Search results for: green tea extract (GTE)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4125

Search results for: green tea extract (GTE)

585 Discrimination of Bio-Analytes by Using Two-Dimensional Nano Sensor Array

Authors: P. Behera, K. K. Singh, D. K. Saini, M. De

Abstract:

Implementation of 2D materials in the detection of bio analytes is highly advantageous in the field of sensing because of its high surface to volume ratio. We have designed our sensor array with different cationic two-dimensional MoS₂, where surface modification was achieved by cationic thiol ligands with different functionality. Green fluorescent protein (GFP) was chosen as signal transducers for its biocompatibility and anionic nature, which can bind to the cationic MoS₂ surface easily, followed by fluorescence quenching. The addition of bio-analyte to the sensor can decomplex the cationic MoS₂ and GFP conjugates, followed by the regeneration of GFP fluorescence. The fluorescence response pattern belongs to various analytes collected and transformed to linear discriminant analysis (LDA) for classification. At first, 15 different proteins having wide range of molecular weight and isoelectric points were successfully discriminated at 50 nM with detection limit of 1 nM. The sensor system was also executed in biofluids such as serum, where 10 different proteins at 2.5 μM were well separated. After successful discrimination of protein analytes, the sensor array was implemented for bacteria sensing. Six different bacteria were successfully classified at OD = 0.05 with a detection limit corresponding to OD = 0.005. The optimized sensor array was able to classify uropathogens from non-uropathogens in urine medium. Further, the technique was applied for discrimination of bacteria possessing resistance to different types and amounts of drugs. We found out the mechanism of sensing through optical and electrodynamic studies, which indicates the interaction between bacteria with the sensor system was mainly due to electrostatic force of interactions, but the separation of native bacteria from their drug resistant variant was due to Van der Waals forces. There are two ways bacteria can be detected, i.e., through bacterial cells and lysates. The bacterial lysates contain intracellular information and also safe to analysis as it does not contain live cells. Lysates of different drug resistant bacteria were patterned effectively from the native strain. From unknown sample analysis, we found that discrimination of bacterial cells is more sensitive than that of lysates. But the analyst can prefer bacterial lysates over live cells for safer analysis.

Keywords: array-based sensing, drug resistant bacteria, linear discriminant analysis, two-dimensional MoS₂

Procedia PDF Downloads 148
584 Surface Modification of Co-Based Nanostructures to Develop Intrinsic Fluorescence and Catalytic Activity

Authors: Monalisa Pal, Kalyan Mandal

Abstract:

Herein we report the molecular functionalization of promising transition metal oxide nanostructures, such as Co3O4 nanocubes, using nontoxic and biocompati-ble organic ligand sodium tartrate. The electronic structural modification of the nanocubes imparted through functionalization and subsequent water solubilization reveals multiple absorption bands in the UV-vis region. Further surface modification of the solubilized nanocubes, leads to the emergence of intrinsic multi-color fluorescence (from blue, cyan, green to red region of the spectrum), upon excitation at proper wavelengths, where the respective excitation wavelengths have a direct correlation with the observed UV-vis absorption bands. Using a multitude of spectroscopic tools we have investigated the mechanistic insight behind the origin of different UV-vis absorption bands and emergence of multicolor photoluminescence from the functionalized nanocubes. Our detailed study shows that ligand to metal charge transfer (LMCT) from tartrate ligand to Co2+/Co3+ ions and d-d transitions involving Co2+/Co3+ ions are responsible for generation of this novel optical properties. Magnetic study reveals that, antiferromagnetic nature of Co3O4 nanocubes changes to ferromagnetic behavior upon functionalization, however, the overall magnetic response was very weak. To combine strong magnetism with this novel optical property, we followed the same surface modification strategy in case of CoFe2O4 nanoparticles, which reveals that irrespective of size and shape, all Co-based oxides can develop intrinsic multi-color fluorescence upon facile functionalization with sodium tartrate ligands and the magnetic response was significantly higher. Surface modified Co-based oxide nanostructures also show excellent catalytic activity in degradation of biologically and environmentally harmful dyes. We hope that, our developed facile functionalization strategy of Co-based oxides will open up new opportunities in the field of biomedical applications such as bio-imaging and targeted drug delivery.

Keywords: co-based oxide nanostructures, functionalization, multi-color fluorescence, catalysis

Procedia PDF Downloads 390
583 Efficacy of Gamma Radiation on the Productivity of Bactrocera oleae Gmelin (Diptera: Tephritidae)

Authors: Mehrdad Ahmadi, Mohamad Babaie, Shiva Osouli, Bahareh Salehi, Nadia Kalantaraian

Abstract:

The olive fruit fly, Bactrocera oleae Gmelin (Diptera: Tephritidae), is one of the most serious pests in olive orchards in growing province in Iran. The female lay eggs in green olive fruit and larvae hatch inside the fruit, where they feed upon the fruit matters. One of the main ecologically friendly and species-specific systems of pest control is the sterile insect technique (SIT) which is based on the release of large numbers of sterilized insects. The objective of our work was to develop a SIT against B. oleae by using of gamma radiation for the laboratory and field trial in Iran. Oviposition of female mated by irradiated males is one of the main parameters to determine achievement of SIT. To conclude the sterile dose, pupae were placed under 0 to 160 Gy of gamma radiation. The main factor in SIT is the productivity of females which are mated by irradiated males. The emerged adults from irradiated pupae were mated with untreated adults of the same age by confining them inside the transparent cages. The fecundity of the irradiated males mated with non-irradiated females was decreased with the increasing radiation dose level. It was observed that the number of eggs and also the percentage of the egg hatching was significantly (P < 0.05) affected in either IM x NF crosses compared with NM x NF crosses in F1 generation at all doses. Also, the statistical analysis showed a significant difference (P < 0.05) in the mean number of eggs laid between irradiated and non-irradiated females crossed with irradiated males, which suggests that the males were susceptible to gamma radiation. The egg hatching percentage declined markedly with the increase of the radiation dose of the treated males in mating trials which demonstrated that egg hatch rate was dose dependent. Our results specified that gamma radiation affects the longevity of irradiated B. oleae larvae (established from irradiated pupae) and significantly increased their larval duration. Results show the gamma radiation, and SIT can be used successfully against olive fruit flies.

Keywords: fertility, olive fruit fly, radiation, sterile insect technique

Procedia PDF Downloads 200
582 Co-Design of Accessible Speech Recognition for Users with Dysarthric Speech

Authors: Elizabeth Howarth, Dawn Green, Sean Connolly, Geena Vabulas, Sara Smolley

Abstract:

Through the EU Horizon 2020 Nuvoic Project, the project team recruited 70 individuals in the UK and Ireland to test the Voiceitt speech recognition app and provide user feedback to developers. The app is designed for people with dysarthric speech, to support communication with unfamiliar people and access to speech-driven technologies such as smart home equipment and smart assistants. Participants with atypical speech, due to a range of conditions such as cerebral palsy, acquired brain injury, Down syndrome, stroke and hearing impairment, were recruited, primarily through organisations supporting disabled people. Most had physical or learning disabilities in addition to dysarthric speech. The project team worked with individuals, their families and local support teams, to provide access to the app, including through additional assistive technologies where needed. Testing was user-led, with participants asked to identify and test use cases most relevant to their daily lives over a period of three months or more. Ongoing technical support and training were provided remotely and in-person throughout the testing period. Structured interviews were used to collect feedback on users' experiences, with delivery adapted to individuals' needs and preferences. Informal feedback was collected through ongoing contact between participants, their families and support teams and the project team. Focus groups were held to collect feedback on specific design proposals. User feedback shared with developers has led to improvements to the user interface and functionality, including faster voice training, simplified navigation, the introduction of gamification elements and of switch access as an alternative to touchscreen access, with other feature requests from users still in development. This work offers a case-study in successful and inclusive co-design with the disabled community.

