Search results for: dual-SLA indicators for computing force applications
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10781

Search results for: dual-SLA indicators for computing force applications

7241 Knowledge Transfer in Industrial Clusters

Authors: Ana Paula Lisboa Sohn, Filipa Dionísio Vieria, Nelson Casarotto, Idaulo José Cunha

Abstract:

This paper aims at identifying and analyzing the knowledge transmission channels in textile and clothing clusters located in Brazil and in Europe. Primary data was obtained through interviews with key individuals. The collection of primary data was carried out based on a questionnaire with ten categories of indicators of knowledge transmission. Secondary data was also collected through a literature review and through international organizations sites. Similarities related to the use of the main transmission channels of knowledge are observed in all cases. The main similarities are: influence of suppliers of machinery, equipment and raw materials; imitation of products and best practices; training promoted by technical institutions and businesses; and cluster companies being open to acquire new knowledge. The main differences lie in the relationship between companies, where in Europe the intensity of this relationship is bigger when compared to Brazil. The differences also occur in importance and frequency of the relationship with the government, with the cultural environment, and with the activities of research and development. It is also found factors that reduce the importance of geographical proximity in transmission of knowledge, and in generating trust and the establishment of collaborative behavior.

Keywords: industrial clusters, interorganizational learning, knowledge transmission channels, textile and clothing industry

Procedia PDF Downloads 366
7240 Hydrodynamic Behaviour Study of Fast Mono-Hull and Catamaran Vessels in Calm Waters Using Free Surface Flow Analysis

Authors: Mohammad Sadeghian, Mohsen Sadeghian

Abstract:

In this paper, planning catamaran and mono-hull vessels resistance and trim in calm waters were considered. Hydrodynamic analysis of fast mono-hull planning vessel was also investigated. For hull form geometry optimization, numerical methods of different parameters were used for this type of vessels. Hull material was selected as carbon fiber composite. Exact architectural aspects were specified and stability calculations were performed, as well. Hydrodynamic calculations to extract the resistance force using semi-analytical methods and numerical modeling were carried out. Free surface numerical analysis of vessel in designed draft using finite volume method and double phase were evaluated and verified by experimental tests.

Keywords: fast vessel, hydrostatic and hydrodynamic optimization, free surface flow, computational fluid dynamics

Procedia PDF Downloads 282
7239 Chitosan Hydrogel Containing Nitric Oxide Donors with Potent Antibacterial Effect

Authors: Milena Trevisan Pelegrino, Bruna De Araujo Lima, Mônica H. M. Do Nascimento, Christiane B. Lombello, Marcelo Brocchi, Amedea B. Seabra

Abstract:

Nitric oxide (NO) is a small molecule involved in a wide range of physiological and pathophysiological processes, including vasodilatation, control of inflammatory pain, wound healing, and antibacterial activities. As NO is a free radical, the design of drugs that generates therapeutic amounts of NO in controlled spatial and time manners is still a challenge. In this study, the NO donor S-nitrosoglutathione (GSNO) was incorporated into the thermoresponsive Pluronic F-127 (PL) - chitosan (CS) hydrogel, in an easy and economically feasible methodology. CS is a polysaccharide with known antimicrobial and biocompatibility properties. Scanning electron microscopy, rheology and differential scanning calorimetry techniques were used for hydrogel characterization. The results demonstrated that the hydrogel has a smooth surface, thermoresponsive behavior, and good mechanical stability. The kinetics of NO release and GSNO diffusion from GSNO-containing PL/CS hydrogel demonstrated a sustained NO/GSNO release, in concentrations suitable for biomedical applications, at physiological and skin temperatures. The GSNO-PL/CS hydrogel demonstrated a concentration-dependent toxicity to Vero cells, and antimicrobial activity to Pseudomonas aeruginosa (minimum inhibitory concentration and minimum bactericidal concentration values of 0.5 µg·mL-1 of hydrogel, which correspondents to 1 mmol·L-1 of GSNO). Interesting, the concentration range in which the NO-releasing hydrogel demonstrated antibacterial effect was not found toxic to Vero mammalian cell. Thus, GSNO-PL/CS hydrogel is suitable biomaterial for topical NO delivery applications.

Keywords: antimicrobial, chitosan, biocompatibility, S-nitrosothiols

Procedia PDF Downloads 185
7238 Equal Channel Angular Pressing of Al1050 Sheets: Experimental and Finite Element Survey

Authors: P. M. Keshtiban, M. Zdshakoyan, G. Faragi

Abstract:

Different severe plastic deformation (SPD) methods are the most successful ways to build nano-structural materials from coarse grain samples without changing the cross-sectional area. One of the most widely used methods in the SPD process is equal channel angler pressing (ECAP). In this paper, ECAP process on Al1050 sheets was evaluated at room temperature by both experiments and finite element method. Since, one of the main objectives of SPD processes is to achieve high equivalent plastic strain (PEEQ) in one cycle, the values of PEEQ obtained by finite element simulation. Also, force-displacement curve achieved by FEM. To study the changes of mechanical properties, micro-hardness tests were conducted on samples and improvement in the mechanical properties were investigated. Results show that there is the good proportion between FEM, theory and experimental results.

