-sized Titanium dioxide (TiO2 NPS) toxicity in mice liver and the ameliorative efficacy of individual and combined doses of idebenone, carnosine and vitamin E. Nano-anatase TiO2 (21 nm) was administered as a total oral dose of 2.2 gm/Kg daily for 2 weeks followed by the afore-mentioned antioxidants daily either individually or in combination for 1month. TiO2-NPS induced a significant elevation in serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and hepatic oxidative stress biomarkers [lipid peroxides (LP), and nitric oxide levels (NOX), while it significantly reduced glutathione reductase (GR), reduced glutathione (GSH) and glutathione peroxidase(GPX) levels. Moreover the quantitative RT-PCR analysis showed that nano-anatase TiO2 can significantly alter the mRNA and protein expressions of the fibrotic factors TGF-B1, VEGFand Smad-2. Histopathological examination of hepatic tissue reinforced the previous biochemical results. Our results also implied that inflammatory responses and liver injury may be involved in nano-anatase TiO2-induced liver toxicity Tumor necrosis factor-α (TNF-α) and Interleukin -6 (IL-6) and increased the percent of DNA damage which was assessed by COMET assay in addition to the apoptotic marker Caspase-3. Moreover mRNA gene expression observed by RT-PCR showed a significant overexpression in nuclear factor relation -2 (Nrf2), nuclear factor kappa beta (NF-Kβ) and the apoptotic factor (bax), and a significant down regulation in the antiapoptotic factor (bcl2) level. In conclusion idebenone, carnosine and vitamin E ameliorated the deviated previously mentioned parameters with variable degrees with the most pronounced role in alleviating the hazardous effect of TiO2 NPS toxicity following the combination regimen.

Keywords: Nano-anatase TiO2, TGF-B1, SMAD-2

Procedia PDF Downloads 408
579 Removal of Total Petroleum Hydrocarbons from Contaminated Soils by Electrochemical Method

Authors: D. M. Cocârță, I. A. Istrate, C. Streche, D. M. Dumitru

Abstract:

Soil contamination phenomena are a wide world issue that has received the important attention in the last decades. The main pollutants that have affected soils are especially those resulted from the oil extraction, transport and processing. This paper presents results obtained in the framework of a research project focused on the management of contaminated sites with petroleum products/ REMPET. One of the specific objectives of the REMPET project was to assess the electrochemical treatment (improved with polarity change respect to the typical approach) as a treatment option for the remediation of total petroleum hydrocarbons (TPHs) from contaminated soils. Petroleum hydrocarbon compounds attach to soil components and are difficult to remove and degrade. Electrochemical treatment is a physicochemical treatment that has gained acceptance as an alternative method, for the remediation of organic contaminated soils comparing with the traditional methods as bioremediation and chemical oxidation. This type of treatment need short time and have high removal efficiency, being usually applied in heterogeneous soils with low permeability. During the experimental tests, the following parameters were monitored: pH, redox potential, humidity, current intensity, energy consumption. The electrochemical method was applied in an experimental setup with the next dimensions: 450 mm x 150 mm x 150 mm (L x l x h). The setup length was devised in three electrochemical cells that were connected at two power supplies. The power supplies configuration was provided in such manner that each cell has a cathode and an anode without overlapping. The initial value of TPH concentration in soil was of 1420.28 mg/kgdw. The remediation method has been applied for only 21 days, when it was already noticed an average removal efficiency of 31 %, with better results in the anode area respect to the cathode one (33% respect to 27%). The energy consumption registered after the development of the experiment was 10.6 kWh for exterior power supply and 16.1 kWh for the interior one. Taking into account that at national level, the most used methods for soil remediation are bioremediation (which needs too much time to be implemented and depends on many factors) and thermal desorption (which involves high costs in order to be implemented), the study of electrochemical treatment will give an alternative to these two methods (and their limitations).

Keywords: electrochemical remediation, pollution, total petroleum hydrocarbons, soil contamination

Procedia PDF Downloads 219
578 Polyphenol Stability and Antioxidant Properties of Freeze-Dried Sour Cherry Encapsulates

Authors: Gordana Ćetković, Vesna Tumbas Šaponjac, Jasna Čanadanović-Brunet, Sonja Đilas, Slađana Stajčić, Jelena Vulić, Mirjana Jakišić

Abstract:

Despite the recommended amount of daily intake of fruits, the consumption in modern age remains very low. Therefore there is a need for delivering valuable phytochemicals into the human body through different foods by developing functional food products fortified with natural bioactive compounds from plant sources. Recently, a growing interest rises in exploiting the fruit and vegetable by-products as sources of phytochemicals such as polyphenols, carotenoids, vitamins etc. Cherry contain high amounts of polyphenols, which are known to display a wide range of biological activities like antioxidant, anti-inflammatory, antimicrobial or anti-carcinogenic activities, improvement of vision, induction of apoptosis and neuroprotective effects. Also, cherry pomace, a by-product in juice processing, can also be promising source of phenolic compounds. However, the application of polyphenols as food additives is limited because after extraction these compounds are susceptible to degradation. Microencapsulation is one of the alternative approaches to protect bioactive compounds from degradation during processing and storage. Freeze-drying is one of the most used microencapsulation methods for the protection of thermosensitive and unstable molecules. In this study sour cherry pomace was extracted with food-grade solvent (50% ethanol) to be suitable for application in products for human use. Extracted polyphenols have been concentrated and stabilized on whey (WP) and soy (SP) proteins. Encapsulation efficiency in SP was higher (94.90%), however not significantly (p<0.05) from the one in WP (90.10%). Storage properties of WP and SP encapsulate in terms of total polyphenols, anthocyanins and antioxidant activity was tested for 6 weeks. It was found that the retention of polyphenols after 6 weeks in WP and SP (67.33 and 69.30%, respectively) was similar. The content of anthocyanins has increased in WP (for 47.97%), while their content in SP has very slightly decreased (for 1.45%) after 6-week storage period. In accordance with anthocyanins the decrease in antioxidant activity in WP (87.78%) was higher than in SP (43.02%). According to the results obtained in this study, the technique reported herewith can be used for obtaining quality encapsulates for their further use as functional food additives, and, on the other hand, for fruit waste valorization.

