Search results for: prediction modelling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3907

Search results for: prediction modelling

397 Study the Multifaceted Therapeutic Properties of the IQGAP1shRNA Plasmid on Rat Liver Cancer Model

Authors: Khairy M. A. Zoheir, Nehma A. Ali, Ahmed M. Darwish, Mohamed S. Kishta, Ahmed A. Abd-Rabou, Mohamed A. Abdelhafez, Karima F. Mahrous

Abstract:

The study comprehensively investigated the multifaceted therapeutic properties of the IQGAP1shRNA plasmid, encompassing its hepatoprotective, immunomodulatory, and anticancer activities. The study employed a Prednisolone-induced immunosuppressed rat model to assess the hepatoprotective and immunomodulatory effects of IQGAP1shRNA plasmid. Using this model, IQGAP1shRNA plasmid was found to modulate haematopoiesis, improving RBC, platelet, and WBC counts, underscoring its potential in hematopoietic homeostasis. Organ atrophy, a hallmark of immunosuppression in spleen, heart, liver, ovaries, and kidneys, was reversed with IQGAP1shRNA plasmid treatment, reinforcing its hepatotrophic and organotropic capabilities. Elevated hepatic biomarkers (ALT, AST, ALP, LPO) indicative of hepatocellular injury and oxidative stress were reduced with GST, highlighting its hepatoprotective and antioxidative effects. IQGAP1shRNA plasmid also restored depleted antioxidants (GSH and SOD), emphasizing its potent antioxidative and free radical scavenging capabilities. Molecular insights into immune dysregulation revealed downregulation of IQGAP1, IQGAP3 interleukin-2 (IL-2), and interleukin-4 (IL-4) mRNA expression in the liver of immunosuppressed rats. IL-2 and IL-4 play pivotal roles in immune regulation, T-cell activation, and B-cell differentiation. Notably, treatment with IQGAP1shRNA plasmid exhibited a significant upregulation of IL-2 and IL-4 mRNA expression, thereby accentuating its immunomodulatory potential in orchestrating immune homeostasis. Additionally, immune dysregulation was associated with increased levels of TNF-α. However, treatment with IQGAP1shRNA plasmid effectively decreased the levels of TNF-α, further underscoring its role in modulating inflammatory responses and restoring immune balance in immunosuppressed rats. Additionally, pharmacokinetics, bioavailability, drug-likeness, and toxicity risk assessment prediction suggest its potential as a pharmacologically favourable agent with no serious adverse effects. In conclusion, this study confirms the therapeutic potential of the IQGAP1shRNA plasmid, showcasing its effectiveness against hepatotoxicity, oxidative stress, immunosuppression, and its notable anticancer activity.

Keywords: IQGAP1, shRNA, cancer, liver, rat

Procedia PDF Downloads 15
396 A Modelling of Main Bearings in the Two-Stroke Diesel Engine

Authors: Marcin Szlachetka, Rafal Sochaczewski, Lukasz Grabowski

Abstract:

This paper presents the results of the load simulations of main bearings in a two-stroke Diesel engine. A model of an engine lubrication system with connections of its main lubrication nodes, i.e., a connection of its main bearings in the engine block with the crankshaft, a connection of its crankpins with its connecting rod and a connection of its pin and its piston has been created for our calculations performed using the AVL EXCITE Designer. The analysis covers the loads given as a pressure distribution in a hydrodynamic oil film, a temperature distribution on the main bush surfaces for the specified radial clearance values as well as the impact of the force of gas on the minimum oil film thickness in the main bearings depending on crankshaft rotational speeds and temperatures of oil in the bearings. One of the main goals of the research has been to determine whether the minimum thickness of the oil film at which fluid friction occurs can be achieved for each value of crankshaft speed. Our model calculates different oil film parameters, i.e., its thickness, a pressure distribution there, the change in oil temperature. Additional enables an analysis of an oil temperature distribution on the surfaces of the bearing seats. It allows verifying the selected clearances in the bearings of the main engine under normal operation conditions and extremal ones that show a significant increase in temperature above the limit value. The research has been conducted for several engine crankshaft speeds ranging from 1000 rpm to 4000 rpm. The oil pressure in the bearings has ranged 2-5 bar according to engine speeds and the oil temperature has ranged 90-120 °C. The main bearing clearance has been adopted for the calculation and analysis as 0.025 mm. The oil classified as SAE 5W-30 has been used for the simulations. The paper discusses the selected research results referring to several specific operating points and different temperatures of the lubricating oil in the bearings. The received research results show that for the investigated main bearing bushes of the shaft, the results fall within the ranges of the limit values despite the increase in the oil temperature of the bearings reaching 120˚C. The fact that the bearings are loaded with the maximum pressure makes no excessive temperature rise on the bush surfaces. The oil temperature increases by 17˚C, reaching 137˚C at a speed of 4000 rpm. The minimum film thickness at which fluid friction occurs has been achieved for each of the operating points at each of the engine crankshaft speeds. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK ‘PZL-KALISZ’ S.A.’ and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.