Keywords: AL1050, experiments, finite element method, severe plastic deformation

Procedia PDF Downloads 420
7237 Unsteady Flow Simulations for Microchannel Design and Its Fabrication for Nanoparticle Synthesis

Authors: Mrinalini Amritkar, Disha Patil, Swapna Kulkarni, Sukratu Barve, Suresh Gosavi

Abstract:

Micro-mixers play an important role in the lab-on-a-chip applications and micro total analysis systems to acquire the correct level of mixing for any given process. The mixing process can be classified as active or passive according to the use of external energy. Literature of microfluidics reports that most of the work is done on the models of steady laminar flow; however, the study of unsteady laminar flow is an active area of research at present. There are wide applications of this, out of which, we consider nanoparticle synthesis in micro-mixers. In this work, we have developed a model for unsteady flow to study the mixing performance of a passive micro mixer for reactants used for such synthesis. The model is developed in Finite Volume Method (FVM)-based software, OpenFOAM. The model is tested by carrying out the simulations at Re of 0.5. Mixing performance of the micro-mixer is investigated using simulated concentration values of mixed species across the width of the micro-mixer and calculating the variance across a line profile. Experimental validation is done by passing dyes through a Y shape micro-mixer fabricated using polydimethylsiloxane (PDMS) polymer and comparing variances with the simulated ones. Gold nanoparticles are later synthesized through the micro-mixer and collected at two different times leading to significantly different size distributions. These times match with the time scales over which reactant concentrations vary as obtained from simulations. Our simulations could thus be used to create design aids for passive micro-mixers used in nanoparticle synthesis.

Keywords: Lab-on-chip, LOC, micro-mixer, OpenFOAM, PDMS

Procedia PDF Downloads 161
7236 Cybersecurity Protection Structures: The Case of Lesotho

Authors: N. N. Mosola, K. F. Moeketsi, R. Sehobai, N. Pule

Abstract:

The Internet brings increasing use of Information and Communications Technology (ICT) services and facilities. Consequently, new computing paradigms emerge to provide services over the Internet. Although there are several benefits stemming from these services, they pose several risks inherited from the Internet. For example, cybercrime, identity theft, malware etc. To thwart these risks, this paper proposes a holistic approach. This approach involves multidisciplinary interactions. The paper proposes a top-down and bottom-up approach to deal with cyber security concerns in developing countries. These concerns range from regulatory and legislative areas, cyber awareness, research and development, technical dimensions etc. The main focus areas are highlighted and a cybersecurity model solution is proposed. The paper concludes by combining all relevant solutions into a proposed cybersecurity model to assist developing countries in enhancing a cyber-safe environment to instill and promote a culture of cybersecurity.

Keywords: cybercrime, cybersecurity, computer emergency response team, computer security incident response team

Procedia PDF Downloads 156
7235 Thulium Laser Design and Experimental Verification for NIR and MIR Nonlinear Applications in Specialty Optical Fibers

Authors: Matej Komanec, Tomas Nemecek, Dmytro Suslov, Petr Chvojka, Stanislav Zvanovec

Abstract:

Nonlinear phenomena in the near- and mid-infrared region are attracting scientific attention mainly due to the supercontinuum generation possibilities and subsequent utilizations for ultra-wideband applications like e.g. absorption spectroscopy or optical coherence tomography. Thulium-based fiber lasers provide access to high-power ultrashort pump pulses in the vicinity of 2000 nm, which can be easily exploited for various nonlinear applications. The paper presents a simulation and experimental study of a pulsed thulium laser based for near-infrared (NIR) and mid-infrared (MIR) nonlinear applications in specialty optical fibers. In the first part of the paper the thulium laser is discussed. The thulium laser is based on a gain-switched seed-laser and a series of amplification stages for obtaining output peak powers in the order of kilowatts for pulses shorter than 200 ps in full-width at half-maximum. The pulsed thulium laser is first studied in a simulation software, focusing on seed-laser properties. Afterward, a pre-amplification thulium-based stage is discussed, with the focus of low-noise signal amplification, high signal gain and eliminating pulse distortions during pulse propagation in the gain medium. Following the pre-amplification stage a second gain stage is evaluated with incorporating a thulium-fiber of shorter length with increased rare-earth dopant ratio. Last a power-booster stage is analyzed, where the peak power of kilowatts should be achieved. Examples of analytical study are further validated by the experimental campaign. The simulation model is further corrected based on real components – parameters such as real insertion-losses, cross-talks, polarization dependencies, etc. are included. The second part of the paper evaluates the utilization of nonlinear phenomena, their specific features at the vicinity of 2000 nm, compared to e.g. 1550 nm, and presents supercontinuum modelling, based on the thulium laser pulsed output. Supercontinuum generation simulation is performed and provides reasonably accurate results, once fiber dispersion profile is precisely defined and fiber nonlinearity is known, furthermore input pulse shape and peak power must be known, which is assured thanks to the experimental measurement of the studied thulium pulsed laser. The supercontinuum simulation model is put in relation to designed and characterized specialty optical fibers, which are discussed in the third part of the paper. The focus is placed on silica and mainly on non-silica fibers (fluoride, chalcogenide, lead-silicate) in their conventional, microstructured or tapered variants. Parameters such as dispersion profile and nonlinearity of exploited fibers were characterized either with an accurate model, developed in COMSOL software or by direct experimental measurement to achieve even higher precision. The paper then combines all three studied topics and presents a possible application of such a thulium pulsed laser system working with specialty optical fibers.