Keywords: cherry pomace, microencapsulation, polyphenols, storage

Procedia PDF Downloads 343
577 Properties of Adipose Tissue Derived Mesenchymal Stem Cells with Long-Term Cryopreservation

Authors: Jienny Lee, In-Soo Cho, Sang-Ho Cha

Abstract:

Adult mesenchymal stem cells (MSCs) have been investigated using preclinical approaches for tissue regeneration. Porcine MSCs (pMSCs) are capable of growing and attaching to plastic with a fibroblast-like morphology and then differentiating into bone, adipose, and cartilage tissues in vitro. This study was conducted to investigate the proliferating abilities, differentiation potentials, and multipotency of miniature pig adipose tissue-derived MSCs (mpAD-MSCs) with or without long-term cryopreservation, considering that cryostorage has the potential for use in clinical applications. After confirming the characteristics of the mpAD-MSCs, we examined the effect of long-term cryopreservation (> 2 years) on expression of cell surface markers (CD34, CD90 and CD105), proliferating abilities (cumulative population doubling level, doubling time, colony-forming unit, and MTT assay) and differentiation potentials into mesodermal cell lineages. As a result, the expression of cell surface markers is similar between thawed and fresh mpAD-MSCs. However, long-term cryopreservation significantly lowered the differentiation potentials (adipogenic, chondrogenic, and osteogenic) of mpAD-MSCs. When compared with fresh mpAD-MSCs, thawed mpAD-MSCs exhibited lower expression of mesodermal cell lineage-related genes such as peroxisome proliferator-activated receptor-g2, lipoprotein lipase, collagen Type II alpha 1, osteonectin, and osteocalcin. Interestingly, long-term cryostoraged mpAD-MSCs exhibited significantly higher cell viability than the fresh mpAD-MSCs. Long-term cryopreservation induced a 30% increase in the cell viability of mpAD-MSCs when compared with the fresh mpAD-MSCs at 5 days after thawing. However, long-term cryopreservation significantly lowered expression of stemness markers such as Oct3/4, Sox2, and Nanog. Furthermore, long-term cryopreservation negatively affected expression of senescence-associated genes such as telomerase reverse transcriptase and heat shock protein 90 of mpAD-MSCs when compared with the fresh mpAD-MSCs. The results from this study might be important for the successful application of MSCs in clinical trials after long-term cryopreservation.

Keywords: mesenchymal stem cells, cryopreservation, stemness, senescence

Procedia PDF Downloads 212
576 The Use of Artificial Intelligence in Diagnosis of Mastitis in Cows

Authors: Djeddi Khaled, Houssou Hind, Miloudi Abdellatif, Rabah Siham

Abstract:

In the field of veterinary medicine, there is a growing application of artificial intelligence (AI) for diagnosing bovine mastitis, a prevalent inflammatory disease in dairy cattle. AI technologies, such as automated milking systems, have streamlined the assessment of key metrics crucial for managing cow health during milking and identifying prevalent diseases, including mastitis. These automated milking systems empower farmers to implement automatic mastitis detection by analyzing indicators like milk yield, electrical conductivity, fat, protein, lactose, blood content in the milk, and milk flow rate. Furthermore, reports highlight the integration of somatic cell count (SCC), thermal infrared thermography, and diverse systems utilizing statistical models and machine learning techniques, including artificial neural networks, to enhance the overall efficiency and accuracy of mastitis detection. According to a review of 15 publications, machine learning technology can predict the risk and detect mastitis in cattle with an accuracy ranging from 87.62% to 98.10% and sensitivity and specificity ranging from 84.62% to 99.4% and 81.25% to 98.8%, respectively. Additionally, machine learning algorithms and microarray meta-analysis are utilized to identify mastitis genes in dairy cattle, providing insights into the underlying functional modules of mastitis disease. Moreover, AI applications can assist in developing predictive models that anticipate the likelihood of mastitis outbreaks based on factors such as environmental conditions, herd management practices, and animal health history. This proactive approach supports farmers in implementing preventive measures and optimizing herd health. By harnessing the power of artificial intelligence, the diagnosis of bovine mastitis can be significantly improved, enabling more effective management strategies and ultimately enhancing the health and productivity of dairy cattle. The integration of artificial intelligence presents valuable opportunities for the precise and early detection of mastitis, providing substantial benefits to the dairy industry.

Keywords: artificial insemination, automatic milking system, cattle, machine learning, mastitis

Procedia PDF Downloads 37
575 Aromatic Medicinal Plant Classification Using Deep Learning

Authors: Tsega Asresa Mengistu, Getahun Tigistu

Abstract:

Computer vision is an artificial intelligence subfield that allows computers and systems to retrieve meaning from digital images. It is applied in various fields of study self-driving cars, video surveillance, agriculture, Quality control, Health care, construction, military, and everyday life. Aromatic and medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, and other natural health products for therapeutic and Aromatic culinary purposes. Herbal industries depend on these special plants. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs, and going to export not only industrial raw materials but also valuable foreign exchange. There is a lack of technologies for the classification and identification of Aromatic and medicinal plants in Ethiopia. The manual identification system of plants is a tedious, time-consuming, labor, and lengthy process. For farmers, industry personnel, academics, and pharmacists, it is still difficult to identify parts and usage of plants before ingredient extraction. In order to solve this problem, the researcher uses a deep learning approach for the efficient identification of aromatic and medicinal plants by using a convolutional neural network. The objective of the proposed study is to identify the aromatic and medicinal plant Parts and usages using computer vision technology. Therefore, this research initiated a model for the automatic classification of aromatic and medicinal plants by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides the root, flower and fruit, latex, and barks. The study was conducted on aromatic and medicinal plants available in the Ethiopian Institute of Agricultural Research center. An experimental research design is proposed for this study. This is conducted in Convolutional neural networks and Transfer learning. The Researcher employs sigmoid Activation as the last layer and Rectifier liner unit in the hidden layers. Finally, the researcher got a classification accuracy of 66.4 in convolutional neural networks and 67.3 in mobile networks, and 64 in the Visual Geometry Group.