Keywords: co-design, assistive technology, dysarthria, inclusive speech recognition

Procedia PDF Downloads 115
581 Method for Improving ICESAT-2 ATL13 Altimetry Data Utility on Rivers

Authors: Yun Chen, Qihang Liu, Catherine Ticehurst, Chandrama Sarker, Fazlul Karim, Dave Penton, Ashmita Sengupta

Abstract:

The application of ICESAT-2 altimetry data in river hydrology critically depends on the accuracy of the mean water surface elevation (WSE) at a virtual station (VS) where satellite observations intersect with water. The ICESAT-2 track generates multiple VSs as it crosses the different water bodies. The difficulties are particularly pronounced in large river basins where there are many tributaries and meanders often adjacent to each other. One challenge is to split photon segments along a beam to accurately partition them to extract only the true representative water height for individual elements. As far as we can establish, there is no automated procedure to make this distinction. Earlier studies have relied on human intervention or river masks. Both approaches are unsatisfactory solutions where the number of intersections is large, and river width/extent changes over time. We describe here an automated approach called “auto-segmentation”. The accuracy of our method was assessed by comparison with river water level observations at 10 different stations on 37 different dates along the Lower Murray River, Australia. The congruence is very high and without detectable bias. In addition, we compared different outlier removal methods on the mean WSE calculation at VSs post the auto-segmentation process. All four outlier removal methods perform almost equally well with the same R2 value (0.998) and only subtle variations in RMSE (0.181–0.189m) and MAE (0.130–0.142m). Overall, the auto-segmentation method developed here is an effective and efficient approach to deriving accurate mean WSE at river VSs. It provides a much better way of facilitating the application of ICESAT-2 ATL13 altimetry to rivers compared to previously reported studies. Therefore, the findings of our study will make a significant contribution towards the retrieval of hydraulic parameters, such as water surface slope along the river, water depth at cross sections, and river channel bathymetry for calculating flow velocity and discharge from remotely sensed imagery at large spatial scales.

Keywords: lidar sensor, virtual station, cross section, mean water surface elevation, beam/track segmentation

Procedia PDF Downloads 67
580 Design and Development of an Autonomous Beach Cleaning Vehicle

Authors: Mahdi Allaoua Seklab, Süleyman BaşTürk

Abstract:

In the quest to enhance coastal environmental health, this study introduces a fully autonomous beach cleaning machine, a breakthrough in leveraging green energy and advanced artificial intelligence for ecological preservation. Designed to operate independently, the machine is propelled by a solar-powered system, underscoring a commitment to sustainability and the use of renewable energy in autonomous robotics. The vehicle's autonomous navigation is achieved through a sophisticated integration of LIDAR and a camera system, utilizing an SSD MobileNet V2 object detection model for accurate and real-time trash identification. The SSD framework, renowned for its efficiency in detecting objects in various scenarios, is coupled with the lightweight and precise highly MobileNet V2 architecture, making it particularly suited for the computational constraints of on-board processing in mobile robotics. Training of the SSD MobileNet V2 model was conducted on Google Colab, harnessing cloud-based GPU resources to facilitate a rapid and cost-effective learning process. The model was refined with an extensive dataset of annotated beach debris, optimizing the parameters using the Adam optimizer and a cross-entropy loss function to achieve high-precision trash detection. This capability allows the machine to intelligently categorize and target waste, leading to more effective cleaning operations. This paper details the design and functionality of the beach cleaning machine, emphasizing its autonomous operational capabilities and the novel application of AI in environmental robotics. The results showcase the potential of such technology to fill existing gaps in beach maintenance, offering a scalable and eco-friendly solution to the growing problem of coastal pollution. The deployment of this machine represents a significant advancement in the field, setting a new standard for the integration of autonomous systems in the service of environmental stewardship.

Keywords: autonomous beach cleaning machine, renewable energy systems, coastal management, environmental robotics

Procedia PDF Downloads 34
579 Computational Study on Traumatic Brain Injury Using Magnetic Resonance Imaging-Based 3D Viscoelastic Model

Authors: Tanu Khanuja, Harikrishnan N. Unni

Abstract:

Head is the most vulnerable part of human body and may cause severe life threatening injuries. As the in vivo brain response cannot be recorded during injury, computational investigation of the head model could be really helpful to understand the injury mechanism. Majority of the physical damage to living tissues are caused by relative motion within the tissue due to tensile and shearing structural failures. The present Finite Element study focuses on investigating intracranial pressure and stress/strain distributions resulting from impact loads on various sites of human head. This is performed by the development of the 3D model of a human head with major segments like cerebrum, cerebellum, brain stem, CSF (cerebrospinal fluid), and skull from patient specific MRI (magnetic resonance imaging). The semi-automatic segmentation of head is performed using AMIRA software to extract finer grooves of the brain. To maintain the accuracy high number of mesh elements are required followed by high computational time. Therefore, the mesh optimization has also been performed using tetrahedral elements. In addition, model validation with experimental literature is performed as well. Hard tissues like skull is modeled as elastic whereas soft tissues like brain is modeled with viscoelastic prony series material model. This paper intends to obtain insights into the severity of brain injury by analyzing impacts on frontal, top, back, and temporal sites of the head. Yield stress (based on von Mises stress criterion for tissues) and intracranial pressure distribution due to impact on different sites (frontal, parietal, etc.) are compared and the extent of damage to cerebral tissues is discussed in detail. This paper finds that how the back impact is more injurious to overall head than the other. The present work would be helpful to understand the injury mechanism of traumatic brain injury more effectively.

Keywords: dynamic impact analysis, finite element analysis, intracranial pressure, MRI, traumatic brain injury, von Misses stress

Procedia PDF Downloads 165
578 Identification of the Expression of Top Deregulated MiRNAs in Rheumatoid Arthritis and Osteoarthritis

Authors: Hala Raslan, Noha Eltaweel, Hanaa Rasmi, Solaf Kamel, May Magdy, Sherif Ismail, Khalda Amr

Abstract:

Introduction: Rheumatoid arthritis (RA) is an inflammatory, autoimmune disorder with progressive joint damage. Osteoarthritis (OA) is a degenerative disease of the articular cartilage that shows multiple clinical manifestations or symptoms resembling those of RA. Genetic predisposition is believed to be a principal etiological factor for RA and OA. In this study, we aimed to measure the expression of the top deregulated miRNAs that might be the cause of pathogenesis in both diseases, according to our latest NGS analysis. Six of the deregulated miRNAs were selected as they had multiple target genes in the RA pathway, so they are more likely to affect the RA pathogenesis.Methods: Eighty cases were recruited in this study; 45 rheumatoid arthiritis (RA), 30 osteoarthiritis (OA) patients, as well as 20 healthy controls. The selection of the miRNAs from our latest NGS study was done using miRwalk according to the number of their target genes that are members in the KEGG RA pathway. Total RNA was isolated from plasma of all recruited cases. The cDNA was generated by the miRcury RT Kit then used as a template for real-time PCR with miRcury Primer Assays and the miRcury SYBR Green PCR Kit. Fold changes were calculated from CT values using the ΔΔCT method of relative quantification. Results were compared RA vs Controls and OA vs Controls. Target gene prediction and functional annotation of the deregulated miRNAs was done using Mienturnet. Results: Six miRNAs were selected. They were miR-15b-3p, -128-3p, -194-3p, -328-3p, -542-3p and -3180-5p. In RA samples, three of the measured miRNAs were upregulated (miR-194, -542, and -3180; mean Rq= 2.6, 3.8 and 8.05; P-value= 0.07, 0.05 and 0.01; respectively) while the remaining 3 were downregulated (miR-15b, -128 and -328; mean Rq= 0.21, 0.39 and 0.6; P-value= <0.0001, <0.0001 and 0.02; respectively) all with high statistical significance except miR-194. While in OA samples, two of the measured miRNAs were upregulated (miR-194 and -3180; mean Rq= 2.6 and 7.7; P-value= 0.1 and 0.03; respectively) while the remaining 4 were downregulated (miR-15b, -128, -328 and -542; mean Rq= 0.5, 0.03, 0.08 and 0.5; P-value= 0.0008, 0.003, 0.006 and 0.4; respectively) with statistical significance compared to controls except miR-194 and miR-542. The functional enrichment of the selected top deregulated miRNAs revealed the highly enriched KEGG pathways and GO terms. Conclusion: Five of the studied miRNAs were greatly deregulated in RA and OA, they might be highly involved in the disease pathogenesis and so might be future therapeutic targets. Further functional studies are crucial to assess their roles and actual target genes.