Keywords: nonlinear phenomena, specialty optical fibers, supercontinuum generation, thulium laser

Procedia PDF Downloads 321
7234 Design and Radio Frequency Characterization of Radial Reentrant Narrow Gap Cavity for the Inductive Output Tube

Authors: Meenu Kaushik, Ayon K. Bandhoyadhayay, Lalit M. Joshi

Abstract:

Inductive output tubes (IOTs) are widely used as microwave power amplifiers for broadcast and scientific applications. It is capable of amplifying radio frequency (RF) power with very good efficiency. Its compactness, reliability, high efficiency, high linearity and low operating cost make this device suitable for various applications. The device consists of an integrated structure of electron gun and RF cavity, collector and focusing structure. The working principle of IOT is a combination of triode and klystron. The cathode lies in the electron gun produces a stream of electrons. A control grid is placed in close proximity to the cathode. Basically, the input part of IOT is the integrated structure of gridded electron gun which acts as an input cavity thereby providing the interaction gap where the input RF signal is applied to make it interact with the produced electron beam for supporting the amplification phenomena. The paper presents the design, fabrication and testing of a radial re-entrant cavity for implementing in the input structure of IOT at 350 MHz operating frequency. The model’s suitability has been discussed and a generalized mathematical relation has been introduced for getting the proper transverse magnetic (TM) resonating mode in the radial narrow gap RF cavities. The structural modeling has been carried out in CST and SUPERFISH codes. The cavity is fabricated with the Aluminum material and the RF characterization is done using vector network analyzer (VNA) and the results are presented for the resonant frequency peaks obtained in VNA.

Keywords: inductive output tubes, IOT, radial cavity, coaxial cavity, particle accelerators

Procedia PDF Downloads 124
7233 Numerical Modelling of Skin Tumor Diagnostics through Dynamic Thermography

Authors: Luiz Carlos Wrobel, Matjaz Hribersek, Jure Marn, Jurij Iljaz

Abstract:

Dynamic thermography has been clinically proven to be a valuable diagnostic technique for skin tumor detection as well as for other medical applications such as breast cancer diagnostics, diagnostics of vascular diseases, fever screening, dermatological and other applications. Thermography for medical screening can be done in two different ways, observing the temperature response under steady-state conditions (passive or static thermography), and by inducing thermal stresses by cooling or heating the observed tissue and measuring the thermal response during the recovery phase (active or dynamic thermography). The numerical modelling of heat transfer phenomena in biological tissue during dynamic thermography can aid the technique by improving process parameters or by estimating unknown tissue parameters based on measured data. This paper presents a nonlinear numerical model of multilayer skin tissue containing a skin tumor, together with the thermoregulation response of the tissue during the cooling-rewarming processes of dynamic thermography. The model is based on the Pennes bioheat equation and solved numerically by using a subdomain boundary element method which treats the problem as axisymmetric. The paper includes computational tests and numerical results for Clark II and Clark IV tumors, comparing the models using constant and temperature-dependent thermophysical properties, which showed noticeable differences and highlighted the importance of using a local thermoregulation model.

Keywords: boundary element method, dynamic thermography, static thermography, skin tumor diagnostic

Procedia PDF Downloads 107
7232 Revisiting the Impact of Oil Price on Trade Deficit of Pakistan: Evidence from Nonlinear Auto-Regressive Distributed Lag Model and Asymmetric Multipliers

Authors: Qaiser Munir, Hamid Hussain

Abstract:

Oil prices are believed to have a major impact on several economic indicators, leading to several instances where a comparison between oil prices and a trade deficit of oil-importing countries have been carried out. Building upon the narrative, this paper sheds light on the ongoing debate by inquiring upon the possibility of asymmetric linkages between oil prices, industrial production, exchange rate, whole price index, and trade deficit. The analytical tool used to further understand the complexities of a recent approach called nonlinear auto-regressive distributed lag model (NARDL) is utilised. Our results suggest that there are significant asymmetric effects among the main variables of interest. Further, our findings indicate that any variation in oil prices, industrial production, exchange rate, and whole price index on trade deficit tend to fluctuate in the long run. Moreover, the long-run picture denotes that increased oil price leads to a negative impact on the trade deficit, which, in its true essence, is a disproportionate impact. In addition to this, the Wald test simultaneously conducted concludes the absence of any significant evidence of the asymmetry in the oil prices impact on the trade balance in the short-run.

Keywords: trade deficit, oil prices, developing economy, NARDL

Procedia PDF Downloads 133
7231 Valorisation of Waste Chicken Feathers: Electrospun Antibacterial Nanoparticles-Embedded Keratin Composite Nanofibers

Authors: Lebogang L. R. Mphahlele, Bruce B. Sithole

Abstract:

Chicken meat is the highest consumed meat in south Africa, with a per capita consumption of >33 kg yearly. Hence, South Africa produces over 250 million kg of waste chicken feathers each year, the majority of which is landfilled or incinerated. The discarded feathers have caused environmental pollution and natural protein resource waste. Therefore, the valorisation of waste chicken feathers is measured as a more environmentally friendly and cost-effective treatment. Feather contains 91% protein, the main component being beta-keratin, a fibrous and insoluble structural protein extensively cross linked by disulfide bonds. Keratin is usually converted it into nanofibers via electrospinning for a variety of applications. keratin nanofiber composites have many potential biomedical applications for their attractive features, such as high surface-to-volume ratio and very high porosity. The application of nanofibers in the biomedical wound dressing requires antimicrobial properties for materials. One approach is incorporating inorganic nanoparticles, among which silver nanoparticles played an important alternative antibacterial agent and have been studied against many types of microbes. The objective of this study is to combine synthetic polymer, chicken feather keratin, and antibacterial nanoparticles to develop novel electrospun antibacterial nanofibrous composites for possible wound dressing application. Furthermore, this study will converting a two-dimensional electrospun nanofiber membrane to three-dimensional fiber networks that resemble the structure of the extracellular matrix (ECM)

Keywords: chicken feather keratin, nanofibers, nanoparticles, nanocomposites, wound dressing

Procedia PDF Downloads 132
7230 Experimental and Finite Element Analysis for Mechanics of Soil-Tool Interaction

Authors: A. Armin, R. Fotouhi, W. Szyszkowski

Abstract:

In this paper a 3-D finite element (FE) investigation of soil-blade interaction is described. The effects of blade’s shape and rake angle are examined both numerically and experimentally. The soil is considered as an elastic-plastic granular material with non-associated Drucker-Prager material model. Contact elements with different properties are used to mimic soil-blade sliding and soil-soil cutting phenomena. A separation criterion is presented and a procedure to evaluate the forces acting on the blade is given and discussed in detail. Experimental results were derived from tests using soil bin facility and instruments at the University of Saskatchewan. During motion of the blade, load cells collect data and send them to a computer. The measured forces using load cells had noisy signals which are needed to be filtered. The FE results are compared with experimental results for verification. This technique can be used in blade shape optimization and design of more complicated blade’s shape.