Keywords: aromatic and medicinal plants, computer vision, deep convolutional neural network

Procedia PDF Downloads 397
574 Development of a Framework for Assessment of Market Penetration of Oil Sands Energy Technologies in Mining Sector

Authors: Saeidreza Radpour, Md. Ahiduzzaman, Amit Kumar

Abstract:

Alberta’s mining sector consumed 871.3 PJ in 2012, which is 67.1% of the energy consumed in the industry sector and about 40% of all the energy consumed in the province of Alberta. Natural gas, petroleum products, and electricity supplied 55.9%, 20.8%, and 7.7%, respectively, of the total energy use in this sector. Oil sands mining and upgrading to crude oil make up most of the mining energy sector activities in Alberta. Crude oil is produced from the oil sands either by in situ methods or by the mining and extraction of bitumen from oil sands ore. In this research, the factors affecting oil sands production have been assessed and a framework has been developed for market penetration of new efficient technologies in this sector. Oil sands production amount is a complex function of many different factors, broadly categorized into technical, economic, political, and global clusters. The results of developed and implemented statistical analysis in this research show that the importance of key factors affecting on oil sands production in Alberta is ranked as: Global energy consumption (94% consistency), Global crude oil price (86% consistency), and Crude oil export (80% consistency). A framework for modeling oil sands energy technologies’ market penetration (OSETMP) has been developed to cover related technical, economic and environmental factors in this sector. It has been assumed that the impact of political and social constraints is reflected in the model by changes of global oil price or crude oil price in Canada. The market share of novel in situ mining technologies with low energy and water use are assessed and calculated in the market penetration framework include: 1) Partial upgrading, 2) Liquid addition to steam to enhance recovery (LASER), 3) Solvent-assisted process (SAP), also called solvent-cyclic steam-assisted gravity drainage (SC-SAGD), 4) Cyclic solvent, 5) Heated solvent, 6) Wedge well, 7) Enhanced modified steam and Gas push (emsagp), 8) Electro-thermal dynamic stripping process (ET-DSP), 9) Harris electro-magnetic heating applications (EMHA), 10) Paraffin froth separation. The results of the study will show the penetration profile of these technologies over a long term planning horizon.

Keywords: appliances efficiency improvement, diffusion models, market penetration, residential sector

Procedia PDF Downloads 309
573 Detailed Investigation of Thermal Degradation Mechanism and Product Characterization of Co-Pyrolysis of Indian Oil Shale with Rubber Seed Shell

Authors: Bhargav Baruah, Ali Shemsedin Reshad, Pankaj Tiwari

Abstract:

This work presents a detailed study on the thermal degradation kinetics of co-pyrolysis of oil shale of Upper Assam, India with rubber seed shell, and lab-scale pyrolysis to investigate the influence of pyrolysis parameters on product yield and composition of products. The physicochemical characteristics of oil shale and rubber seed shell were studied by proximate analysis, elemental analysis, Fourier transform infrared spectroscopy and X-ray diffraction. The physicochemical study showed the mixture to be of low moisture, high ash, siliceous, sour with the presence of aliphatic, aromatic, and phenolic compounds. The thermal decomposition of the oil shale with rubber seed shell was studied using thermogravimetric analysis at heating rates of 5, 10, 20, 30, and 50 °C/min. The kinetic study of the oil shale pyrolysis process was performed on the thermogravimetric (TGA) data using three model-free isoconversional methods viz. Friedman, Flynn Wall Ozawa (FWO), and Kissinger Akahira Sunnose (KAS). The reaction mechanisms were determined using the Criado master plot. The understanding of the composition of Indian oil shale and rubber seed shell and pyrolysis process kinetics can help to establish the experimental parameters for the extraction of valuable products from the mixture. Response surface methodology (RSM) was employed usinf central composite design (CCD) model to setup the lab-scale experiment using TGA data, and optimization of process parameters viz. heating rate, temperature, and particle size. The samples were pre-dried at 115°C for 24 hours prior to pyrolysis. The pyrolysis temperatures were set from 450 to 650 °C, at heating rates of 2 to 20°C/min. The retention time was set between 2 to 8 hours. The optimum oil yield was observed at 5°C/min and 550°C with a retention time of 5 hours. The pyrolytic oil and gas obtained at optimum conditions were subjected to characterization using Fourier transform infrared spectroscopy (FT-IR) gas chromatography and mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR).

Keywords: Indian oil shale, rubber seed shell, co-pyrolysis, isoconversional methods, gas chromatography, nuclear magnetic resonance, Fourier transform infrared spectroscopy

Procedia PDF Downloads 124
572 The Association Between CYP2C19 Gene Distribution and Medical Cannabis Treatment

Authors: Vichayada Laohapiboolkul

Abstract:

Introduction: As the legal use of cannabis is being widely accepted throughout the world, medical cannabis has been explored in order to become an alternative cure for patients. Tetrahydrocannabinol (THC) and Cannabidiol (CBD) are natural cannabinoids found in the Cannabis plant which is proved to have positive treatment for various diseases and symptoms such as chronic pain, neuropathic pain, spasticity resulting from multiple sclerosis, reduce cancer-associated pain, autism spectrum disorders (ASD), dementia, cannabis and opioid dependence, psychoses/schizophrenia, general social anxiety, posttraumatic stress disorder, anorexia nervosa, attention-deficit hyperactivity disorder, and Tourette's disorder. Regardless of all the medical benefits, THC, if not metabolized, can lead to mild up to severe adverse drug reactions (ADR). The enzyme CYP2C19 was found to be one of the metabolizers of THC. However, the suballele CYP2C19*2 manifests as a poor metabolizer which could lead to higher levels of THC than usual, possibly leading to various ADRs. Objective: The aim of this study was to investigate the distribution of CYP2C19, specifically CYP2C19*2, genes in Thai patients treated with medical cannabis along with adverse drug reactions. Materials and Methods: Clinical data and EDTA whole blood for DNA extraction and genotyping were collected from patients for this study. CYP2C19*2 (681G>A, rs4244285) genotyping was conducted using the Real-time PCR (ABI, Foster City, CA, USA). Results: There were 42 medical cannabis-induced ADRs cases and 18 medical cannabis tolerance controls who were included in this study. A total of 60 patients were observed where 38 (63.3%) patients were female and 22 (36.7%) were male, with a range of age approximately 19 - 87 years. The most apparent ADRs for medical cannabis treatment were dry mouth/dry throat (76.7%), followed by tachycardia (70%), nausea (30%) and a few arrhythmias (10%). In the total of 27 cases, we found a frequency of 18 CYP2C19*1/*1 alleles (normal metabolizers, 66.7%), 8 CYP2C19*1/*2 alleles (intermediate metabolizers, 29.6%) and 1 CYP2C19*2/*2 alleles (poor metabolizers, 3.7%). Meanwhile, 63.6% of CYP2C19*1/*1, 36.3% and 0% of CYP2C19*1/*2 and *2/*2 in the tolerance controls group, respectively. Conclusions: This is the first study to confirm the distribution of CYP2C19*2 allele and the prevalence of poor metabolizer genes in Thai patients who received medical cannabis for treatment. Thus, CYP2C19 allele might serve as a pharmacogenetics marker for screening before initiating treatment.