Keywords: MiRNAs, expression, rheumatoid arthritis, osteoarthritis

Procedia PDF Downloads 83
577 An Endophyte of Amphipterygium adstringens as Producer of Cytotoxic Compounds

Authors: Karol Rodriguez-Peña, Martha L. Macias-Rubalcava, Leticia Rocha-Zavaleta, Sergio Sanchez

Abstract:

A bioassay-guided study for anti-cancer compounds from endophytes of the Mexican medicinal plant Amphipteryygium adstringens resulted in the isolation of a streptomycete capable of producing a group of compounds with high cytotoxic activity. Microorganisms from surface sterilized samples of various sections of the plant were isolated and all the actinomycetes found were evaluated for their potential to produce compounds with cytotoxic activity against cancer cell lines MCF7 (breast cancer) and HeLa (cervical cancer) as well as the non-tumoural cell line HaCaT (keratinocyte). The most active microorganism was picked for further evaluation. The identification of the microorganism was carried out by 16S rDNA gene sequencing, finding the closest proximity to Streptomyces scabrisporus, but with the additional characteristic that the strain isolated in this study was capable of producing colorful compounds never described for this species. Crude extracts of dichloromethane and ethyl acetate showed IC50 values of 0.29 and 0.96 μg/mL for MCF7, 0.51 and 1.98 μg/mL for HeLa and 0.96 and 2.7 μg/mL for HaCaT. Scaling the fermentation to 10 L in a bioreactor generated 1 g of total crude extract, which was fractionated by silica gel open column to yield 14 fractions. Nine of the fractions showed cytotoxic activity. Fraction 4 was chosen for subsequent purification because of its high activity against cancerous cell lines, lower activity against keratinocytes. HPLC-UV-MS/ESI was used for the evaluation of this fraction, finding at least 10 different compounds with high values of m/z (≈588). Purification of the compounds was carried out by preparative thin-layer chromatography. The prevalent compound was Steffimycin B, a molecule known for its antibiotic and cytotoxic activities and also for its low solubility in aqueous solutions. Along with steffimycin B, another five compounds belonging to the steffimycin family were isolated and at this moment their structures are being elucidated, some of which display better solubility in water: an attractive property for the pharmaceutical industry. As a conclusion to this study, the isolation of endophytes resulted in the discovery of a strain capable of producing compounds with high cytotoxic activity that need to be studied for their possible utilization.

Keywords: amphipterygium adstringens, cytotoxicity, streptomyces scabrisporus, steffimycin

Procedia PDF Downloads 367
576 Methodology for the Multi-Objective Analysis of Data Sets in Freight Delivery

Authors: Dale Dzemydiene, Aurelija Burinskiene, Arunas Miliauskas, Kristina Ciziuniene

Abstract:

Data flow and the purpose of reporting the data are different and dependent on business needs. Different parameters are reported and transferred regularly during freight delivery. This business practices form the dataset constructed for each time point and contain all required information for freight moving decisions. As a significant amount of these data is used for various purposes, an integrating methodological approach must be developed to respond to the indicated problem. The proposed methodology contains several steps: (1) collecting context data sets and data validation; (2) multi-objective analysis for optimizing freight transfer services. For data validation, the study involves Grubbs outliers analysis, particularly for data cleaning and the identification of statistical significance of data reporting event cases. The Grubbs test is often used as it measures one external value at a time exceeding the boundaries of standard normal distribution. In the study area, the test was not widely applied by authors, except when the Grubbs test for outlier detection was used to identify outsiders in fuel consumption data. In the study, the authors applied the method with a confidence level of 99%. For the multi-objective analysis, the authors would like to select the forms of construction of the genetic algorithms, which have more possibilities to extract the best solution. For freight delivery management, the schemas of genetic algorithms' structure are used as a more effective technique. Due to that, the adaptable genetic algorithm is applied for the description of choosing process of the effective transportation corridor. In this study, the multi-objective genetic algorithm methods are used to optimize the data evaluation and select the appropriate transport corridor. The authors suggest a methodology for the multi-objective analysis, which evaluates collected context data sets and uses this evaluation to determine a delivery corridor for freight transfer service in the multi-modal transportation network. In the multi-objective analysis, authors include safety components, the number of accidents a year, and freight delivery time in the multi-modal transportation network. The proposed methodology has practical value in the management of multi-modal transportation processes.

Keywords: multi-objective, analysis, data flow, freight delivery, methodology

Procedia PDF Downloads 182
575 Improving the Effectiveness of Solidified Methane Storage: Developing Two Biosurfactants for Methane Hydrate Formation

Authors: Elaheh Sadeh, Abdolreza Farhadian, Matvei E. Semenov, Ulukbek Zh. Mirzakimov

Abstract:

Recent advancements in solidified gas technology have demonstrated substantial potential for applications in carbon capture, storage, and natural gas transportation. The key factor limiting the industrial adoption of hydrates lies in the necessity for efficient and environmentally friendly promoters. This study aims to address this issue by synthesizing two biosurfactants – sodium oleate (SO) and hydroxylated sodium oleate (HSO) – as promoters for methane hydrate formation. The unique properties of these green, bio-based surfactants can potentially optimize solidified methane storage with wide-ranging applications in energy storage and transportation. The synthesis process of these promoters is simple and easily scalable for industrial production. The utilization of water as a solvent in the process helps to mitigate environmental impacts and simplifies the scale-up procedure. High-pressure autoclave experiments revealed a significant acceleration in methane hydrate formation kinetics with minute concentrations of the biosurfactants. Remarkably, just 5 ppm of SO and HSO facilitated a maximum water-to-hydrate conversion of 90%, equating to a storage capacity of 156 v/v in distilled water. Furthermore, SO and HSO demonstrated impressive biodegradability, exceeding 60% within 28 days. Toxicity assessments confirmed the biocompatibility of these biosurfactants, with cell viability above 70% for skin and lung cells at concentrations up to 180 and 90 µg/mL, respectively. These results indicate that SO and HSO could serve as an environmentally friendly alternative to synthetic surfactants, such as SDS, for methane storage. The findings of this study have far-reaching implications for various industries and applications. These biosurfactants' efficiency in methane hydrate formation may contribute to improved seawater desalination processes and more effective carbon capture techniques, ultimately reducing greenhouse gas emissions. Moreover, their application in gas storage could revolutionize the way natural gas is transported and stored. The synthesis of effective biosurfactants like SO and HSO opens up a world of possibilities in environmental sustainability, energy efficiency, and industrial innovation.