Keywords: diesel engine, main bearings, opposing pistons, two-stroke

Procedia PDF Downloads 139
395 The Development of a Precision Irrigation System for Durian

Authors: Chatrabhuti Pipop, Visessri Supattra, Charinpanitkul Tawatchai

Abstract:

Durian is one of the top agricultural products exported by Thailand. There is the massive market potential for the durian industry. While the global demand for Thai durians, especially the demand from China, is very high, Thailand's durian supply is far from satisfying strong demand. Poor agricultural practices result in low yields and poor quality of fruit. Most irrigation systems currently used by the farmers are fixed schedule or fixed rates that ignore actual weather conditions and crop water requirements. In addition, the technologies emerging are too difficult and complex and prices are too high for the farmers to adopt and afford. Many farmers leave the durian trees to grow naturally. With improper irrigation and nutrient management system, durians are vulnerable to a variety of issues, including stunted growth, not flowering, diseases, and death. Technical development or research for durian is much needed to support the wellbeing of the farmers and the economic development of the country. However, there are a limited number of studies or development projects for durian because durian is a perennial crop requiring a long time to obtain the results to report. This study, therefore, aims to address the problem of durian production by developing an autonomous and precision irrigation system. The system is designed and equipped with an industrial programmable controller, a weather station, and a digital flow meter. Daily water requirements are computed based on weather data such as rainfall and evapotranspiration for daily irrigation with variable flow rates. A prediction model is also designed as a part of the system to enhance the irrigation schedule. Before the system was installed in the field, a simulation model was built and tested in a laboratory setting to ensure its accuracy. Water consumption was measured daily before and after the experiment for further analysis. With this system, the crop water requirement is precisely estimated and optimized based on the data from the weather station. Durian will be irrigated at the right amount and at the right time, offering the opportunity for higher yield and higher income to the farmers.

Keywords: Durian, precision irrigation, precision agriculture, smart farm

Procedia PDF Downloads 118
394 Partial Least Square Regression for High-Dimentional and High-Correlated Data

Authors: Mohammed Abdullah Alshahrani

Abstract:

The research focuses on investigating the use of partial least squares (PLS) methodology for addressing challenges associated with high-dimensional correlated data. Recent technological advancements have led to experiments producing data characterized by a large number of variables compared to observations, with substantial inter-variable correlations. Such data patterns are common in chemometrics, where near-infrared (NIR) spectrometer calibrations record chemical absorbance levels across hundreds of wavelengths, and in genomics, where thousands of genomic regions' copy number alterations (CNA) are recorded from cancer patients. PLS serves as a widely used method for analyzing high-dimensional data, functioning as a regression tool in chemometrics and a classification method in genomics. It handles data complexity by creating latent variables (components) from original variables. However, applying PLS can present challenges. The study investigates key areas to address these challenges, including unifying interpretations across three main PLS algorithms and exploring unusual negative shrinkage factors encountered during model fitting. The research presents an alternative approach to addressing the interpretation challenge of predictor weights associated with PLS. Sparse estimation of predictor weights is employed using a penalty function combining a lasso penalty for sparsity and a Cauchy distribution-based penalty to account for variable dependencies. The results demonstrate sparse and grouped weight estimates, aiding interpretation and prediction tasks in genomic data analysis. High-dimensional data scenarios, where predictors outnumber observations, are common in regression analysis applications. Ordinary least squares regression (OLS), the standard method, performs inadequately with high-dimensional and highly correlated data. Copy number alterations (CNA) in key genes have been linked to disease phenotypes, highlighting the importance of accurate classification of gene expression data in bioinformatics and biology using regularized methods like PLS for regression and classification.

Keywords: partial least square regression, genetics data, negative filter factors, high dimensional data, high correlated data

Procedia PDF Downloads 51
393 The Effect of Swirl on the Flow Distribution in Automotive Exhaust Catalysts

Authors: Piotr J. Skusiewicz, Johnathan Saul, Ijhar Rusli, Svetlana Aleksandrova, Stephen. F. Benjamin, Miroslaw Gall, Steve Pierson, Carol A. Roberts

Abstract:

The application of turbocharging in automotive engines leads to swirling flow entering the catalyst. The behaviour of this type of flow within the catalyst has yet to be adequately documented. This work discusses the effect of swirling flow on the flow distribution in automotive exhaust catalysts. Compressed air supplied to a moving-block swirl generator allowed for swirling flow with variable intensities to be generated. Swirl intensities were measured at the swirl generator outlet using single-sensor hot-wire probes. The swirling flow was fed into diffusers with total angles of 10°, 30° and 180°. Downstream of the diffusers, a wash-coated diesel oxidation catalyst (DOC) of length 143.8 mm, diameter 76.2 mm and nominal cell density of 400 cpsi was fitted. Velocity profiles were measured at the outlet sleeve about 30 mm downstream of the monolith outlet using single-sensor hot-wire probes. Wall static pressure was recorded using a multi-tube manometer connected to pressure taps positioned along the diffuser walls. The results show that as swirl is increased, more of the flow is directed towards the diffuser walls. The velocity decreases around the centre-line and maximum velocities are observed close to the outer radius of the monolith for all flow rates. At the maximum swirl intensity, reversed flow was recorded near the centre of the monolith. Wall static pressure measurements in the 180° diffuser indicated no pressure recovery as the flow enters the diffuser. This is indicative of flow separation at the inlet to the diffuser. To gain insight into the flow structure, CFD simulations have been performed for the 180° diffuser for a flow rate of 63 g/s. The geometry of the model consists of the complete assembly from the upstream swirl generator to the outlet sleeve. Modelling of the flow in the monolith was achieved using the porous medium approach, where the monolith with parallel flow channels is modelled as a porous medium that resists the flow. A reasonably good agreement was achieved between the experimental and CFD results downstream of the monolith. The CFD simulations allowed visualisation of the separation zones and central toroidal recirculation zones that occur within the expansion region at certain swirl intensities which are highlighted.