Keywords: finite element analysis, experimental results, blade force, soil-blade contact modeling

Procedia PDF Downloads 320
7229 Reduction of Dynamic Influences in Composite Rubber-Concrete Block Designed to Walls Construction

Authors: Maciej Major, Izabela Major

Abstract:

The aim of this paper is a numerical analysis of three-layered block design to walls construction subjected to the dynamic load. The block consists of the layers: concrete with rubber pads in shape of crosses, space filled with air and concrete with I-shape rubber pads. The main purpose of rubber inserts embedded during the production process is additional protection against the transversal dynamic load. For the analysis, as rubber, the Zahorski hyperelastic incompressible material model was assumed. A concentrated force as dynamic load applied to the external block surface was investigated. The results for the considered block observed as the stress distribution plot were compared to the results obtained for the solid concrete block. In order to estimate the percentage damping of proposed composite, rubber-concrete block in relation to the solid block the numerical analysis with the use of finite element method based on ADINA software was performed.

Keywords: dynamics, composite, rubber, Zahorski

Procedia PDF Downloads 241
7228 User Satisfaction Survey Based Facility Performance Evaluation

Authors: Gopikrishnan Seshadhri, V. M. Topkar

Abstract:

Facility management post occupation is a facet that has gained tremendous ground in the recent times. While the efficiency of expenditure and utilization of all types of resources are monitored to ensure timely completion with minimum cost and acceptable quality during construction phase, value for money comes out only when the facility performs satisfactorily post occupation, meeting aspirations and expectations of users of the facility. It is more so for the public facilities. Due to the paradigm shift in focus to outcome based performance evaluation, user satisfaction obtained mainly through questionnaires has become the single important criterion in performance evaluation. Questionnaires presently being used to gauge user satisfaction being subjective, the feedback obtained do not necessarily reflect actual performance. Hence, there is a requirement of developing a survey instrument that can gauge user satisfaction as objectively as possible and truly reflects the ground reality. A near correct picture of actual performance of the built facility from the user point of view will enable facility managers to address pertinent issues. This paper brings out the need for an effective survey instrument that will elicit more objective user response. It also lists steps involved in formulation of such an instrument.

Keywords: facility performance evaluation, attributes, attribute descriptors, user satisfaction surveys, statistical methods, performance indicators

Procedia PDF Downloads 289
7227 Moving towards a General Definition of Public Happiness: A Grounded Theory Approach to the Recent Academic Research on Well-Being

Authors: Cristina Sanchez-Sanchez

Abstract:

Although there seems to be a growing interest in the study of the citizen’s happiness as an alternative measure of a country’s progress to GDP, happiness as a public concern is still an ambiguous concept, hard to define. Moreover, different notions are used indiscriminately to talk about the same thing. This investigation aims to determine the conceptions of happiness, well-being and quality of life that originate from the indexes that different governments and public institutions around the world have created to study them. Through the Scoping Review method, this study identifies the recent academic research in this field (a total of 267 documents between 2006 and 2016) from some of the most popular social sciences databases around the world, Web of Science, Scopus, JSTOR, Sage, EBSCO, IBSS and Google Scholar, and in Spain, ISOC and Dialnet. These 267 documents referenced 53 different indexes and researches. The Grounded Theory method has been applied to a sample of 13 indexes in order to identify the main categories they use to determine these three concepts. The results show that these are multi-dimensional concepts and similar indicators are used indistinctly to measure happiness, well-being and quality of life.

Keywords: common good, grounded theory, happiness economics, happiness index, quality of life, scoping review, well-being

Procedia PDF Downloads 279
7226 Immobilized Iron Oxide Nanoparticles for Stem Cell Reconstruction in Magnetic Particle Imaging

Authors: Kolja Them, Johannes Salamon, Harald Ittrich, Michael Kaul, Tobias Knopp

Abstract:

Superparamagnetic iron oxide nanoparticles (SPIONs) are nanoscale magnets which can be biologically functionalized for biomedical applications. Stem cell therapies to repair damaged tissue, magnetic fluid hyperthermia for cancer therapy and targeted drug delivery based on SPIONs are prominent examples where the visualization of a preferably low concentrated SPION distribution is essential. In 2005 a new method for tomographic SPION imaging has been introduced. The method named magnetic particle imaging (MPI) takes advantage of the nanoparticles magnetization change caused by an oscillating, external magnetic field and allows to directly image the time-dependent nanoparticle distribution. The SPION magnetization can be changed by the electron spin dynamics as well as by a mechanical rotation of the nanoparticle. In this work different calibration methods in MPI are investigated for image reconstruction of magnetically labeled stem cells. It is shown that a calibration using rotationally immobilized SPIONs provides a higher quality of stem cell images with fewer artifacts than a calibration using mobile SPIONs. The enhancement of the image quality and the reduction of artifacts enables the localization and identification of a smaller number of magnetically labeled stem cells. This is important for future medical applications where low concentrations of functionalized SPIONs interacting with biological matter have to be localized.