Keywords: medical cannabis, adverse drug reactions, CYP2C19, tetrahydrocannabinol, poor metabolizer

Procedia PDF Downloads 79
571 Automatic Differential Diagnosis of Melanocytic Skin Tumours Using Ultrasound and Spectrophotometric Data

Authors: Kristina Sakalauskiene, Renaldas Raisutis, Gintare Linkeviciute, Skaidra Valiukeviciene

Abstract:

Cutaneous melanoma is a melanocytic skin tumour, which has a very poor prognosis while is highly resistant to treatment and tends to metastasize. Thickness of melanoma is one of the most important biomarker for stage of disease, prognosis and surgery planning. In this study, we hypothesized that the automatic analysis of spectrophotometric images and high-frequency ultrasonic 2D data can improve differential diagnosis of cutaneous melanoma and provide additional information about tumour penetration depth. This paper presents the novel complex automatic system for non-invasive melanocytic skin tumour differential diagnosis and penetration depth evaluation. The system is composed of region of interest segmentation in spectrophotometric images and high-frequency ultrasound data, quantitative parameter evaluation, informative feature extraction and classification with linear regression classifier. The segmentation of melanocytic skin tumour region in ultrasound image is based on parametric integrated backscattering coefficient calculation. The segmentation of optical image is based on Otsu thresholding. In total 29 quantitative tissue characterization parameters were evaluated by using ultrasound data (11 acoustical, 4 shape and 15 textural parameters) and 55 quantitative features of dermatoscopic and spectrophotometric images (using total melanin, dermal melanin, blood and collagen SIAgraphs acquired using spectrophotometric imaging device SIAscope). In total 102 melanocytic skin lesions (including 43 cutaneous melanomas) were examined by using SIAscope and ultrasound system with 22 MHz center frequency single element transducer. The diagnosis and Breslow thickness (pT) of each MST were evaluated during routine histological examination after excision and used as a reference. The results of this study have shown that automatic analysis of spectrophotometric and high frequency ultrasound data can improve non-invasive classification accuracy of early-stage cutaneous melanoma and provide supplementary information about tumour penetration depth.

Keywords: cutaneous melanoma, differential diagnosis, high-frequency ultrasound, melanocytic skin tumours, spectrophotometric imaging

Procedia PDF Downloads 254
570 Evaluation of the Phenolic Composition of Curcumin from Different Turmeric (Curcuma longa L.) Extracts: A Comprehensive Study Based on Chemical Turmeric Extract, Turmeric Tea and Fresh Turmeric Juice

Authors: Beyza Sukran Isik, Gokce Altin, Ipek Yalcinkaya, Evren Demircan, Asli Can Karaca, Beraat Ozcelik

Abstract:

Turmeric (Curcuma longa L.), is used as a food additive (spice), preservative and coloring agent in Asian countries, including China and South East Asia. It is also considered as a medicinal plant. Traditional Indian medicine evaluates turmeric powder for the treatment of biliary disorders, rheumatism, and sinusitis. It has rich polyphenol content. Turmeric has yellow color mainly because of the presence of three major pigments; curcumin 1,7-bis(4-hydroxy-3-methoxyphenyl)-1, 6-heptadiene-3,5-dione), demethoxy-curcumin and bis demothoxy-curcumin. These curcuminoids are recognized to have high antioxidant activities. Curcumin is the major constituent of Curcuma species. Method: To prepare turmeric tea, 0.5 gram of turmeric powder was brewed with 250 ml of water at 90°C, 10 minutes. 500 grams of fresh turmeric washed and shelled prior to squeezing. Both turmeric tea and turmeric juice pass through 45 lm filters and stored at -20°C in the dark for further analyses. Curcumin was extracted from 20 grams of turmeric powder by 70 ml ethanol solution (95:5 ethanol/water v/v) in a water bath at 80°C, 6 hours. Extraction was contributed for 2 hours at the end of 6 hours by addition of 30 ml ethanol. Ethanol was removed by rotary evaporator. Remained extract stored at -20°C in the dark. Total phenolic content and phenolic profile were determined by spectrophotometric analysis and ultra-fast liquid chromatography (UFLC), respectively. Results: The total phenolic content of ethanolic extract of turmeric, turmeric juice, and turmeric tea were determined 50.72, 31.76 and 29.68 ppt, respectively. The ethanolic extract of turmeric, turmeric juice, and turmeric tea have been injected into UFLC and analyzed for curcumin contents. The curcumin content in ethanolic extract of turmeric, turmeric juice, and turmeric tea were 4067.4, 156.7 ppm and 1.1 ppm, respectively. Significance: Turmeric is known as a good source of curcumin. According to the results, it can be stated that its tea is not sufficient way for curcumin consumption. Turmeric juice can be preferred to turmeric tea for higher curcumin content. Ethanolic extract of turmeric showed the highest content of turmeric in both spectrophotometric and chromatographic analyses. Nonpolar solvents and carriers which have polar binding sites have to be considered for curcumin consumption due to its nonpolar nature.

Keywords: phenolic compounds, spectrophotometry, turmeric, UFLC

Procedia PDF Downloads 178
569 A Combination of Mesenchymal Stem Cells and Low-Intensity Ultrasound for Knee Meniscus Regeneration: A Preliminary Study

Authors: Mohammad Nasb, Muhammad Rehan, Chen Hong

Abstract:

Background Meniscus defects critically alter knee function and lead to degenerative changes. Regenerative medicine applications including stem cell transplantation have showed a promising efficacy in finding alternatives to overcome traditional treatment limitations. However, stem cell therapy remains limited due to the substantially reduced viability and inhibitory microenvironment. Since tissue growth and repair are under the control of biochemical and mechanical signals, several approaches have recently been investigated (e.g., low intensity pulsed ultrasound [LIPUS]) to promote the regeneration process. This study employed LIPUS to improve growth and osteogenic differentiation of mesenchymal stem cells derived from human embryonic stem cells to improve the regeneration of meniscus tissue. Methodology: The Mesenchymal stromal cells (MSCs) were transplanted into the epicenter of the injured meniscus in rabbits, which were randomized into two main groups: a treatment group (n=32 New Zealand rabbits) including 4 subgroups of 8 rabbits in each subgroup (LIPUS treatment, MSC treatment, LIPUS with MSC and control), and a second group (n=9) to track implanted cells and their progeny using green fluorescence protein (GFP). GFP consists of the MSC and LIPUS-MSC combination subgroups. Rabbits were then subjected to histological, immunohistochemistry, and MRI assessment. Results: The quantity of the newly regenerated tissue in the combination treatment group that had Ultrasound irradiation after mesenchymal stem cells were better at all end points. Likewise, Tissue quality scores were also greater in knees treated with both approaches compared with controls and single treatment at all end points, achieving significance at twelve and twenty-four weeks [p < 0.05], and [p = 0.008] at twelve weeks. Differentiation into type-I and II collagen-expressing cells were higher in the combination group at up to twenty-four weeks. Conclusions: the combination of mesenchymal stem cells and LIPUS showed greater adhering to the sites of meniscus injury, differentiate into cells resembling meniscal fibrochondrocytes, and improve both quality and quantity of meniscal regeneration.

Keywords: stem cells, regenerative medicine, osteoarthritis, knee

Procedia PDF Downloads 96
568 Study on the Relative Factors of Introducing Table Vinegar in Reducing Urinary Tract Infection in Patients with Long-Term Indwelling Catheter

Authors: Yu-Ju Hsieh, Lin-Hung Lin, Wen-Hui Chang

Abstract:

This study was designed as an interventional research and intended to validate whether the introduction of drinking vinegar every day can reduce and even prevent urinary tract infection in Taiwan home stayed disabilities who using indwelling catheter. The data was collected from the subjects who have received home care case at northern Taiwan, according to the questionnaire and a medical records retroactive methodology, the subjects were informed and consent to drink 15ml of table vinegar in a daily diet, and through routine urine testing and culture study. Home care nurses would assist collecting urine at the point of before and after a meal from total 35 studied subjects per month, and total collected 4 times for testing. The results showed that when the average age of study subjects was 65.46 years and catheter indwelling time was 15 years, drinking table vinegar could inhibit the activity of E. coli O157: H7 and reduce its breeding. Before drinking table vinegar daily, the subjects’ urine pH value was 7.0-8.0, and the average was 7.5, and the urine PH value dropped to 6.5 after drinking table vinegar for a month. There were two purple urine cases whose urine were changed from purple to normal color after two weeks of drinking, and the protein and bacteria values of urine gradually improved. Urine smell unpleasant before attending to this study, and the symptom improved significantly only after 1 week, and the urine smell returned to normal ammonia and became clean after 1 month later. None of these subjects received treatment in a hospital due to urinary tract infection, and there were no signs of bleeding in all cases during this study. The subjects of this study are chronic patients with a long-term bedridden catheterization; drinking cranberry juice is an economic burden for them, and also highly prohibited for diabetes patients. By adapting to use cheaper table vinegar to acidified urine and improve its smell and ease Purple Urine Syndrome, to furthermore, proven urinary tract infection, it can also to reduce the financial burden on families, the cost of social resources and the rate of re-admission.

Keywords: table vinegar, urinary tract infection, disability patients, long-term indwelling catheter

Procedia PDF Downloads 238
567 Cellulose Nanocrystals from Melon Plant Residues: A Sustainable and Renewable Source

Authors: Asiya Rezzouq, Mehdi El Bouchti, Omar Cherkaoui, Sanaa Majid, Souad Zyade

Abstract:

In recent years, there has been a steady increase in the exploration of new renewable and non-conventional sources for the production of biodegradable nanomaterials. Nature harbours valuable cellulose-rich materials that have so far been under-exploited and can be used to create cellulose derivatives such as cellulose microfibres (CMFs) and cellulose nanocrystals (CNCs). These unconventional sources have considerable potential as alternatives to conventional sources such as wood and cotton. By using agricultural waste to produce these cellulose derivatives, we are responding to the global call for sustainable solutions to environmental and economic challenges. Responsible management of agricultural waste is increasingly crucial to reducing the environmental consequences of its disposal, including soil and water pollution, while making efficient use of these untapped resources. In this study, the main objective was to extract cellulose nanocrystals (CNC) from melon plant residues using methods that are both efficient and sustainable. To achieve this high-quality extraction, we followed a well-defined protocol involving several key steps: pre-treatment of the residues by grinding, filtration and chemical purification to obtain high-quality (CMF) with a yield of 52% relative to the initial mass of the melon plant residue. Acid hydrolysis was then carried out using phosphoric acid and sulphuric acid to convert (CMF) into cellulose nanocrystals. The extracted cellulose nanocrystals were subjected to in-depth characterization using advanced techniques such as transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction. The resulting cellulose nanocrystals have exceptional properties, including a large specific surface area, high thermal stability and high mechanical strength, making them suitable for a variety of applications, including as reinforcements for composite materials. In summary, the study highlights the potential for recovering agricultural melon waste to produce high-quality cellulose nanocrystals with promising applications in industry, nanotechnology, and biotechnology, thereby contributing to environmental and economic sustainability.

Keywords: cellulose, melon plant residues, cellulose nanocrystals, properties, applications, composite materials

Procedia PDF Downloads 33
566 Object-Scene: Deep Convolutional Representation for Scene Classification

Authors: Yanjun Chen, Chuanping Hu, Jie Shao, Lin Mei, Chongyang Zhang

Abstract:

Traditional image classification is based on encoding scheme (e.g. Fisher Vector, Vector of Locally Aggregated Descriptor) with low-level image features (e.g. SIFT, HoG). Compared to these low-level local features, deep convolutional features obtained at the mid-level layer of convolutional neural networks (CNN) have richer information but lack of geometric invariance. For scene classification, there are scattered objects with different size, category, layout, number and so on. It is crucial to find the distinctive objects in scene as well as their co-occurrence relationship. In this paper, we propose a method to take advantage of both deep convolutional features and the traditional encoding scheme while taking object-centric and scene-centric information into consideration. First, to exploit the object-centric and scene-centric information, two CNNs that trained on ImageNet and Places dataset separately are used as the pre-trained models to extract deep convolutional features at multiple scales. This produces dense local activations. By analyzing the performance of different CNNs at multiple scales, it is found that each CNN works better in different scale ranges. A scale-wise CNN adaption is reasonable since objects in scene are at its own specific scale. Second, a fisher kernel is applied to aggregate a global representation at each scale and then to merge into a single vector by using a post-processing method called scale-wise normalization. The essence of Fisher Vector lies on the accumulation of the first and second order differences. Hence, the scale-wise normalization followed by average pooling would balance the influence of each scale since different amount of features are extracted. Third, the Fisher vector representation based on the deep convolutional features is followed by a linear Supported Vector Machine, which is a simple yet efficient way to classify the scene categories. Experimental results show that the scale-specific feature extraction and normalization with CNNs trained on object-centric and scene-centric datasets can boost the results from 74.03% up to 79.43% on MIT Indoor67 when only two scales are used (compared to results at single scale). The result is comparable to state-of-art performance which proves that the representation can be applied to other visual recognition tasks.