Keywords: methane storage, solidified methane, gas hydrate, biosurfactant

Procedia PDF Downloads 16
574 Analysis of Residents’ Travel Characteristics and Policy Improving Strategies

Authors: Zhenzhen Xu, Chunfu Shao, Shengyou Wang, Chunjiao Dong

Abstract:

To improve the satisfaction of residents' travel, this paper analyzes the characteristics and influencing factors of urban residents' travel behavior. First, a Multinominal Logit Model (MNL) model is built to analyze the characteristics of residents' travel behavior, reveal the influence of individual attributes, family attributes and travel characteristics on the choice of travel mode, and identify the significant factors. Then put forward suggestions for policy improvement. Finally, Support Vector Machine (SVM) and Multi-Layer Perceptron (MLP) models are introduced to evaluate the policy effect. This paper selects Futian Street in Futian District, Shenzhen City for investigation and research. The results show that gender, age, education, income, number of cars owned, travel purpose, departure time, journey time, travel distance and times all have a significant influence on residents' choice of travel mode. Based on the above results, two policy improvement suggestions are put forward from reducing public transportation and non-motor vehicle travel time, and the policy effect is evaluated. Before the evaluation, the prediction effect of MNL, SVM and MLP models was evaluated. After parameter optimization, it was found that the prediction accuracy of the three models was 72.80%, 71.42%, and 76.42%, respectively. The MLP model with the highest prediction accuracy was selected to evaluate the effect of policy improvement. The results showed that after the implementation of the policy, the proportion of public transportation in plan 1 and plan 2 increased by 14.04% and 9.86%, respectively, while the proportion of private cars decreased by 3.47% and 2.54%, respectively. The proportion of car trips decreased obviously, while the proportion of public transport trips increased. It can be considered that the measures have a positive effect on promoting green trips and improving the satisfaction of urban residents, and can provide a reference for relevant departments to formulate transportation policies.

Keywords: neural network, travel characteristics analysis, transportation choice, travel sharing rate, traffic resource allocation

Procedia PDF Downloads 141
573 Predicting Subsurface Abnormalities Growth Using Physics-Informed Neural Networks

Authors: Mehrdad Shafiei Dizaji, Hoda Azari

Abstract:

The research explores the pioneering integration of Physics-Informed Neural Networks (PINNs) into the domain of Ground-Penetrating Radar (GPR) data prediction, akin to advancements in medical imaging for tracking tumor progression in the human body. This research presents a detailed development framework for a specialized PINN model proficient at interpreting and forecasting GPR data, much like how medical imaging models predict tumor behavior. By harnessing the synergy between deep learning algorithms and the physical laws governing subsurface structures—or, in medical terms, human tissues—the model effectively embeds the physics of electromagnetic wave propagation into its architecture. This ensures that predictions not only align with fundamental physical principles but also mirror the precision needed in medical diagnostics for detecting and monitoring tumors. The suggested deep learning structure comprises three components: a CNN, a spatial feature channel attention (SFCA) mechanism, and ConvLSTM, along with temporal feature frame attention (TFFA) modules. The attention mechanism computes channel attention and temporal attention weights using self-adaptation, thereby fine-tuning the visual and temporal feature responses to extract the most pertinent and significant visual and temporal features. By integrating physics directly into the neural network, our model has shown enhanced accuracy in forecasting GPR data. This improvement is vital for conducting effective assessments of bridge deck conditions and other evaluations related to civil infrastructure. The use of Physics-Informed Neural Networks (PINNs) has demonstrated the potential to transform the field of Non-Destructive Evaluation (NDE) by enhancing the precision of infrastructure deterioration predictions. Moreover, it offers a deeper insight into the fundamental mechanisms of deterioration, viewed through the prism of physics-based models.

Keywords: physics-informed neural networks, deep learning, ground-penetrating radar (GPR), NDE, ConvLSTM, physics, data driven

Procedia PDF Downloads 48
572 Photoelectrical Stimulation for Cancer Therapy

Authors: Mohammad M. Aria, Fatma Öz, Yashar Esmaeilian, Marco Carofiglio, Valentina Cauda, Özlem Yalçın

Abstract:

Photoelectrical stimulation of cells with semiconductor organic polymers have been shown promising applications in neuroprosthetics such as retinal prosthesis. Photoelectrical stimulation of the cell membranes can be induced through a photo-electric charge separation mechanism in the semiconductor materials, and it can alter intracellular calcium level through both stimulation of voltage-gated ion channels and increase of intracellular reactive oxygen species (ROS) level. On the other hand, targeting voltage-gated ion channels in cancer cells to induce cell apoptosis through calcium signaling alternation is an effective mechanism which has been explained before. In this regard, remote control of the voltage-gated ion channels aimed to alter intracellular calcium by using photo-active organic polymers can be novel technology in cancer therapy. In this study, we used P (ITO/Indium thin oxide)/P3HT(poly(3-hexylthiophene-2,5-diyl)) and PN (ITO/ZnO/P3HT) photovoltaic junctions to stimulate MDA-MB-231 breast cancer cells. We showed that the photo-stimulation of breast cancer cells through photo capacitive current generated by the photovoltaic junctions are able to excite the cells and alternate intracellular calcium based on the calcium imaging (at 8mW/cm² green light intensity and 10-50 ms light durations), which has been reported already to safety stimulate neurons. The control group did not undergo light treatment and was cultured in T-75 flasks. We detected 20-30% cell death for ITO/P3HT and 51-60% cell death for ITO/ZnO/P3HT samples in the light treated MDA-MB-231 cell group. Western blot analysis demonstrated poly(ADP-ribose) polymerase (PARP) activated cell death in the light treated group. Furthermore, Annexin V and PI fluorescent staining indicated both apoptosis and necrosis in treated cells. In conclusion, our findings revealed that the photoelectrical stimulation of cells (through long time overstimulation) can induce cell death in cancer cells.

Keywords: Ca²⁺ signaling, cancer therapy, electrically excitable cells, photoelectrical stimulation, voltage-gated ion channels

Procedia PDF Downloads 179
571 Lessons from Farmers Performing Agroforestry for Reclamation of Gold Mine Spoils in Colombia

Authors: Bibiana Betancur-Corredor, Juan Carlos Loaiza, Manfred Denich, Christian Borgemeister

Abstract:

Alluvial gold mining generates a vast amount of deposits that cover the natural soil and negatively impacts riverbeds and valleys, causing loss of livelihood opportunities for farmers of these regions. In Colombia, more than 79,000 ha are affected by alluvial gold mining, therefore developing strategies to return this land to productivity is of crucial importance for the country. A novel restoration strategy has been created by a mining company, where the land is restored through the establishment of agroforestry systems, in which agricultural crops and livestock are combined to complement reforestation in the area. The purpose of this study is to capture the knowledge of farmers who perform agroforestry in areas with deposits created by alluvial gold mining activities. Semi structured interviews were conducted with farmers with regard to the following: indicators of soil fertility, management practices, soil heterogeneity, pest outbreaks and weeds. In order to compare the perceptions of soil fertility of farmers with physicochemical properties of soils, the farmers were asked to identify spots within their farms that have exhibited good and poor yields. Soil samples were collected in order to correlate farmer’s perceptions with soil physicochemical properties. The findings suggest that the main challenge that farmers face is the identification of fertile soil for crop establishment. They identify the fertile soil through visually analyzing soil color and compaction as well as the use of spontaneous growth of specific plants as indicator of soil fertility. For less fertile areas, nitrogen fixing plants are used as green manure to restore soil fertility for crop establishment. The findings of this study imply that if gold mining is followed by reclamation practices that involve the successful establishment of productive farmlands, agricultural productivity of these lands might improve, increasing food security of the affected communities.