Keywords: biomedical imaging, iron oxide nanoparticles, magnetic particle imaging, stem cell imaging

Procedia PDF Downloads 465
7225 Experimental Study of Hyperparameter Tuning a Deep Learning Convolutional Recurrent Network for Text Classification

Authors: Bharatendra Rai

Abstract:

The sequence of words in text data has long-term dependencies and is known to suffer from vanishing gradient problems when developing deep learning models. Although recurrent networks such as long short-term memory networks help to overcome this problem, achieving high text classification performance is a challenging problem. Convolutional recurrent networks that combine the advantages of long short-term memory networks and convolutional neural networks can be useful for text classification performance improvements. However, arriving at suitable hyperparameter values for convolutional recurrent networks is still a challenging task where fitting a model requires significant computing resources. This paper illustrates the advantages of using convolutional recurrent networks for text classification with the help of statistically planned computer experiments for hyperparameter tuning.

Keywords: long short-term memory networks, convolutional recurrent networks, text classification, hyperparameter tuning, Tukey honest significant differences

Procedia PDF Downloads 129
7224 Discrete PID and Discrete State Feedback Control of a Brushed DC Motor

Authors: I. Valdez, J. Perdomo, M. Colindres, N. Castro

Abstract:

Today, digital servo systems are extensively used in industrial manufacturing processes, robotic applications, vehicles and other areas. In such control systems, control action is provided by digital controllers with different compensation algorithms, which are designed to meet specific requirements for a given application. Due to the constant search for optimization in industrial processes, it is of interest to design digital controllers that offer ease of realization, improved computational efficiency, affordable return rates, and ease of tuning that ultimately improve the performance of the controlled actuators. There is a vast range of options of compensation algorithms that could be used, although in the industry, most controllers used are based on a PID structure. This research article compares different types of digital compensators implemented in a servo system for DC motor position control. PID compensation is evaluated on its two most common architectures: PID position form (1 DOF), and PID speed form (2 DOF). State feedback algorithms are also evaluated, testing two modern control theory techniques: discrete state observer for non-measurable variables tracking, and a linear quadratic method which allows a compromise between the theoretical optimal control and the realization that most closely matches it. The compared control systems’ performance is evaluated through simulations in the Simulink platform, in which it is attempted to model accurately each of the system’s hardware components. The criteria by which the control systems are compared are reference tracking and disturbance rejection. In this investigation, it is considered that the accurate tracking of the reference signal for a position control system is particularly important because of the frequency and the suddenness in which the control signal could change in position control applications, while disturbance rejection is considered essential because the torque applied to the motor shaft due to sudden load changes can be modeled as a disturbance that must be rejected, ensuring reference tracking. Results show that 2 DOF PID controllers exhibit high performance in terms of the benchmarks mentioned, as long as they are properly tuned. As for controllers based on state feedback, due to the nature and the advantage which state space provides for modelling MIMO, it is expected that such controllers evince ease of tuning for disturbance rejection, assuming that the designer of such controllers is experienced. An in-depth multi-dimensional analysis of preliminary research results indicate that state feedback control method is more satisfactory, but PID control method exhibits easier implementation in most control applications.

Keywords: control, DC motor, discrete PID, discrete state feedback

Procedia PDF Downloads 267
7223 Organization Development’s Role in Environmental, Social and Governance (ESG) Sustainability in the Private Organizations

Authors: Karmela Palma Samson

Abstract:

In recent years, there has been a growing interest in the implementation of Environmental, Social, and Governance (ESG) frameworks in private organizations. The COVID-19 pandemic and increasing global environmental concerns have further highlighted the importance of ESG practices in businesses. To be effective, the development and sustainability of ESG implementation require specific organizational functions. One such function is Organization Development (OD). This study aims to identify the roles of OD in the development, monitoring, and evaluation of ESG in private organizations. The role of OD in sustaining ESG implementation in private organizations was analyzed in this study. Qualitative research was conducted, which included interviews with OD practitioners to understand their role and challenges in maintaining ESG programs and initiatives. The study found that OD practitioners have low participation in managing ESG programs, initiatives, and indicators. However, the study also revealed that the OD function is crucial for the development, monitoring, and evaluation of ESG implementation in private organizations. In essence, the study highlights the importance of the OD function in ensuring the success of ESG implementation in private organizations. With their expertise in organizational development, OD practitioners can contribute significantly to the development, implementation, and evaluation of ESG initiatives. Therefore, private organizations should involve their OD departments in ESG implementation to ensure that they are sustainable, effective, and aligned with their organizational goals.

Keywords: ESG, organization development, private sector, sustainability

Procedia PDF Downloads 89
7222 Scalable UI Test Automation for Large-scale Web Applications

Authors: Kuniaki Kudo, Raviraj Solanki, Kaushal Patel, Yash Virani

Abstract:

This research mainly concerns optimizing UI test automation for large-scale web applications. The test target application is the HHAexchange homecare management WEB application that seamlessly connects providers, state Medicaid programs, managed care organizations (MCOs), and caregivers through one platform with large-scale functionalities. This study focuses on user interface automation testing for the WEB application. The quality assurance team must execute many manual users interface test cases in the development process to confirm no regression bugs. The team automated 346 test cases; the UI automation test execution time was over 17 hours. The business requirement was reducing the execution time to release high-quality products quickly, and the quality assurance automation team modernized the test automation framework to optimize the execution time. The base of the WEB UI automation test environment is Selenium, and the test code is written in Python. Adopting a compilation language to write test code leads to an inefficient flow when introducing scalability into a traditional test automation environment. In order to efficiently introduce scalability into Test Automation, a scripting language was adopted. The scalability implementation is mainly implemented with AWS's serverless technology, an elastic container service. The definition of scalability here is the ability to automatically set up computers to test automation and increase or decrease the number of computers running those tests. This means the scalable mechanism can help test cases run parallelly. Then test execution time is dramatically decreased. Also, introducing scalable test automation is for more than just reducing test execution time. There is a possibility that some challenging bugs are detected by introducing scalable test automation, such as race conditions, Etc. since test cases can be executed at same timing. If API and Unit tests are implemented, the test strategies can be adopted more efficiently for this scalability testing. However, in WEB applications, as a practical matter, API and Unit testing cannot cover 100% functional testing since they do not reach front-end codes. This study applied a scalable UI automation testing strategy to the large-scale homecare management system. It confirmed the optimization of the test case execution time and the detection of a challenging bug. This study first describes the detailed architecture of the scalable test automation environment, then describes the actual performance reduction time and an example of challenging issue detection.