Keywords: catalyst, computational fluid dynamics, diffuser, hot-wire anemometry, swirling flow

Procedia PDF Downloads 304
392 Critical Evaluation of the Transformative Potential of Artificial Intelligence in Law: A Focus on the Judicial System

Authors: Abisha Isaac Mohanlal

Abstract:

Amidst all suspicions and cynicism raised by the legal fraternity, Artificial Intelligence has found its way into the legal system and has revolutionized the conventional forms of legal services delivery. Be it legal argumentation and research or resolution of complex legal disputes; artificial intelligence has crept into all legs of modern day legal services. Its impact has been largely felt by way of big data, legal expert systems, prediction tools, e-lawyering, automated mediation, etc., and lawyers around the world are forced to upgrade themselves and their firms to stay in line with the growth of technology in law. Researchers predict that the future of legal services would belong to artificial intelligence and that the age of human lawyers will soon rust. But as far as the Judiciary is concerned, even in the developed countries, the system has not fully drifted away from the orthodoxy of preferring Natural Intelligence over Artificial Intelligence. Since Judicial decision-making involves a lot of unstructured and rather unprecedented situations which have no single correct answer, and looming questions of legal interpretation arise in most of the cases, discretion and Emotional Intelligence play an unavoidable role. Added to that, there are several ethical, moral and policy issues to be confronted before permitting the intrusion of Artificial Intelligence into the judicial system. As of today, the human judge is the unrivalled master of most of the judicial systems around the globe. Yet, scientists of Artificial Intelligence claim that robot judges can replace human judges irrespective of how daunting the complexity of issues is and how sophisticated the cognitive competence required is. They go on to contend that even if the system is too rigid to allow robot judges to substitute human judges in the recent future, Artificial Intelligence may still aid in other judicial tasks such as drafting judicial documents, intelligent document assembly, case retrieval, etc., and also promote overall flexibility, efficiency, and accuracy in the disposal of cases. By deconstructing the major challenges that Artificial Intelligence has to overcome in order to successfully invade the human- dominated judicial sphere, and critically evaluating the potential differences it would make in the system of justice delivery, the author tries to argue that penetration of Artificial Intelligence into the Judiciary could surely be enhancive and reparative, if not fully transformative.

Keywords: artificial intelligence, judicial decision making, judicial systems, legal services delivery

Procedia PDF Downloads 225
391 Assessment of Hydrologic Response of a Naturalized Tropical Coastal Mangrove Ecosystem Due to Land Cover Change in an Urban Watershed

Authors: Bryan Clark B. Hernandez, Eugene C. Herrera, Kazuo Nadaoka

Abstract:

Mangrove forests thriving in intertidal zones in tropical and subtropical regions of the world offer a range of ecosystem services including carbon storage and sequestration. They can regulate the detrimental effects of climate change due to carbon releases two to four times greater than that of mature tropical rainforests. Moreover, they are effective natural defenses against storm surges and tsunamis. However, their proliferation depends significantly on the prevailing hydroperiod at the coast. In the Philippines, these coastal ecosystems have been severely threatened with a 50% decline in areal extent observed from 1918 to 2010. The highest decline occurred in 1950 - 1972 when national policies encouraged the development of fisheries and aquaculture. With the intensive land use conversion upstream, changes in the freshwater-saltwater envelope at the coast may considerably impact mangrove growth conditions. This study investigates a developing urban watershed in Kalibo, Aklan province with a 220-hectare mangrove forest replanted for over 30 years from coastal mudflats. Since then, the mangrove forest was sustainably conserved and declared as protected areas. Hybrid land cover classification technique was used to classify Landsat images for years, 1990, 2010, and 2017. Digital elevation model utilized was Interferometric Synthetic Aperture Radar (IFSAR) with a 5-meter resolution to delineate the watersheds. Using numerical modelling techniques, the hydrologic and hydraulic analysis of the influence of land cover change to flow and sediment dynamics was simulated. While significant land cover change occurred upland, thereby increasing runoff and sediment loads, the mangrove forests abundance adjacent to the coasts for the urban watershed, was somehow sustained. However, significant alteration of the coastline was observed in Kalibo through the years, probably due to the massive land-use conversion upstream and significant replanting of mangroves downstream. Understanding the hydrologic-hydraulic response of these watersheds to change land cover is essential to helping local government and stakeholders facilitate better management of these mangrove ecosystems.