Keywords: agroforestry, knowledge, mining, restoration

Procedia PDF Downloads 235
570 Identification and Classification of Fiber-Fortified Semolina by Near-Infrared Spectroscopy (NIR)

Authors: Amanda T. Badaró, Douglas F. Barbin, Sofia T. Garcia, Maria Teresa P. S. Clerici, Amanda R. Ferreira

Abstract:

Food fortification is the intentional addition of a nutrient in a food matrix and has been widely used to overcome the lack of nutrients in the diet or increasing the nutritional value of food. Fortified food must meet the demand of the population, taking into account their habits and risks that these foods may cause. Wheat and its by-products, such as semolina, has been strongly indicated to be used as a food vehicle since it is widely consumed and used in the production of other foods. These products have been strategically used to add some nutrients, such as fibers. Methods of analysis and quantification of these kinds of components are destructive and require lengthy sample preparation and analysis. Therefore, the industry has searched for faster and less invasive methods, such as Near-Infrared Spectroscopy (NIR). NIR is a rapid and cost-effective method, however, it is based on indirect measurements, yielding high amount of data. Therefore, NIR spectroscopy requires calibration with mathematical and statistical tools (Chemometrics) to extract analytical information from the corresponding spectra, as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). PCA is well suited for NIR, once it can handle many spectra at a time and be used for non-supervised classification. Advantages of the PCA, which is also a data reduction technique, is that it reduces the data spectra to a smaller number of latent variables for further interpretation. On the other hand, LDA is a supervised method that searches the Canonical Variables (CV) with the maximum separation among different categories. In LDA, the first CV is the direction of maximum ratio between inter and intra-class variances. The present work used a portable infrared spectrometer (NIR) for identification and classification of pure and fiber-fortified semolina samples. The fiber was added to semolina in two different concentrations, and after the spectra acquisition, the data was used for PCA and LDA to identify and discriminate the samples. The results showed that NIR spectroscopy associate to PCA was very effective in identifying pure and fiber-fortified semolina. Additionally, the classification range of the samples using LDA was between 78.3% and 95% for calibration and 75% and 95% for cross-validation. Thus, after the multivariate analysis such as PCA and LDA, it was possible to verify that NIR associated to chemometric methods is able to identify and classify the different samples in a fast and non-destructive way.

Keywords: Chemometrics, fiber, linear discriminant analysis, near-infrared spectroscopy, principal component analysis, semolina

Procedia PDF Downloads 216
569 Role of Estrogen Receptor-alpha in Mammary Carcinoma by Single Nucleotide Polymorphisms and Molecular Docking: An In-silico Analysis

Authors: Asif Bilal, Fouzia Tanvir, Sibtain Ahmad

Abstract:

Estrogen receptor alpha, also known as estrogen receptor-1, is highly involved in risk of mammary carcinoma. The objectives of this study were to identify non-synonymous SNPs of estrogen receptor and their association with breast cancer and to identify the chemotherapeutic responses of phytochemicals against it via in-silico study design. For this purpose, different online tools. to identify pathogenic SNPs the tools were SIFT, Polyphen, Polyphen-2, fuNTRp, SNAP2, for finding disease associated SNPs the tools SNP&GO, PhD-SNP, PredictSNP, MAPP, SNAP, MetaSNP, PANTHER, and to check protein stability Mu-Pro, I-Mutant, and CONSURF were used. Post-translational modifications (PTMs) were detected by Musitedeep, Protein secondary structure by SOPMA, protein to protein interaction by STRING, molecular docking by PyRx. Seven SNPs having rsIDs (rs760766066, rs779180038, rs956399300, rs773683317, rs397509428, rs755020320, and rs1131692059) showing mutations on I229T, R243C, Y246H, P336R, Q375H, R394S, and R394H, respectively found to be completely deleterious. The PTMs found were 96 times Glycosylation; 30 times Ubiquitination, a single time Acetylation; and no Hydroxylation and Phosphorylation were found. The protein secondary structure consisted of Alpha helix (Hh) is (28%), Extended strand (Ee) is (21%), Beta turn (Tt) is 7.89% and Random coil (Cc) is (44.11%). Protein-protein interaction analysis revealed that it has strong interaction with Myeloperoxidase, Xanthine dehydrogenase, carboxylesterase 1, Glutathione S-transferase Mu 1, and with estrogen receptors. For molecular docking we used Asiaticoside, Ilekudinuside, Robustoflavone, Irinoticane, Withanolides, and 9-amin0-5 as ligands that extract from phytochemicals and docked with this protein. We found that there was great interaction (from -8.6 to -9.7) of these ligands of phytochemicals at ESR1 wild and two mutants (I229T and R394S). It is concluded that these SNPs found in ESR1 are involved in breast cancer and given phytochemicals are highly helpful against breast cancer as chemotherapeutic agents. Further in vitro and in vivo analysis should be performed to conduct these interactions.

Keywords: breast cancer, ESR1, phytochemicals, molecular docking

Procedia PDF Downloads 75
568 Estimating Algae Concentration Based on Deep Learning from Satellite Observation in Korea

Authors: Heewon Jeong, Seongpyo Kim, Joon Ha Kim

Abstract:

Over the last few tens of years, the coastal regions of Korea have experienced red tide algal blooms, which are harmful and toxic to both humans and marine organisms due to their potential threat. It was accelerated owing to eutrophication by human activities, certain oceanic processes, and climate change. Previous studies have tried to monitoring and predicting the algae concentration of the ocean with the bio-optical algorithms applied to color images of the satellite. However, the accurate estimation of algal blooms remains problems to challenges because of the complexity of coastal waters. Therefore, this study suggests a new method to identify the concentration of red tide algal bloom from images of geostationary ocean color imager (GOCI) which are representing the water environment of the sea in Korea. The method employed GOCI images, which took the water leaving radiances centered at 443nm, 490nm and 660nm respectively, as well as observed weather data (i.e., humidity, temperature and atmospheric pressure) for the database to apply optical characteristics of algae and train deep learning algorithm. Convolution neural network (CNN) was used to extract the significant features from the images. And then artificial neural network (ANN) was used to estimate the concentration of algae from the extracted features. For training of the deep learning model, backpropagation learning strategy is developed. The established methods were tested and compared with the performances of GOCI data processing system (GDPS), which is based on standard image processing algorithms and optical algorithms. The model had better performance to estimate algae concentration than the GDPS which is impossible to estimate greater than 5mg/m³. Thus, deep learning model trained successfully to assess algae concentration in spite of the complexity of water environment. Furthermore, the results of this system and methodology can be used to improve the performances of remote sensing. Acknowledgement: This work was supported by the 'Climate Technology Development and Application' research project (#K07731) through a grant provided by GIST in 2017.

Keywords: deep learning, algae concentration, remote sensing, satellite

Procedia PDF Downloads 188
567 Mitigating Biofouling on Reverse Osmosis Membranes: Applying Greener Preservatives to Biofilm Treatment

Authors: Anna Curtin, Matthew Thibodeau, Heather Buckley

Abstract:

Water scarcity is characterized by a lack of access to clean and affordable drinking water, as well as water for hygienic and economic needs. The amount of people effected by water scarcity is expected to increase in the coming years due to climate change, population growth, and pollution, amongst other things. In response, scientists are pursuing cost effective drinking water treatment methods, often with a focus on alternative water sources. Desalination of seawater via reverse osmosis is one promising alternative method. Desalination of seawater via reverse osmosis, however, is limited significantly by biofouling of the filtration membrane. Biofouling is the buildup of microorganisms in a biofilm at the water-membrane interface. It clogs the membrane, decreasing the efficiency of filtration, consequently increasing operational and maintenance costs. Although effective, existing chemical treatment methods can damage the membrane, decreasing the lifespan of the membrane; create antibiotic resistance; and cause harm to humans and the environment if they pass through the membrane into the permeate. The current project focuses on applying safer preservatives used in home and personal care products to RO membranes to investigate the biofouling treatment efficacy. Currently, many of these safer preservatives have only been tested on cells in planktonic phase in suspension cultures, not on cells in biofilms. The results of suspension culture tests are not applicable to biofouling scenarios because organisms in planktonic phase in suspension cultures exhibit different morphological, chemical, and metabolic characteristics than those in a biofilm. Testing antifoulant efficacy of safer preservatives on biofilms will provide more applicable results to biofouling on RO membranes. To do this, biofilms will be grown on 96-well-plates and minimum inhibitory concentrations (MIC90) and log-reductions will be calculated for various safer preservatives. Results from these tests will be used to guide doses for tests of safer preservatives in a bench-scale RO system.