Keywords: aws, elastic container service, scalability, serverless, ui automation test

Procedia PDF Downloads 107
7221 Additive Manufacturing of Microstructured Optical Waveguides Using Two-Photon Polymerization

Authors: Leonnel Mhuka

Abstract:

Background: The field of photonics has witnessed substantial growth, with an increasing demand for miniaturized and high-performance optical components. Microstructured optical waveguides have gained significant attention due to their ability to confine and manipulate light at the subwavelength scale. Conventional fabrication methods, however, face limitations in achieving intricate and customizable waveguide structures. Two-photon polymerization (TPP) emerges as a promising additive manufacturing technique, enabling the fabrication of complex 3D microstructures with submicron resolution. Objectives: This experiment aimed to utilize two-photon polymerization to fabricate microstructured optical waveguides with precise control over geometry and dimensions. The objective was to demonstrate the feasibility of TPP as an additive manufacturing method for producing functional waveguide devices with enhanced performance. Methods: A femtosecond laser system operating at a wavelength of 800 nm was employed for two-photon polymerization. A custom-designed CAD model of the microstructured waveguide was converted into G-code, which guided the laser focus through a photosensitive polymer material. The waveguide structures were fabricated using a layer-by-layer approach, with each layer formed by localized polymerization induced by non-linear absorption of the laser light. Characterization of the fabricated waveguides included optical microscopy, scanning electron microscopy, and optical transmission measurements. The optical properties, such as mode confinement and propagation losses, were evaluated to assess the performance of the additive manufactured waveguides. Conclusion: The experiment successfully demonstrated the additive manufacturing of microstructured optical waveguides using two-photon polymerization. Optical microscopy and scanning electron microscopy revealed the intricate 3D structures with submicron resolution. The measured optical transmission indicated efficient light propagation through the fabricated waveguides. The waveguides exhibited well-defined mode confinement and relatively low propagation losses, showcasing the potential of TPP-based additive manufacturing for photonics applications. The experiment highlighted the advantages of TPP in achieving high-resolution, customized, and functional microstructured optical waveguides. Conclusion: his experiment substantiates the viability of two-photon polymerization as an innovative additive manufacturing technique for producing complex microstructured optical waveguides. The successful fabrication and characterization of these waveguides open doors to further advancements in the field of photonics, enabling the development of high-performance integrated optical devices for various applications

Keywords: Additive Manufacturing, Microstructured Optical Waveguides, Two-Photon Polymerization, Photonics Applications

Procedia PDF Downloads 101
7220 Integrated Intensity and Spatial Enhancement Technique for Color Images

Authors: Evan W. Krieger, Vijayan K. Asari, Saibabu Arigela

Abstract:

Video imagery captured for real-time security and surveillance applications is typically captured in complex lighting conditions. These less than ideal conditions can result in imagery that can have underexposed or overexposed regions. It is also typical that the video is too low in resolution for certain applications. The purpose of security and surveillance video is that we should be able to make accurate conclusions based on the images seen in the video. Therefore, if poor lighting and low resolution conditions occur in the captured video, the ability to make accurate conclusions based on the received information will be reduced. We propose a solution to this problem by using image preprocessing to improve these images before use in a particular application. The proposed algorithm will integrate an intensity enhancement algorithm with a super resolution technique. The intensity enhancement portion consists of a nonlinear inverse sign transformation and an adaptive contrast enhancement. The super resolution section is a single image super resolution technique is a Fourier phase feature based method that uses a machine learning approach with kernel regression. The proposed technique intelligently integrates these algorithms to be able to produce a high quality output while also being more efficient than the sequential use of these algorithms. This integration is accomplished by performing the proposed algorithm on the intensity image produced from the original color image. After enhancement and super resolution, a color restoration technique is employed to obtain an improved visibility color image.

Keywords: dynamic range compression, multi-level Fourier features, nonlinear enhancement, super resolution

Procedia PDF Downloads 554
7219 Performance Comparison of AODV and Soft AODV Routing Protocol

Authors: Abhishek, Seema Devi, Jyoti Ohri

Abstract:

A mobile ad hoc network (MANET) represents a system of wireless mobile nodes that can self-organize freely and dynamically into arbitrary and temporary network topology. Unlike a wired network, wireless network interface has limited transmission range. Routing is the task of forwarding data packets from source to a given destination. Ad-hoc On Demand Distance Vector (AODV) routing protocol creates a path for a destination only when it required. This paper describes the implementation of AODV routing protocol using MATLAB-based Truetime simulator. In MANET's node movements are not fixed while they are random in nature. Hence intelligent techniques i.e. fuzzy and ANFIS are used to optimize the transmission range. In this paper, we compared the transmission range of AODV, fuzzy AODV and ANFIS AODV. For soft computing AODV, we have taken transmitted power and received threshold as input and transmission range as output. ANFIS gives better results as compared to fuzzy AODV.