Keywords: coastal mangroves, hydrologic model, land cover change, Philippines

Procedia PDF Downloads 123
390 SARS-CoV-2: Prediction of Critical Charged Amino Acid Mutations

Authors: Atlal El-Assaad

Abstract:

Viruses change with time through mutations and result in new variants that may persist or disappear. A Mutation refers to an actual change in the virus genetic sequence, and a variant is a viral genome that may contain one or more mutations. Critical mutations may cause the virus to be more transmissible, with high disease severity, and more vulnerable to diagnostics, therapeutics, and vaccines. Thus, variants carrying such mutations may increase the risk to human health and are considered variants of concern (VOC). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) - the contagious in humans, positive-sense single-stranded RNA virus that caused coronavirus disease 2019 (COVID-19) - has been studied thoroughly, and several variants were revealed across the world with their corresponding mutations. SARS-CoV-2 has four structural proteins, known as the S (spike), E (envelope), M (membrane), and N (nucleocapsid) proteins, but prior study and vaccines development focused on genetic mutations in the S protein due to its vital role in allowing the virus to attach and fuse with the membrane of a host cell. Specifically, subunit S1 catalyzes attachment, whereas subunit S2 mediates fusion. In this perspective, we studied all charged amino acid mutations of the SARS-CoV-2 viral spike protein S1 when bound to Antibody CC12.1 in a crystal structure and assessed the effect of different mutations. We generated all missense mutants of SARS-CoV-2 protein amino acids (AAs) within the SARS-CoV-2:CC12.1 complex model. To generate the family of mutants in each complex, we mutated every charged amino acid with all other charged amino acids (Lysine (K), Arginine (R), Glutamic Acid (E), and Aspartic Acid (D)) and studied the new binding of the complex after each mutation. We applied Poisson-Boltzmann electrostatic calculations feeding into free energy calculations to determine the effect of each mutation on binding. After analyzing our data, we identified charged amino acids keys for binding. Furthermore, we validated those findings against published experimental genetic data. Our results are the first to propose in silico potential life-threatening mutations of SARS-CoV-2 beyond the present mutations found in the five common variants found worldwide.

Keywords: SARS-CoV-2, variant, ionic amino acid, protein-protein interactions, missense mutation, AESOP

Procedia PDF Downloads 113
389 Durability Analysis of a Knuckle Arm Using VPG System

Authors: Geun-Yeon Kim, S. P. Praveen Kumar, Kwon-Hee Lee

Abstract:

A steering knuckle arm is the component that connects the steering system and suspension system. The structural performances such as stiffness, strength, and durability are considered in its design process. The former study suggested the lightweight design of a knuckle arm considering the structural performances and using the metamodel-based optimization. The six shape design variables were defined, and the optimum design was calculated by applying the kriging interpolation method. The finite element method was utilized to predict the structural responses. The suggested knuckle was made of the aluminum Al6082, and its weight was reduced about 60% in comparison with the base steel knuckle, satisfying the design requirements. Then, we investigated its manufacturability by performing foraging analysis. The forging was done as hot process, and the product was made through two-step forging. As a final step of its developing process, the durability is investigated by using the flexible dynamic analysis software, LS-DYNA and the pre and post processor, eta/VPG. Generally, a car make does not provide all the information with the part manufacturer. Thus, the part manufacturer has a limit in predicting the durability performance with the unit of full car. The eta/VPG has the libraries of suspension, tire, and road, which are commonly used parts. That makes a full car modeling. First, the full car is modeled by referencing the following information; Overall Length: 3,595mm, Overall Width: 1,595mm, CVW (Curve Vehicle Weight): 910kg, Front Suspension: MacPherson Strut, Rear Suspension: Torsion Beam Axle, Tire: 235/65R17. Second, the road is selected as the cobblestone. The road condition of the cobblestone is almost 10 times more severe than that of usual paved road. Third, the dynamic finite element analysis using the LS-DYNA is performed to predict the durability performance of the suggested knuckle arm. The life of the suggested knuckle arm is calculated as 350,000km, which satisfies the design requirement set up by the part manufacturer. In this study, the overall design process of a knuckle arm is suggested, and it can be seen that the developed knuckle arm satisfies the design requirement of the durability with the unit of full car. The VPG analysis is successfully performed even though it does not an exact prediction since the full car model is very rough one. Thus, this approach can be used effectively when the detail to full car is not given.