Keywords: reverse osmosis, biofouling, preservatives, antimicrobial, safer alternative, green chemistry

Procedia PDF Downloads 147
566 From the Corniche, Jumping into Vital Restoration: Sustainability Assessment of West Bund

Authors: Yiqi Sun, Zhiyuan Zhang, Chenkun Ma

Abstract:

Regeneration of outmoded urban forms and restorative environments are now recognized as major assets towards achieving sustainable development. Shanghai, like many Chinese cities, is now shifting from an agitated industrial past to more livable development schemes. Therefore, a sustainable approach to Shanghai development consists in turning industrial heritage into places with high potential for improving citizen’s daily life as regard to the three pillars of sustainability, namely: environment, economy, and society. As such, this study focuses on the Corniche in Xuhui West Bund district; a former industrial area converted into recreational public spaces in Xuhui West Bund. This area was the birthplace of the aviation industry of China, and many of the industrial features were preserved. Unused areas have been transformed into exhibition halls and green spaces, integrating some of the original industrial, architectural forms. Our case study investigates the effects of this approach associating urban regeneration with restorative design, as well as its impact on the surrounding neighborhood. Information extracted from visitors’ answers to a questionnaire survey; on-site systematic observation, counts, and measurements allowed us to assess the sustainability of this intervention in terms of accessibility, functionality, cultural and restorative qualities. In general, we found that cycling is not highly encouraged by the current design and level of connectivity, while visitors widely acknowledge the enhancement of cultural heritage resulting from the intervention. Moreover, recreational and restorative areas were found to have a very positive effect on local communities. Indeed, such an approach can provide valuable insights on how future interventions in Chinese major cities could take full advantage of existing assets in creating a more environmental, more livable, and culturally richer city.

Keywords: architectural heritage conservation, cultural urban identity, sustainability assessment, restorative environment, urban regeneration

Procedia PDF Downloads 187
565 Predicting and Optimizing the Mechanical Behavior of a Flax Reinforced Composite

Authors: Georgios Koronis, Arlindo Silva

Abstract:

This study seeks to understand the mechanical behavior of a natural fiber reinforced composite (epoxy/flax) in more depth, utilizing both experimental and numerical methods. It is attempted to identify relationships between the design parameters and the product performance, understand the effect of noise factors and reduce process variations. Optimization of the mechanical performance of manufactured goods has recently been implemented by numerous studies for green composites. However, these studies are limited and have explored in principal mass production processes. It is expected here to discover knowledge about composite’s manufacturing that can be used to design artifacts that are of low batch and tailored to niche markets. The goal is to reach greater consistency in the performance and further understand which factors play significant roles in obtaining the best mechanical performance. A prediction of response function (in various operating conditions) of the process is modeled by the DoE. Normally, a full factorial designed experiment is required and consists of all possible combinations of levels for all factors. An analytical assessment is possible though with just a fraction of the full factorial experiment. The outline of the research approach will comprise of evaluating the influence that these variables have and how they affect the composite mechanical behavior. The coupons will be fabricated by the vacuum infusion process defined by three process parameters: flow rate, injection point position and fiber treatment. Each process parameter is studied at 2-levels along with their interactions. Moreover, the tensile and flexural properties will be obtained through mechanical testing to discover the key process parameters. In this setting, an experimental phase will be followed in which a number of fabricated coupons will be tested to allow for a validation of the design of the experiment’s setup. Finally, the results are validated by performing the optimum set of in a final set of experiments as indicated by the DoE. It is expected that after a good agreement between the predicted and the verification experimental values, the optimal processing parameter of the biocomposite lamina will be effectively determined.

Keywords: design of experiments, flax fabrics, mechanical performance, natural fiber reinforced composites

Procedia PDF Downloads 206
564 Bioengineering of a Plant System to Sustainably Remove Heavy Metals and to Harvest Rare Earth Elements (REEs) from Industrial Wastes

Authors: Edmaritz Hernandez-Pagan, Kanjana Laosuntisuk, Alex Harris, Allison Haynes, David Buitrago, Michael Kudenov, Colleen Doherty

Abstract:

Rare Earth Elements (REEs) are critical metals for modern electronics, green technologies, and defense systems. However, due to their dispersed nature in the Earth’s crust, frequent co-occurrence with radioactive materials, and similar chemical properties, acquiring and purifying REEs is costly and environmentally damaging, restricting access to these metals. Plants could serve as resources for bioengineering REE mining systems. Although there is limited information on how REEs affect plants at a cellular and molecular level, plants with high REE tolerance and hyperaccumulation have been identified. This dissertation aims to develop a plant-based system for harvesting REEs from industrial waste material with a focus on Acid Mine Drainage (AMD), a toxic coal mining product. The objectives are 1) to develop a non-destructive, in vivo detection method for REE detection in Phytolacca plants (REE hyperaccumulator) plants utilizing fluorescence spectroscopy and with a primary focus on dysprosium, 2) to characterize the uptake of REE and Heavy Metals in Phytolacca americana and Phytolacca acinosa (REE hyperaccumulator) in AMD for potential implementation in the plant-based system, 3) to implement the REE detection method to identify REE-binding proteins and peptides for potential enhancement of uptake and selectivity for targeted REEs in the plants implemented in the plant-based system. The candidates are known REE-binding peptides or proteins, orthologs of known metal-binding proteins from REE hyperaccumulator plants, and novel proteins and peptides identified by comparative plant transcriptomics. Lanmodulin, a high-affinity REE-binding protein from methylotrophic bacteria, is used as a benchmark for the REE-protein binding fluorescence assays and expression in A. thaliana to test for changes in REE plant tolerance and uptake.

Keywords: phytomining, agromining, rare earth elements, pokeweed, phytolacca

Procedia PDF Downloads 21
563 Mothers and Moneymakers: A Case Study of How Citizen-Women Shape U.S. Marriage Migration Politics Online

Authors: Gina Longo

Abstract:

Social media, internet technology, and affordable travel have created avenues like tourism and internet chatrooms for Western women to meet foreign partners without paid, third-party intermediaries in regions like the Middle East/North Africa (MENA) and Sub-Saharan Africa (SSA), where men from mid-level developing countries meet and marry Western women and try to relocate. Foreign nationals who marry U.S. citizens have an expedited track to naturalization. U.S. immigration officials require that “green card” petitioning couples demonstrate that their relationships are “valid and subsisting” (i.e., for love) and not fraudulent (i.e., for immigration papers). These requirements are ostensibly gender- and racially-neutral, but migration itself is not; black and white women petitioners who seek partners from these regions and solicit advice from similar others about the potential obstacles to their petitions’ success online. Using an online ethnography and textual analysis of conversation threads on a large on-line immigration forum where U.S. petitioners exchange such information, this study examines how gendered and racialized standards of legitimacy are applied to family and sexuality and used discursively online among women petitioners differently to achieve “genuineness” and define “red flags” indicating potential marriage fraud. This paper argues that forum-women members police immigration requests even before cases reach an immigration officer, and use this social media platform to reconstruct gendered and racialized hierarchies of U.S. citizenship. Women petitioners use the formal criteria of U.S. immigration in ways that reveal gender and racial ideologies, expectations for conformity to a gendered hegemonic family ideal, and policing of women’s sexual agency, fertility, and desirability. These intersectional norms shape their online discussions about the suitability of marriages and of the migration of non-citizen male partners of color to the United States.