Keywords: ANFIS, AODV, fuzzy, MANET, reactive routing protocol, routing protocol, truetime

Procedia PDF Downloads 498
7218 Estimation Cytokines IL-2, IL-4, IL-8 in Serum and Nasal Secretions of Patients with Various Forms of Chronic Polypoid Rhinosinusitis

Authors: U. N. Vokhidov, U. S. Khasanov, A. A. Ismailova

Abstract:

Background: Currently, the researches on the development of chronic polypoid rhinosinusitis cytokines play a major role. The aim of this study was the comparison of indicators IL-2, IL-4, IL-8 in the peripheral blood and nasal secretions of patients with various forms of chronic polypoid rhinosinusitis. Material and methods: We studied 50 patients with chronic polypoid rhinosinusitis receiving hospital treatment in the ENT department of the 3-rd clinic of Tashkent Medical Academy. It was carried out a comprehensive study including morphological examination, immunological study of blood and nasal secretions on the IL-2, IL-4 and IL-8. Results: The results of immunological studies of peripheral blood showed that patients with ‘eosinophilic’ polyps were increased IL-2 and IL-4 in patients with ‘neutrophils’ polyps were increased IL-2 and IL-8. Immunological investigation nasal secretions taken from patients with nasal polyposis rhinosinusitis showed that patients with ‘eosinophilic’ polyps also increased IL- 2 and IL- 4 in patients with ‘neutrophils’ polyps - increased IL-2 and IL-8. Conclusion: In patients with ‘eosinophilic’ polyps revealed the presence of immunity to the allergy of the body, patients with ‘neutrophilic’ polyps identified immunity to the presence of inflammation, it is necessary to take into account the doctor-otolaryngologist when choosing a treatment strategy for the prevention of recurrence of the disease.

Keywords: chronic polypoid rhinosinusitis, immunology, cytikines, nasal secretion

Procedia PDF Downloads 221
7217 SAP: A Smart Amusement Park System for Tourist Services

Authors: Pei-Chun Lee, Sheng-Shih Wang, Pei-Hsuan Ku

Abstract:

Many existing amusement parks have been operated with assistance of a variety of information and communications technologies to design friendly and efficient service systems for tourists. However, these systems leave various levels of decisions to tourists to make by themselves. This incurs pressure on tourists and thereby bringing negative experience in their tour. This paper proposes a smart amusement park system to offer each tourist the GPS-based customized plan without tourists making decisions by themselves. The proposed system consists of the mobile app subsystem, the central subsystem, and the detecting/counting subsystem. The mobile app subsystem interacts with the central subsystem. The central subsystem performs the necessary computing and database management of the proposed system. The detecting/counting subsystem aims to detect and compute the number of visitors to an attraction. Experimental results show that the proposed system can not only work well, but also provide an innovative business operating model for owners of amusement parks.

Keywords: amusement park, location-based service, LBS, mobile app, tourist service

Procedia PDF Downloads 513
7216 Cost Efficient Receiver Tube Technology for Eco-Friendly Concentrated Solar Thermal Applications

Authors: M. Shiva Prasad, S. R. Atchuta, T. Vijayaraghavan, S. Sakthivel

Abstract:

The world is in need of efficient energy conversion technologies which are affordable, accessible, and sustainable with eco-friendly nature. Solar energy is one of the cornerstones for the world’s economic growth because of its abundancy with zero carbon pollution. Among the various solar energy conversion technologies, solar thermal technology has attracted a substantial renewed interest due to its diversity and compatibility in various applications. Solar thermal systems employ concentrators, tracking systems and heat engines for electricity generation which lead to high cost and complexity in comparison with photovoltaics; however, it is compatible with distinct thermal energy storage capability and dispatchable electricity which creates a tremendous attraction. Apart from that, employing cost-effective solar selective receiver tube in a concentrating solar thermal (CST) system improves the energy conversion efficiency and directly reduces the cost of technology. In addition, the development of solar receiver tubes by low cost methods which can offer high optical properties and corrosion resistance in an open-air atmosphere would be beneficial for low and medium temperature applications. In this regard, our work opens up an approach which has the potential to achieve cost-effective energy conversion. We have developed a highly selective tandem absorber coating through a facile wet chemical route by a combination of chemical oxidation, sol-gel, and nanoparticle coating methods. The developed tandem absorber coating has gradient refractive index nature on stainless steel (SS 304) and exhibited high optical properties (α ≤ 0.95 & ε ≤ 0.14). The first absorber layer (Cr-Mn-Fe oxides) developed by controlled oxidation of SS 304 in a chemical bath reactor. A second composite layer of ZrO2-SiO2 has been applied on the chemically oxidized substrate by So-gel dip coating method to serve as optical enhancing and corrosion resistant layer. Finally, an antireflective layer (MgF2) has been deposited on the second layer, to achieve > 95% of absorption. The developed tandem layer exhibited good thermal stability up to 250 °C in open air atmospheric condition and superior corrosion resistance (withstands for > 200h in salt spray test (ASTM B117)). After the successful development of a coating with targeted properties at a laboratory scale, a prototype of the 1 m tube has been demonstrated with excellent uniformity and reproducibility. Moreover, it has been validated under standard laboratory test condition as well as in field condition with a comparison of the commercial receiver tube. The presented strategy can be widely adapted to develop highly selective coatings for a variety of CST applications ranging from hot water, solar desalination, and industrial process heat and power generation. The high-performance, cost-effective medium temperature receiver tube technology has attracted many industries, and recently the technology has been transferred to Indian industry.