Keywords: knuckle arm, structural optimization, Metamodel, forging, durability, VPG (Virtual Proving Ground)

Procedia PDF Downloads 419
388 Expert Supporting System for Diagnosing Lymphoid Neoplasms Using Probabilistic Decision Tree Algorithm and Immunohistochemistry Profile Database

Authors: Yosep Chong, Yejin Kim, Jingyun Choi, Hwanjo Yu, Eun Jung Lee, Chang Suk Kang

Abstract:

For the past decades, immunohistochemistry (IHC) has been playing an important role in the diagnosis of human neoplasms, by helping pathologists to make a clearer decision on differential diagnosis, subtyping, personalized treatment plan, and finally prognosis prediction. However, the IHC performed in various tumors of daily practice often shows conflicting and very challenging results to interpret. Even comprehensive diagnosis synthesizing clinical, histologic and immunohistochemical findings can be helpless in some twisted cases. Another important issue is that the IHC data is increasing exponentially and more and more information have to be taken into account. For this reason, we reached an idea to develop an expert supporting system to help pathologists to make a better decision in diagnosing human neoplasms with IHC results. We gave probabilistic decision tree algorithm and tested the algorithm with real case data of lymphoid neoplasms, in which the IHC profile is more important to make a proper diagnosis than other human neoplasms. We designed probabilistic decision tree based on Bayesian theorem, program computational process using MATLAB (The MathWorks, Inc., USA) and prepared IHC profile database (about 104 disease category and 88 IHC antibodies) based on WHO classification by reviewing the literature. The initial probability of each neoplasm was set with the epidemiologic data of lymphoid neoplasm in Korea. With the IHC results of 131 patients sequentially selected, top three presumptive diagnoses for each case were made and compared with the original diagnoses. After the review of the data, 124 out of 131 were used for final analysis. As a result, the presumptive diagnoses were concordant with the original diagnoses in 118 cases (93.7%). The major reason of discordant cases was that the similarity of the IHC profile between two or three different neoplasms. The expert supporting system algorithm presented in this study is in its elementary stage and need more optimization using more advanced technology such as deep-learning with data of real cases, especially in differentiating T-cell lymphomas. Although it needs more refinement, it may be used to aid pathological decision making in future. A further application to determine IHC antibodies for a certain subset of differential diagnoses might be possible in near future.

Keywords: database, expert supporting system, immunohistochemistry, probabilistic decision tree

Procedia PDF Downloads 225
387 Performance of High Efficiency Video Codec over Wireless Channels

Authors: Mohd Ayyub Khan, Nadeem Akhtar

Abstract:

Due to recent advances in wireless communication technologies and hand-held devices, there is a huge demand for video-based applications such as video surveillance, video conferencing, remote surgery, Digital Video Broadcast (DVB), IPTV, online learning courses, YouTube, WhatsApp, Instagram, Facebook, Interactive Video Games. However, the raw videos posses very high bandwidth which makes the compression a must before its transmission over the wireless channels. The High Efficiency Video Codec (HEVC) (also called H.265) is latest state-of-the-art video coding standard developed by the Joint effort of ITU-T and ISO/IEC teams. HEVC is targeted for high resolution videos such as 4K or 8K resolutions that can fulfil the recent demands for video services. The compression ratio achieved by the HEVC is twice as compared to its predecessor H.264/AVC for same quality level. The compression efficiency is generally increased by removing more correlation between the frames/pixels using complex techniques such as extensive intra and inter prediction techniques. As more correlation is removed, the chances of interdependency among coded bits increases. Thus, bit errors may have large effect on the reconstructed video. Sometimes even single bit error can lead to catastrophic failure of the reconstructed video. In this paper, we study the performance of HEVC bitstream over additive white Gaussian noise (AWGN) channel. Moreover, HEVC over Quadrature Amplitude Modulation (QAM) combined with forward error correction (FEC) schemes are also explored over the noisy channel. The video will be encoded using HEVC, and the coded bitstream is channel coded to provide some redundancies. The channel coded bitstream is then modulated using QAM and transmitted over AWGN channel. At the receiver, the symbols are demodulated and channel decoded to obtain the video bitstream. The bitstream is then used to reconstruct the video using HEVC decoder. It is observed that as the signal to noise ratio of channel is decreased the quality of the reconstructed video decreases drastically. Using proper FEC codes, the quality of the video can be restored up to certain extent. Thus, the performance analysis of HEVC presented in this paper may assist in designing the optimized code rate of FEC such that the quality of the reconstructed video is maximized over wireless channels.

Keywords: AWGN, forward error correction, HEVC, video coding, QAM

Procedia PDF Downloads 149
386 Clean Sky 2 – Project PALACE: Aeration’s Experimental Sound Velocity Investigations for High-Speed Gerotor Simulations

Authors: Benoît Mary, Thibaut Gras, Gaëtan Fagot, Yvon Goth, Ilyes Mnassri-Cetim

Abstract:

A Gerotor pump is composed of an external and internal gear with conjugate cycloidal profiles. From suction to delivery ports, the fluid is transported inside cavities formed by teeth and driven by the shaft. From a geometric and conceptional side it is worth to note that the internal gear has one tooth less than the external one. Simcenter Amesim v.16 includes a new submodel for modelling the hydraulic Gerotor pumps behavior (THCDGP0). This submodel considers leakages between teeth tips using Poiseuille and Couette flows contributions. From the 3D CAD model of the studied pump, the “CAD import” tool takes out the main geometrical characteristics and the submodel THCDGP0 computes the evolution of each cavity volume and their relative position according to the suction or delivery areas. This module, based on international publications, presents robust results up to 6 000 rpm for pressure greater than atmospheric level. For higher rotational speeds or lower pressures, oil aeration and cavitation effects are significant and highly drop the pump’s performance. The liquid used in hydraulic systems always contains some gas, which is dissolved in the liquid at high pressure and tends to be released in a free form (i.e. undissolved as bubbles) when pressure drops. In addition to gas release and dissolution, the liquid itself may vaporize due to cavitation. To model the relative density of the equivalent fluid, modified Henry’s law is applied in Simcenter Amesim v.16 to predict the fraction of undissolved gas or vapor. Three parietal pressure sensors have been set up upstream from the pump to estimate the sound speed in the oil. Analytical models have been compared with the experimental sound speed to estimate the occluded gas content. Simcenter Amesim v.16 model was supplied by these previous analyses marks which have successfully improved the simulations results up to 14 000 rpm. This work provides a sound foundation for designing the next Gerotor pump generation reaching high rotation range more than 25 000 rpm. This improved module results will be compared to tests on this new pump demonstrator.

Keywords: gerotor pump, high speed, numerical simulations, aeronautic, aeration, cavitation

Procedia PDF Downloads 135
385 Mathematical Study of CO₂ Dispersion in Carbonated Water Injection Enhanced Oil Recovery Using Non-Equilibrium 2D Simulator

Authors: Ahmed Abdulrahman, Jalal Foroozesh

Abstract:

CO₂ based enhanced oil recovery (EOR) techniques have gained massive attention from major oil firms since they resolve the industry's two main concerns of CO₂ contribution to the greenhouse effect and the declined oil production. Carbonated water injection (CWI) is a promising EOR technique that promotes safe and economic CO₂ storage; moreover, it mitigates the pitfalls of CO₂ injection, which include low sweep efficiency, early CO₂ breakthrough, and the risk of CO₂ leakage in fractured formations. One of the main challenges that hinder the wide adoption of this EOR technique is the complexity of accurate modeling of the kinetics of CO₂ mass transfer. The mechanisms of CO₂ mass transfer during CWI include the slow and gradual cross-phase CO₂ diffusion from carbonated water (CW) to the oil phase and the CO₂ dispersion (within phase diffusion and mechanical mixing), which affects the oil physical properties and the spatial spreading of CO₂ inside the reservoir. A 2D non-equilibrium compositional simulator has been developed using a fully implicit finite difference approximation. The material balance term (k) was added to the governing equation to account for the slow cross-phase diffusion of CO₂ from CW to the oil within the gird cell. Also, longitudinal and transverse dispersion coefficients have been added to account for CO₂ spatial distribution inside the oil phase. The CO₂-oil diffusion coefficient was calculated using the Sigmund correlation, while a scale-dependent dispersivity was used to calculate CO₂ mechanical mixing. It was found that the CO₂-oil diffusion mechanism has a minor impact on oil recovery, but it tends to increase the amount of CO₂ stored inside the formation and slightly alters the residual oil properties. On the other hand, the mechanical mixing mechanism has a huge impact on CO₂ spatial spreading (accurate prediction of CO₂ production) and the noticeable change in oil physical properties tends to increase the recovery factor. A sensitivity analysis has been done to investigate the effect of formation heterogeneity (porosity, permeability) and injection rate, it was found that the formation heterogeneity tends to increase CO₂ dispersion coefficients, and a low injection rate should be implemented during CWI.

Keywords: CO₂ mass transfer, carbonated water injection, CO₂ dispersion, CO₂ diffusion, cross phase CO₂ diffusion, within phase CO2 diffusion, CO₂ mechanical mixing, non-equilibrium simulation

Procedia PDF Downloads 179
384 Case-Based Reasoning Application to Predict Geological Features at Site C Dam Construction Project

Authors: Shahnam Behnam Malekzadeh, Ian Kerr, Tyson Kaempffer, Teague Harper, Andrew Watson

Abstract:

The Site C Hydroelectric dam is currently being constructed in north-eastern British Columbia on sub-horizontal sedimentary strata that dip approximately 15 meters from one bank of the Peace River to the other. More than 615 pressure sensors (Vibrating Wire Piezometers) have been installed on bedding planes (BPs) since construction began, with over 80 more planned before project completion. These pressure measurements are essential to monitor the stability of the rock foundation during and after construction and for dam safety purposes. BPs are identified by their clay gouge infilling, which varies in thickness from less than 1 to 20 mm and can be challenging to identify as the core drilling process often disturbs or washes away the gouge material. Without the use of depth predictions from nearby boreholes, stratigraphic markers, and downhole geophysical data, it is difficult to confidently identify BP targets for the sensors. In this paper, a Case-Based Reasoning (CBR) method was used to develop an empirical model called the Bedding Plane Elevation Prediction (BPEP) to help geologists and geotechnical engineers to predict geological features and bedding planes at new locations in a fast and accurate manner. To develop CBR, a database was developed based on 64 pressure sensors already installed on key bedding planes BP25, BP28, and BP31 on the Right Bank, including bedding plane elevations and coordinates. Thirteen (20%) of the most recent cases were selected to validate and evaluate the accuracy of the developed model, while the similarity was defined as the distance between previous cases and recent cases to predict the depth of significant BPs. The average difference between actual BP elevations and predicted elevations for above BPs was ±55cm, while the actual results showed that 69% of predicted elevations were within ±79 cm of actual BP elevations while 100% of predicted elevations for new cases were within ±99cm range. Eventually, the actual results will be used to develop the database and improve BPEP to perform as a learning machine to predict more accurate BP elevations for future sensor installations.