Keywords: marriage fraud, migration, online forums, women

Procedia PDF Downloads 123
562 Effect of Three Desensitizers on Dentinal Tubule Occlusion and Bond Strength of Dentin Adhesives

Authors: Zou Xuan, Liu Hongchen

Abstract:

The ideal dentin desensitizing agent should not only have good biological safety, simple clinical operation mode, the superior treatment effect, but also should have a durable effect to resist the oral environmental temperature change and oral mechanical abrasion, so as to achieve a persistent desensitization effect. Also, when using desensitizing agent to prevent the post-operative hypersensitivity, we should not only prevent it from affecting crowns’ retention, but must understand its effects on bond strength of dentin adhesives. There are various of desensitizers and dentin adhesives in clinical treatment. They have different chemical or physical properties. Whether the use of desensitizing agent would affect the bond strength of dentin adhesives still need further research. In this in vitro study, we built the hypersensitive dentin model and post-operative dentin model, to evaluate the sealing effects and durability on exposed tubule by three different dentin desensitizers and to evaluate the sealing effects and the bond strength of dentin adhesives after using three different dentin desensitizers on post-operative dentin. The result of this study could provide some important references for clinical use of dentin desensitizing agent. 1. As to the three desensitizers, the hypersensitive dentin model was built to evaluate their sealing effects on exposed tubule by SEM observation and dentin permeability analysis. All of them could significantly reduce the dentin permeability. 2. Test specimens of three groups treated by desensitizers were subjected to aging treatment with 5000 times thermal cycling and toothbrush abrasion, and then dentin permeability was measured to evaluate the sealing durability of these three desensitizers on exposed tubule. The sealing durability of three groups were different. 3. The post-operative dentin model was built to evaluate the sealing effects of the three desensitizers on post-operative dentin by SEM and methylene blue. All of three desensitizers could reduce the dentin permeability significantly. 4. The influences of three desensitizers on the bonding efficiency of total-etch and self-etch adhesives were evaluated with the micro-tensile bond strength study and bond interface morphology observation. The dentin bond strength for Green or group was significantly lower than the other two groups (P<0.05).

Keywords: dentin, desensitizer, dentin permeability, thermal cycling, micro-tensile bond strength

Procedia PDF Downloads 397
561 Gas Chromatography and Mass Spectrometry in Honey Fingerprinting: The Occurrence of 3,4-dihydro-3-oxoedulan and (E)-4-(r-1',t-2',c-4'-trihydroxy-3',6',6'-trimethylcyclohexyl)-but-3-en-2-one

Authors: Igor Jerkovic

Abstract:

Owing to the attractive sensory properties and low odour thresholds, norisoprenoids (degraded carotenoid-like structures with 3,5,5-trimethylcyclohex-2-enoic unit) have been identified as aroma contributors in a number of different matrices. C₁₃-Norisoprenoids have been found among volatile organic compounds of various honey types as well as C₉//C₁₀-norisoprenoids or C₁₄/C₁₅-norisoprenoids. Besides degradation of abscisic acid (which produces, e.g., dehydrovomifoliol, vomifoliol, others), the cleavage of the C(9)=C(10) bond of other carotenoid precursors directly generates nonspecific C₁₃-norisoprenoids such as trans-β-damascenone, 3-hydroxy-trans-β-damascone, 3-oxo-α-ionol, 3-oxo-α-ionone, β-ionone found in various honey types. β-Damascenone and β-ionone smelling like honey, exhibit the lowest odour threshold values of all C₁₃-norisoprenoids. The presentation is targeted on two uncommon C₁₃-norisoprenoids in the honey flavor that could be used as specific or nonspecific chemical markers of the botanical origin. Namely, after screening of different honey types, the focus was directed on Centaruea cyanus L. and Allium ursinum L. honey. The samples were extracted by headspace solid-phase microextraction (HS-SPME) and ultrasonic solvent extraction (USE) and the extracts were analysed by gas chromatography and mass spectrometry (GC-MS). SPME fiber with divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) coating was applied for the research of C. cyanus honey headspace and predominant identified compound was 3,4-dihydro-3-oxoedulan (2,5,5,8a-tetramethyl-2,3,5,6,8,8a-hexahydro-7H-chromen-7-one also known as 2,3,5,6,8,8a-hexahydro-2,5,5,8a-tetramethyl-7H-1-benzo-pyran-7-one). The oxoedulan structure contains epoxide and it is more volatile in comparison with its hydroxylated precursors. This compound has not been found in other honey types and can be considered specific for C. cyanus honey. The dichloromethane extract of A. ursinum honey contained abundant (E)-4-(r-1',t-2',c-4'-trihydroxy-3',6',6'-trimethylcyclohexyl)-but-3-en-2-one that was previously isolated as dominant substance from the ether extracts of New Zealand thyme honey. Although a wide variety of degraded carotenoid-like substances have been identified from different honey types, this appears to be rare situation where 3,4-dihydro-3-oxoedulan and (E)-4-(r-1',t-2',c-4'-trihydroxy-3',6',6'-trimethylcyclohexyl)-but-3-en-2-one have been found that is of great importance for chemical fingerprinting and identification of the chemical biomarkers that can complement the pollen analysis as the major method for the honey classification.

Keywords: 3, 4-dihydro-3-oxoedulan, (E)-4-(r-1', t-2', c-4'-trihydroxy-3', 6', 6'-trimethylcyclohexyl)-but-3-en-2-one, honey flavour, C₁₃-norisoprenoids

Procedia PDF Downloads 334
560 Automatic Target Recognition in SAR Images Based on Sparse Representation Technique

Authors: Ahmet Karagoz, Irfan Karagoz

Abstract:

Synthetic Aperture Radar (SAR) is a radar mechanism that can be integrated into manned and unmanned aerial vehicles to create high-resolution images in all weather conditions, regardless of day and night. In this study, SAR images of military vehicles with different azimuth and descent angles are pre-processed at the first stage. The main purpose here is to reduce the high speckle noise found in SAR images. For this, the Wiener adaptive filter, the mean filter, and the median filters are used to reduce the amount of speckle noise in the images without causing loss of data. During the image segmentation phase, pixel values are ordered so that the target vehicle region is separated from other regions containing unnecessary information. The target image is parsed with the brightest 20% pixel value of 255 and the other pixel values of 0. In addition, by using appropriate parameters of statistical region merging algorithm, segmentation comparison is performed. In the step of feature extraction, the feature vectors belonging to the vehicles are obtained by using Gabor filters with different orientation, frequency and angle values. A number of Gabor filters are created by changing the orientation, frequency and angle parameters of the Gabor filters to extract important features of the images that form the distinctive parts. Finally, images are classified by sparse representation method. In the study, l₁ norm analysis of sparse representation is used. A joint database of the feature vectors generated by the target images of military vehicle types is obtained side by side and this database is transformed into the matrix form. In order to classify the vehicles in a similar way, the test images of each vehicle is converted to the vector form and l₁ norm analysis of the sparse representation method is applied through the existing database matrix form. As a result, correct recognition has been performed by matching the target images of military vehicles with the test images by means of the sparse representation method. 97% classification success of SAR images of different military vehicle types is obtained.