Keywords: deep convolutional features, Fisher Vector, multiple scales, scale-specific normalization

Procedia PDF Downloads 309
565 Effects of Cellular Insulin Receptor Stimulators with Alkaline Water on Performance, Plasma Cholesterol, Glucose, Triglyceride Levels and Hatchability in Breeding Japanese Quail

Authors: Rabia Göçmen, Gülşah Kanbur, Sinan Sefa Parlat

Abstract:

Aim of this study is to determine the effects of cellular insulin receptor stimulators on performance, plasma glucose, high density lipoprotein (HDL), low density lipoprotein (LDL), total cholesterol, triglyceride, triiodothyronine (T3) and thyroxine (T4) hormone levels, and incubation features in the breeding Japanese quails (Coturnix japonica). In the study, a total of 84 breeding quails was used, 6 weeks’ age, 24 are male and 60, female. Rations used in experiment are 2900 kcal/kg metabolic energy and 20% crude protein. Water pH is calibrated to 7.45. Ration and water were administered ad-libitum to the animals. As metformin source, metformin-HCl was used and as chrome resource, chromium picolinate was used. Trial groups were formed as control group (basal ration), metformin group (basal ration, added metformin at the level of feed of 20 mg/kg), and chromium picolinate (basal ration, added feed of 1500 ppb Cr) group. When regarded to the results of performance at the end of experiment, it is seen that live weight gain, feed consumption, egg weight, feed conversion ratio (Feed consumption/ egg weight), and egg production were affected at the significant level (p < 0.05). When the results are evaluated in terms of incubation features, hatchability and hatchability of fertile egg ratio were not affected from the treatments. Fertility ratio was significantly affected by metformin and chromium picolinate treatments and fertility rose at the significant level compared to control group (p < 0.05). According to results of experiment, plasma glucose level was not affected by metformin and chromium picolinate treatments. Plasma, total cholesterol, HDL, LDL, and triglyceride levels were significantly affected from insulin receptor stimulators added to ration (p < 0.05). Hormone level of Plasma T3 and T4 were also affected at the significant level from insulin receptor stimulators added to ration (p < 0.05).

Keywords: chromium picolinate, cholesterol, hormone, metformin, quail

Procedia PDF Downloads 199
564 Determination of Cyclic Citrullinated Peptide Antibodies on Quartz Crystal Microbalance Based Nanosensors

Authors: Y. Saylan, F. Yılmaz, A. Denizli

Abstract:

Rheumatoid arthritis (RA) which is the most common autoimmune disorder of the body's own immune system attacking healthy cells. RA has both articular and systemic effects.Until now romatiod factor (RF) assay is used the most commonly diagnosed RA but it is not specific. Anti-cyclic citrullinated peptide (anti-CCP) antibodies are IgG autoantibodies which recognize citrullinated peptides and offer improved specificity in early diagnosis of RA compared to RF. Anti-CCP antibodies have specificity for the diagnosis of RA from 91 to 98% and the sensitivity rate of 41-68%. Molecularly imprinted polymers (MIP) are materials that are easy to prepare, less expensive, stable have a talent for molecular recognition and also can be manufactured in large quantities with good reproducibility. Molecular recognition-based adsorption techniques have received much attention in several fields because of their high selectivity for target molecules. Quartz crystal microbalance (QCM) is an effective, simple, inexpensive approach mass changes that can be converted into an electrical signal. The applications for specific determination of chemical substances or biomolecules, crystal electrodes, cover by the thin films for bind or adsorption of molecules. In this study, we have focused our attention on combining of molecular imprinting into nanofilms and QCM nanosensor approaches and producing QCM nanosensor for anti-CCP, chosen as a model protein, using anti-CCP imprinted nanofilms. For this aim, anti-CCP imprinted QCM nanosensor was characterized by Fourier transform infrared spectroscopy, atomic force microscopy, contact angle measurements and ellipsometry. The non-imprinted nanosensor was also prepared to evaluate the selectivity of the imprinted nanosensor. Anti-CCP imprinted QCM nanosensor was tested for real-time detection of anti-CCP from aqueous solution. The kinetic and affinity studies were determined by using anti-CCP solutions with different concentrations. The responses related with mass shifts (Δm) and frequency shifts (Δf) were used to evaluate adsorption properties and to calculate binding (Ka) and dissociation (Kd) constants. To show the selectivity of the anti-CCP imprinted QCM nanosensor, competitive adsorption of anti-CCP and IgM was investigated.The results indicate that anti-CCP imprinted QCM nanosensor has a higher adsorption capabilities for anti-CCP than for IgM, due to selective cavities in the polymer structure.

Keywords: anti-CCP, molecular imprinting, nanosensor, rheumatoid arthritis, QCM

Procedia PDF Downloads 347
563 Investigating the Use of Seaweed Extracts as Biopesticides

Authors: Emma O’ Keeffe, Helen Hughes, Peter McLoughlin, Shiau Pin Tan, Nick McCarthy

Abstract:

Biosecurity is emerging as one of the most important issues facing the agricultural and forestry community. This is as a result of increased invasion from new pests and diseases with the main protocol for dealing with these species being the use of synthetic pesticides. However, these chemicals have been shown to exhibit negative effects on the environment. Seaweeds represent a vast untapped resource of bio-molecules with a broad range of biological activities including pesticidal. This project investigated both the antifungal and antibacterial activity of seaweed species against two problematic root rot fungi, Armillaria mellea and Heterobasidion annosum and ten quarantine bacterial plant pathogens including Xanthomonas arboricola, Xanthomonas fragariae, and Erwinia amylovora. Four seaweed species were harvested from the South-East coast of Ireland including brown, red and green varieties. The powdered seaweeds were extracted using four different solvents by liquid extraction. The poisoned food technique was employed to establish the antifungal efficacy, and the standard disc diffusion assay was used to assess the antibacterial properties of the seaweed extracts. It was found that extracts of the green seaweed exhibited antifungal activity against H. annosum, with approximately 50% inhibition compared to the negative control. The protectant activities of the active extracts were evaluated on disks of Picea sitchensis, a plant species sensitive to infection from H. annosum and compared to the standard chemical control product urea. The crude extracts exhibited very similar activity to the 10% and 20% w/v concentrations of urea, demonstrating the ability of seaweed extracts to compete with commercially available products. Antibacterial activity was exhibited by a number of seaweed extracts with the red seaweed illustrating the strongest activity, with a zone of inhibition of 15.83 ± 0.41 mm exhibited against X. arboricola whilst the positive control (10 μg/disk of chloramphenicol) had a zone of 26.5 ± 0.71 mm. These results highlight the potential application of seaweed extracts in the forestry and agricultural industries for use as biopesticides. Further work is now required to identify the bioactive molecules that are responsible for this antifungal and antibacterial activity in the seaweed extracts, including toxicity studies to ensure the extracts are non-toxic to plants and humans.

Keywords: antibacterial, antifungal, biopesticides, seaweeds

Procedia PDF Downloads 147
562 Transcriptomic Analysis for Differential Expression of Genes Involved in Secondary Metabolite Production in Narcissus Bulb and in vitro Callus

Authors: Aleya Ferdausi, Meriel Jones, Anthony Halls

Abstract:

The Amaryllidaceae genus Narcissus contains secondary metabolites, which are important sources of bioactive compounds such as pharmaceuticals indicating that their biological activity extends from the native plant to humans. Transcriptome analysis (RNA-seq) is an effective platform for the identification and functional characterization of candidate genes as well as to identify genes encoding uncharacterized enzymes. The biotechnological production of secondary metabolites in plant cell or organ cultures has become a tempting alternative to the extraction of whole plant material. The biochemical pathways for the production of secondary metabolites require primary metabolites to undergo a series of modifications catalyzed by enzymes such as cytochrome P450s, methyltransferases, glycosyltransferases, and acyltransferases. Differential gene expression analysis of Narcissus was obtained from two conditions, i.e. field and in vitro callus. Callus was obtained from modified MS (Murashige and Skoog) media supplemented with growth regulators and twin-scale explants from Narcissus cv. Carlton bulb. A total of 2153 differentially expressed transcripts were detected in Narcissus bulb and in vitro callus, and 78.95% of those were annotated. It showed the expression of genes involved in the biosynthesis of alkaloids were present in both conditions i.e. cytochrome P450s, O-methyltransferase (OMTs), NADP/NADPH dehydrogenases or reductases, SAM-synthetases or decarboxylases, 3-ketoacyl-CoA, acyl-CoA, cinnamoyl-CoA, cinnamate 4-hydroxylase, alcohol dehydrogenase, caffeic acid, N-methyltransferase, and NADPH-cytochrome P450s. However, cytochrome P450s and OMTs involved in the later stage of Amaryllidaceae alkaloids biosynthesis were mainly up-regulated in field samples. Whereas, the enzymes involved in initial biosynthetic pathways i.e. fructose biphosphate adolase, aminotransferases, dehydrogenases, hydroxyl methyl glutarate and glutamate synthase leading to the biosynthesis of precursors; tyrosine, phenylalanine and tryptophan for secondary metabolites were up-regulated in callus. The knowledge of probable genes involved in secondary metabolism and their regulation in different tissues will provide insight into the Narcissus plant biology related to alkaloid production.

Keywords: narcissus, callus, transcriptomics, secondary metabolites

Procedia PDF Downloads 125
561 Features of Normative and Pathological Realizations of Sibilant Sounds for Computer-Aided Pronunciation Evaluation in Children

Authors: Zuzanna Miodonska, Michal Krecichwost, Pawel Badura

Abstract:

Sigmatism (lisping) is a speech disorder in which sibilant consonants are mispronounced. The diagnosis of this phenomenon is usually based on the auditory assessment. However, the progress in speech analysis techniques creates a possibility of developing computer-aided sigmatism diagnosis tools. The aim of the study is to statistically verify whether specific acoustic features of sibilant sounds may be related to pronunciation correctness. Such knowledge can be of great importance while implementing classifiers and designing novel tools for automatic sibilants pronunciation evaluation. The study covers analysis of various speech signal measures, including features proposed in the literature for the description of normative sibilants realization. Amplitudes and frequencies of three fricative formants (FF) are extracted based on local spectral maxima of the friction noise. Skewness, kurtosis, four normalized spectral moments (SM) and 13 mel-frequency cepstral coefficients (MFCC) with their 1st and 2nd derivatives (13 Delta and 13 Delta-Delta MFCC) are included in the analysis as well. The resulting feature vector contains 51 measures. The experiments are performed on the speech corpus containing words with selected sibilant sounds (/ʃ, ʒ/) pronounced by 60 preschool children with proper pronunciation or with natural pathologies. In total, 224 /ʃ/ segments and 191 /ʒ/ segments are employed in the study. The Mann-Whitney U test is employed for the analysis of stigmatism and normative pronunciation. Statistically, significant differences are obtained in most of the proposed features in children divided into these two groups at p < 0.05. All spectral moments and fricative formants appear to be distinctive between pathology and proper pronunciation. These metrics describe the friction noise characteristic for sibilants, which makes them particularly promising for the use in sibilants evaluation tools. Correspondences found between phoneme feature values and an expert evaluation of the pronunciation correctness encourage to involve speech analysis tools in diagnosis and therapy of sigmatism. Proposed feature extraction methods could be used in a computer-assisted stigmatism diagnosis or therapy systems.