Keywords: case-based reasoning, geological feature, geology, piezometer, pressure sensor, core logging, dam construction

Procedia PDF Downloads 81
383 Modelling Flood Events in Botswana (Palapye) for Protecting Roads Structure against Floods

Authors: Thabo M. Bafitlhile, Adewole Oladele

Abstract:

Botswana has been affected by floods since long ago and is still experiencing this tragic event. Flooding occurs mostly in the North-West, North-East, and parts of Central district due to heavy rainfalls experienced in these areas. The torrential rains destroyed homes, roads, flooded dams, fields and destroyed livestock and livelihoods. Palapye is one area in the central district that has been experiencing floods ever since 1995 when its greatest flood on record occurred. Heavy storms result in floods and inundation; this has been exacerbated by poor and absence of drainage structures. Since floods are a part of nature, they have existed and will to continue to exist, hence more destruction. Furthermore floods and highway plays major role in erosion and destruction of roads structures. Already today, many culverts, trenches, and other drainage facilities lack the capacity to deal with current frequency for extreme flows. Future changes in the pattern of hydro climatic events will have implications for the design and maintenance costs of roads. Increase in rainfall and severe weather events can affect the demand for emergent responses. Therefore flood forecasting and warning is a prerequisite for successful mitigation of flood damage. In flood prone areas like Palapye, preventive measures should be taken to reduce possible adverse effects of floods on the environment including road structures. Therefore this paper attempts to estimate return periods associated with huge storms of different magnitude from recorded historical rainfall depth using statistical method. The method of annual maxima was used to select data sets for the rainfall analysis. In the statistical method, the Type 1 extreme value (Gumbel), Log Normal, Log Pearson 3 distributions were all applied to the annual maximum series for Palapye area to produce IDF curves. The Kolmogorov-Smirnov test and Chi Squared were used to confirm the appropriateness of fitted distributions for the location and the data do fit the distributions used to predict expected frequencies. This will be a beneficial tool for urgent flood forecasting and water resource administration as proper drainage design will be design based on the estimated flood events and will help to reclaim and protect the road structures from adverse impacts of flood.

Keywords: drainage, estimate, evaluation, floods, flood forecasting

Procedia PDF Downloads 373
382 Identification and Characterization of in Vivo, in Vitro and Reactive Metabolites of Zorifertinib Using Liquid Chromatography Lon Trap Mass Spectrometry

Authors: Adnan A. Kadi, Nasser S. Al-Shakliah, Haitham Al-Rabiah

Abstract:

Zorifertinib is a novel, potent, oral, a small molecule used to treat non-small cell lung cancer (NSCLC). zorifertinib is an Epidermal Growth Factor Receptor (EGFR) inhibitor and has good blood–brain barrier permeability for (NSCLC) patients with EGFR mutations. zorifertinibis currently at phase II/III clinical trials. The current research reports the characterization and identification of in vitro, in vivo and reactive intermediates of zorifertinib. Prediction of susceptible sites of metabolism and reactivity pathways (cyanide and GSH) of zorifertinib were performed by the Xenosite web predictor tool. In-vitro metabolites of zorifertinib were performed by incubation with rat liver microsomes (RLMs) and isolated perfused rat liver hepatocytes. Extraction of zorifertinib and it's in vitro metabolites from the incubation mixtures were done by protein precipitation. In vivo metabolism was done by giving a single oral dose of zorifertinib(10 mg/Kg) to Sprague Dawely rats in metabolic cages by using oral gavage. Urine was gathered and filtered at specific time intervals (0, 6, 12, 18, 24, 48, 72,96and 120 hr) from zorifertinib dosing. A similar volume of ACN was added to each collected urine sample. Both layers (organic and aqueous) were injected into liquid chromatography ion trap mass spectrometry(LC-IT-MS) to detect vivozorifertinib metabolites. N-methyl piperizine ring and quinazoline group of zorifertinib undergoe metabolism forming iminium and electro deficient conjugated system respectively, which are very reactive toward nucleophilic macromolecules. Incubation of zorifertinib with RLMs in the presence of 1.0 mM KCN and 1.0 Mm glutathione were made to check reactive metabolites as it is often responsible for toxicities associated with this drug. For in vitro metabolites there were nine in vitro phase I metabolites, four in vitro phase II metabolites, eleven reactive metabolites(three cyano adducts, five GSH conjugates metabolites, and three methoxy metabolites of zorifertinib were detected by LC-IT-MS. For in vivo metabolites, there were eight in vivo phase I, tenin vivo phase II metabolitesofzorifertinib were detected by LC-IT-MS. In vitro and in vivo phase I metabolic pathways wereN- demthylation, O-demethylation, hydroxylation, reduction, defluorination, and dechlorination. In vivo phase II metabolic reaction was direct conjugation of zorifertinib with glucuronic acid and sulphate.