Keywords: concentrated solar thermal system, solar selective coating, tandem absorber, ultralow refractive index

Procedia PDF Downloads 89
7215 The Evaluation of Electricity Generation and Consumption from Solar Generator: A Case Study at Rajabhat Suan Sunandha’s Learning Center in Samutsongkram

Authors: Chonmapat Torasa

Abstract:

This paper presents the performance of electricity generation and consumption from solar generator installed at Rajabhat Suan Sunandha’s learning center in Samutsongkram. The result from the experiment showed that solar cell began to work and distribute the current into the system when the solar energy intensity was 340 w/m2, starting from 8:00 am to 4:00 pm (duration of 8 hours). The highest intensity read during the experiment was 1,051.64w/m2. The solar power was 38.74kWh/day. The electromotive force from solar cell averagely was 93.6V. However, when connecting solar cell with the battery charge controller system, the voltage was dropped to 69.07V. After evaluating the power distribution ability and electricity load of tested solar cell, the result showed that it could generate power to 11 units of 36-wattfluorescent lamp bulbs, which was altogether 396W. In the meantime, the AC to DC power converter generated 3.55A to the load, and gave 781VA.

Keywords: solar cell, solar-cell power generating system, computer, systems engineering

Procedia PDF Downloads 326
7214 Economic Impact of a Distribution Company under Power System Restructuring

Authors: Safa’ Abdelkarim Hammad

Abstract:

The electrical power system is one of the main parts of the nation's infrastructure, and the availability and cost of electricity are critical factors in industrial competitiveness and strategy. Restructuring of the electricity supply industries is a very complex exercise based on national energy strategies and policies, macroeconomic developments, and national conditions, and its application varies from country to country. Electricity regulation of natural monopolies is a challenging task. Regulators face the problem of providing appropriate incentives for improvement of efficiency. Incentive regulation is often considered as an efficient regulatory tool to handle the problem, and it is widely applied in several countries. However, the exact regulation methodologies differ from one country to another. Network quantitative reliability evaluation is an essential factor with regard to the quality of supply. The main factors used to judge the reliability of supply is measured by the number and duration of interruptions experienced by customers. Several indicators are used to evaluate reliability in distribution networks. This paper addresses the impact of incentive regulation and performance benchmarking in the field of electricity distribution in Jordan. The theory of efficiency measurement and the most common models; NCSQS and DEA models are presented.

Keywords: incentive regulations, reliability, restructuring, Tarrif

Procedia PDF Downloads 122
7213 Analysis of Fault Tolerance on Grid Computing in Real Time Approach

Authors: Parampal Kaur, Deepak Aggarwal

Abstract:

In the computational Grid, fault tolerance is an imperative issue to be considered during job scheduling. Due to the widespread use of resources, systems are highly prone to errors and failures. Hence, fault tolerance plays a key role in the grid to avoid the problem of unreliability. Scheduling the task to the appropriate resource is a vital requirement in computational Grid. The fittest resource scheduling algorithm searches for the appropriate resource based on the job requirements, in contrary to the general scheduling algorithms where jobs are scheduled to the resources with best performance factor. The proposed method is to improve the fault tolerance of the fittest resource scheduling algorithm by scheduling the job in coordination with job replication when the resource has low reliability. Based on the reliability index of the resource, the resource is identified as critical. The tasks are scheduled based on the criticality of the resources. Results show that the execution time of the tasks is comparatively reduced with the proposed algorithm using real-time approach rather than a simulator.

Keywords: computational grid, fault tolerance, task replication, job scheduling

Procedia PDF Downloads 436
7212 Investigating the Formation of Nano-Hydroxyapatite on a Biocompatible and Antibacterial Cu/Mg-Substituted Bioglass

Authors: Elhamalsadat Ghaffari, Moghan Amirhosseinian, Amir Khaleghipour

Abstract:

Multifunctional bioactive glasses (BGs) are designed with a focus on the provision of bactericidal and biological properties desired for angiogenesis, osteogenesis, and ultimately potential applications in bone tissue engineering. To achieve these, six sol-gel copper/magnesium substituted derivatives of 58S-BG, i.e. a mol% series of 60SiO2-4P2O5-5CuO-(31-x) CaO/xMgO (where x=0, 1, 3, 5, 8, and 10), were synthesized. Afterwards, the effect of MgO/CaO substitution on the in vitro formation of nano-hydroxyapatite (HA), osteoblast-like cell responses and BGs antibacterial performance were studied. During the BGs synthesis, the elimination of nitrates was achieved at 700 °C that prevented the BGs crystallization and stabilized the obtained dried gels. The structural and morphological evaluations were performed with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). These characterizations revealed that Cu-substituted 58S-BG consisting of 5 mol% MgO (BG-5/5) slightly had retarded the formation of HA. In addition, Cu-substituted 58S-BGs consisting 8 mol% and 10 mol% MgO (BG-5/8 and BG-5/10) displayed lower bioactivity probably due to the lower ion release rate of Ca–Si into the simulated body fluid (SBF). The determination of 3-(4, 5 dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and alkaline phosphate (ALP) activities proved that the highest values of both differentiation and proliferation of MC3T3-E1 cells can be obtained from a 5 mol% MgO substituted BG, while the over addition of MgO (8 mol% and 10 mol%) decreased the bioactivity. Furthermore, these novel Cu/Mg-substituted 58S-BGs displayed antibacterial effect against methicillin-resistant Staphylococcus aureus bacteria. Taken together, the results suggest the equally-substituted BG-5/5 (i.e. the one consists of 5 mol% of both CuO and MgO) as a promising candidate for bone tissue engineering, among all newly designed BGs in this work, owing to its desirable cell proliferation, ALP activity and antibacterial properties.

Keywords: apatite, bioactivity, biomedical applications, sol-gel processes

Procedia PDF Downloads 128