Keywords: automatic target recognition, sparse representation, image classification, SAR images

Procedia PDF Downloads 369
559 A Geosynchronous Orbit Synthetic Aperture Radar Simulator for Moving Ship Targets

Authors: Linjie Zhang, Baifen Ren, Xi Zhang, Genwang Liu

Abstract:

Ship detection is of great significance for both military and civilian applications. Synthetic aperture radar (SAR) with all-day, all-weather, ultra-long-range characteristics, has been used widely. In view of the low time resolution of low orbit SAR and the needs for high time resolution SAR data, GEO (Geosynchronous orbit) SAR is getting more and more attention. Since GEO SAR has short revisiting period and large coverage area, it is expected to be well utilized in marine ship targets monitoring. However, the height of the orbit increases the time of integration by almost two orders of magnitude. For moving marine vessels, the utility and efficacy of GEO SAR are still not sure. This paper attempts to find the feasibility of GEO SAR by giving a GEO SAR simulator of moving ships. This presented GEO SAR simulator is a kind of geometrical-based radar imaging simulator, which focus on geometrical quality rather than high radiometric. Inputs of this simulator are 3D ship model (.obj format, produced by most 3D design software, such as 3D Max), ship's velocity, and the parameters of satellite orbit and SAR platform. Its outputs are simulated GEO SAR raw signal data and SAR image. This simulating process is accomplished by the following four steps. (1) Reading 3D model, including the ship rotations (pitch, yaw, and roll) and velocity (speed and direction) parameters, extract information of those little primitives (triangles) which is visible from the SAR platform. (2) Computing the radar scattering from the ship with physical optics (PO) method. In this step, the vessel is sliced into many little rectangles primitives along the azimuth. The radiometric calculation of each primitive is carried out separately. Since this simulator only focuses on the complex structure of ships, only single-bounce reflection and double-bounce reflection are considered. (3) Generating the raw data with GEO SAR signal modeling. Since the normal ‘stop and go’ model is not available for GEO SAR, the range model should be reconsidered. (4) At last, generating GEO SAR image with improved Range Doppler method. Numerical simulation of fishing boat and cargo ship will be given. GEO SAR images of different posture, velocity, satellite orbit, and SAR platform will be simulated. By analyzing these simulated results, the effectiveness of GEO SAR for the detection of marine moving vessels is evaluated.

Keywords: GEO SAR, radar, simulation, ship

Procedia PDF Downloads 181
558 Comparative Growth Kinetic Studies of Two Strains Saccharomyces cerevisiae Isolated from Dates and a Commercial Strain

Authors: Nizar Chaira

Abstract:

Dates, main products of the oases, due to their therapeutic interests, are considered highly nutritious fruit. Several studies on the valuation biotechnology and technology of dates are made, and several products are already prepared. Isolation of the yeast Saccharomyces cerevisiae, naturally presents in a scrap of date, optimization of growth in the medium based on date syrup and production biomass can potentially expand the range of secondary products of dates. To this end, this paper tries to study the suitability for processing dates technology and biotechnology to use the date pulp as a carbon source for biological transformation. Two strains of Saccharomyces cerevisiae isolated from date syrup (S1, S2) and a commercial strain have used for this study. After optimization of culture conditions, production in a fermenter on two different media (date syrup and beet molasses) was performed. This is followed by studying the kinetics of growth, protein production and consumption of sugars in crops strain 1, 2 and the commercial strain and on both media. The results obtained showed that a concentration of 2% sugar, 2.5 g/l yeast extract, pH 4.5 and a temperature between 25 and 35°C are the optimal conditions for cultivation in a bioreactor. The exponential phase of the specific growth rate of a strain on both media showed that it is about 0.3625 h-1 for the production of a medium based on date syrup and 0.3521 h-1 on beet molasses with a generation time equal to 1.912 h and on the medium based on date syrup, yeast consumes preferentially the reducing sugars. For the production of protein, we showed that this latter presents an exponential phase when the medium starts to run out of reducing sugars. For strain 2, the specific growth rate is about 0.261h-1 for the production on a medium based on date syrup and 0207 h-1 on beet molasses and the base medium syrup date of the yeast consumes preferentially reducing sugars. For the invertase and other metabolits, these increases rapidly after exhaustion of reducing sugars. The comparison of productivity between the three strains on the medium based on date syrup showed that the maximum value is obtained with the second strain: p = 1072 g/l/h as it is about of 0923 g/l/h for strain 1 and 0644 g/l/h for the commercial strain. Thus, isolates of date syrup are more competitive than the commercial strain and can give the same performance in a shorter time with energy gain.

Keywords: date palm, fermentation, molasses, Saccharomyces, syrup

Procedia PDF Downloads 325
557 A Meta-Analysis of the Association Between Greenspace and Mental Health After COVID-19

Authors: Jae-Hyuk Hyun, Dong-Sung Bae, Jea-Sun Lee

Abstract:

The COVID-19 pandemic emphasized the benefits of natural green space on mental health in pandemic situations. The effects of greenspace on reducing mental health disorder are detected, but limitations impede highlighting the overall effectiveness of greenspace on mental health to be valid and significant. Therefore, this study aims to comprehensively and quantitatively analyze the effectiveness and significance of greenspace in reducing mental disorders after the COVID-19 outbreak. This study adopted a systematic review to select adequate, necessary studies with significant associations between greenspace and mental health after COVID-19. Meta-analysis is performed using the selected studies for calculating and analyzing the combined effect size of greenspace on reducing mental disorder, difference of effect size in various factors of greenspace or mental health, and variables’ effects on greenspace or mental health. Also, a correlation test using MQRS and effect size is performed to determine significant correlations of factors in greenspace and mental health. The analysis confirmed the combined effect size of the association between greenspace and mental health to be interpreted as large enough (medium effect size, 0.565). Various factors consisting of greenspace or mental health had considerable effect sizes, with heterogeneity existing between studies of different greenspace and mental health aspects (subgroups). A significant correlation between factors in greenspace and mental health was identified, with correlations satisfying both reliability and effectiveness used for suggesting necessary greenspace policies with mental health benefits during the pandemic situation. Different variables of the study period, female proportion, and mean age significantly affected certain factors of greenspace or mental health, while the increase in effects of greenspace on mental health was detected as the COVID-19 period continued. Also, the regional heterogeneity of effects on the association between greenspace and mental health is recognized in all factors consisting of greenspace and mental health except for the visitation of greenspace. In conclusion, valid and significant effects were detected in various associations between greenspace and mental health. Based on the results of this study, conducting elaborate research and establishing adequate and necessary greenspace policies and strategies are recommended to effectively benefit the mental health of citizens in future pandemic situations.

Keywords: greenspace, natural environment, mental health, mental disorder, COVID-19, pandemic, systematic review, meta-analysis

Procedia PDF Downloads 72
556 Adaptation Nature-Based Solutions: CBA of Woodlands for Flood Risk Management in the Aire Catchment, UK

Authors: Olivia R. Rendon

Abstract:

More than half of the world population lives in cities, in the UK, for example, 82% of the population was urban by 2013. Cities concentrate valuable and numerous infrastructure and sectors of the national economies. Cities are particularly vulnerable to climate change which will lead to higher damage costs in the future. There is thus a need to develop and invest in adaptation measures for cities to reduce the impact of flooding and other extreme weather events. Recent flood episodes present a significant and growing challenge to the UK and the estimated cost of urban flood damage is 270 million a year for England and Wales. This study aims to carry out cost-benefit analysis (CBA) of a nature-based approach for flood risk management in cities, focusing on the city of Leeds and the wider Aire catchment as a case study. Leeds was chosen as a case study due to its being one of the most flood vulnerable cities in the UK. In Leeds, over 4,500 properties are currently vulnerable to flooding and approximately £450 million of direct damage is estimated for a potential major flood from the River Aire. Leeds is also the second largest Metropolitan District in England with a projected population of 770,000 for 2014. So far the city council has mainly focused its flood risk management efforts on hard infrastructure solutions for the city centre. However, the wider Leeds district is at significant flood risk which could benefit from greener adaptation measures. This study presents estimates of a nature-based adaptation approach for flood risk management in Leeds. This land use management estimate is based on generating costings utilising primary and secondary data. This research contributes findings on the costs of different adaptation measures to flood risk management in a UK city, including the trade-offs and challenges of utilising nature-based solutions. Results also explore the potential implementation of the adaptation measures in the case study and the challenges of data collection and analysis for adaptation in flood risk management.

Keywords: green infrastructure, ecosystem services, woodland, adaptation, flood risk

Procedia PDF Downloads 293