Keywords: computer-aided pronunciation evaluation, sigmatism diagnosis, speech signal analysis, statistical verification

Procedia PDF Downloads 278
560 Regulation of the Regeneration of Epidermal Langerhans Cells by Stress Hormone

Authors: Junichi Hosoi

Abstract:

Epidermal Langerhans cells reside in upper layer of epidermis and play a role in immune surveillance. The finding of the close association of nerve endings to Langerhans cells triggered the research on systemic regulation of Langerhans cells. They disappear from epidermis after exposure to environmental and internal stimuli and reappear about a week later. Myeloid progenitor cells are assumed to be one of the sources of Langerhans cells. We examined the effects of cortisol on the reappearance of Langerhans cells in vitro. Cord-blood derived CD34-positive cells were cultured in the medium supplemented with stem cell factor/Flt3 ligand/granulocyte macrophage-colony stimulating factor/tumor necrosis factor alpha/bone morphologic protein 7/transforming growth factor beta in the presence or absence of cortisol. Cells were analyzed by flow cytometry for CD1a (cluster differentiation 1a), a marker of Langerhans cells and dermal dendritic cells, and CD39 (cluster differentiation factor 39), extracellular adenosine triphosphatase. Both CD1a-positive cells and CD39-positive cells were decreased by treatment with cortisol (suppression by 35% and 22% compared to no stress hormone, respectively). Differentiated Langerhans cells are attracted to epidermis by chemokines that are secreted from keratinocytes. Epidermal keratinocytes were cultured in the presence or absence of cortisol and analyzed for the expression of CCL2 (C-C motif chemokine ligand 2) and CCL20 (C-C motif chemokine ligand 20), which are typical attractants of Langerhans cells, by quantitative reverse transcriptase polymerase chain reaction. The expression of both chemokines, CCL2 and CCL20, were suppressed by treatment with cortisol (suppression by 38% and 48% compared to no stress hormone, respectively). We examined the possible regulation of the suppression by cortisol with plant extracts. The extracts of Ganoderma lucidum and Iris protected the suppression of the differentiation to CD39-positive cells and also the suppression of the gene expression of LC-chemoattractants. These results suggest that cortisol, which is either systemic or locally produced, blocks the supply of epidermal Langerhans cells at 2 steps, differentiation from the precursor and attraction to epidermis. The suppression is possibly blocked by some plant extracts.

Keywords: Langerhans cell, stress, CD39, chemokine

Procedia PDF Downloads 160
559 High-Throughput Artificial Guide RNA Sequence Design for Type I, II and III CRISPR/Cas-Mediated Genome Editing

Authors: Farahnaz Sadat Golestan Hashemi, Mohd Razi Ismail, Mohd Y. Rafii

Abstract:

A huge revolution has emerged in genome engineering by the discovery of CRISPR (clustered regularly interspaced palindromic repeats) and CRISPR-associated system genes (Cas) in bacteria. The function of type II Streptococcus pyogenes (Sp) CRISPR/Cas9 system has been confirmed in various species. Other S. thermophilus (St) CRISPR-Cas systems, CRISPR1-Cas and CRISPR3-Cas, have been also reported for preventing phage infection. The CRISPR1-Cas system interferes by cleaving foreign dsDNA entering the cell in a length-specific and orientation-dependant manner. The S. thermophilus CRISPR3-Cas system also acts by cleaving phage dsDNA genomes at the same specific position inside the targeted protospacer as observed in the CRISPR1-Cas system. It is worth mentioning, for the effective DNA cleavage activity, RNA-guided Cas9 orthologs require their own specific PAM (protospacer adjacent motif) sequences. Activity levels are based on the sequence of the protospacer and specific combinations of favorable PAM bases. Therefore, based on the specific length and sequence of PAM followed by a constant length of target site for the three orthogonals of Cas9 protein, a well-organized procedure will be required for high-throughput and accurate mining of possible target sites in a large genomic dataset. Consequently, we created a reliable procedure to explore potential gRNA sequences for type I (Streptococcus thermophiles), II (Streptococcus pyogenes), and III (Streptococcus thermophiles) CRISPR/Cas systems. To mine CRISPR target sites, four different searching modes of sgRNA binding to target DNA strand were applied. These searching modes are as follows: i) coding strand searching, ii) anti-coding strand searching, iii) both strand searching, and iv) paired-gRNA searching. The output of such procedure highlights the power of comparative genome mining for different CRISPR/Cas systems. This could yield a repertoire of Cas9 variants with expanded capabilities of gRNA design, and will pave the way for further advance genome and epigenome engineering.

Keywords: CRISPR/Cas systems, gRNA mining, Streptococcus pyogenes, Streptococcus thermophiles

Procedia PDF Downloads 236
558 D-Lysine Assisted 1-Ethyl-3-(3-Dimethylaminopropyl)Carbodiimide / N-Hydroxy Succinimide Initiated Crosslinked Collagen Scaffold with Controlled Structural and Surface Properties

Authors: G. Krishnamoorthy, S. Anandhakumar

Abstract:

The effect of D-Lysine (D-Lys) on collagen with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide(EDC)/N-hydroxysuccinimide(NHS) initiated cross linking using experimental and modelling tools are evaluated. The results of the Coll-D-Lys-EDC/NHS scaffold also indicate an increase in the tensile strength (TS), percentage of elongation (% E), denaturation temperature (Td), and decrease the decomposition rate compared to L-Lys-EDC/NHS. Scanning electron microscopic (SEM) and atomic force microscopic (AFM) analyses revealed a well ordered with properly oriented and well-aligned structure of scaffold. The D-Lys stabilizes the scaffold against degradation by collagenase than L-Lys. The cell assay showed more than 98% fibroblast viability (NIH3T3) and improved cell adhesions, protein adsorption after 72h of culture when compared with native scaffold. Cell attachment after 74h was robust, with cytoskeletal analysis showing that the attached cells were aligned along the fibers assuming a spindle-shape appearance, despite, gene expression analyses revealed no apparent alterations in mRNA levels, although cell proliferation was not adversely affected. D-Lysine (D-Lys) plays a pivotal role in the self-assembly and conformation of collagen fibrils. The D-Lys assisted EDC/NHS initiated cross-linking induces the formation of an carboxamide by the activation of the side chain -COOH group, followed by aminolysis of the O-iso acylurea intermediates by the -NH2 groups are directly joined via an isopeptides bond. This leads to the formation of intra- and inter-helical cross links. Modeling studies indicated that D-Lys bind with collagen-like peptide (CLP) through multiple H-bonding and hydrophobic interactions. Orientational changes in collagenase on CLP-D-Lys are observed which may decrease its accessibility to degradation and stabilize CLP against the action of the former. D-Lys has lowest binding energy and improved fibrillar-assembly and staggered alignment without the undesired structural stiffness and aggregations. The proteolytic machinery is not well equipped to deal with Coll-D-Lys than Coll-L-Lys scaffold. The information derived from the present study could help in designing collagenolytically stable heterochiral collagen based scaffold for biomedical applications.

Keywords: collagen, collagenase, collagen like peptide, D-lysine, heterochiral collagen scaffold

Procedia PDF Downloads 370