Keywords: in vivo metabolites, in vitro metabolites, cyano adducts, GSH conjugate

Procedia PDF Downloads 198
381 Hydraulic Performance of Curtain Wall Breakwaters Based on Improved Moving Particle Semi-Implicit Method

Authors: Iddy Iddy, Qin Jiang, Changkuan Zhang

Abstract:

This paper addresses the hydraulic performance of curtain wall breakwaters as a coastal structure protection based on the particles method modelling. The hydraulic functions of curtain wall as wave barriers by reflecting large parts of incident waves through the vertical wall, a part transmitted and a particular part was dissipating the wave energies through the eddy flows formed beneath the lower end of the plate. As a Lagrangian particle, the Moving Particle Semi-implicit (MPS) method which has a robust capability for numerical representation has proven useful for design of structures application that concern free-surface hydrodynamic flow, such as wave breaking and overtopping. In this study, a vertical two-dimensional numerical model for the simulation of violent flow associated with the interaction between the curtain-wall breakwaters and progressive water waves is developed by MPS method in which a higher precision pressure gradient model and free surface particle recognition model were proposed. The wave transmission, reflection, and energy dissipation of the vertical wall were experimentally and theoretically examined. With the numerical wave flume by particle method, very detailed velocity and pressure fields around the curtain-walls under the action of waves can be computed in each calculation steps, and the effect of different wave and structural parameters on the hydrodynamic characteristics was investigated. Also, the simulated results of temporal profiles and distributions of velocity and pressure in the vicinity of curtain-wall breakwaters are compared with the experimental data. Herein, the numerical investigation of hydraulic performance of curtain wall breakwaters indicated that the incident wave is largely reflected from the structure, while the large eddies or turbulent flows occur beneath the curtain-wall resulting in big energy losses. The improved MPS method shows a good agreement between numerical results and analytical/experimental data which are compared to related researches. It is thus verified that the improved pressure gradient model and free surface particle recognition methods are useful for enhancement of stability and accuracy of MPS model for water waves and marine structures. Therefore, it is possible for particle method (MPS method) to achieve an appropriate level of correctness to be applied in engineering fields through further study.

Keywords: curtain wall breakwaters, free surface flow, hydraulic performance, improved MPS method

Procedia PDF Downloads 149
380 Bidirectional Pendulum Vibration Absorbers with Homogeneous Variable Tangential Friction: Modelling and Design

Authors: Emiliano Matta

Abstract:

Passive resonant vibration absorbers are among the most widely used dynamic control systems in civil engineering. They typically consist in a single-degree-of-freedom mechanical appendage of the main structure, tuned to one structural target mode through frequency and damping optimization. One classical scheme is the pendulum absorber, whose mass is constrained to move along a curved trajectory and is damped by viscous dashpots. Even though the principle is well known, the search for improved arrangements is still under way. In recent years this investigation inspired a type of bidirectional pendulum absorber (BPA), consisting of a mass constrained to move along an optimal three-dimensional (3D) concave surface. For such a BPA, the surface principal curvatures are designed to ensure a bidirectional tuning of the absorber to both principal modes of the main structure, while damping is produced either by horizontal viscous dashpots or by vertical friction dashpots, connecting the BPA to the main structure. In this paper, a variant of BPA is proposed, where damping originates from the variable tangential friction force which develops between the pendulum mass and the 3D surface as a result of a spatially-varying friction coefficient pattern. Namely, a friction coefficient is proposed that varies along the pendulum surface in proportion to the modulus of the 3D surface gradient. With such an assumption, the dissipative model of the absorber can be proven to be nonlinear homogeneous in the small displacement domain. The resulting homogeneous BPA (HBPA) has a fundamental advantage over conventional friction-type absorbers, because its equivalent damping ratio results independent on the amplitude of oscillations, and therefore its optimal performance does not depend on the excitation level. On the other hand, the HBPA is more compact than viscously damped BPAs because it does not need the installation of dampers. This paper presents the analytical model of the HBPA and an optimal methodology for its design. Numerical simulations of single- and multi-story building structures under wind and earthquake loads are presented to compare the HBPA with classical viscously damped BPAs. It is shown that the HBPA is a promising alternative to existing BPA types and that homogeneous tangential friction is an effective means to realize systems provided with amplitude-independent damping.

Keywords: amplitude-independent damping, homogeneous friction, pendulum nonlinear dynamics, structural control, vibration resonant absorbers

Procedia PDF Downloads 149
379 Modeling of the Fermentation Process of Enzymatically Extracted Annona muricata L. Juice

Authors: Calister Wingang Makebe, Wilson Agwanande Ambindei, Zangue Steve Carly Desobgo, Abraham Billu, Emmanuel Jong Nso, P. Nisha

Abstract:

Traditional liquid-state fermentation processes of Annona muricata L. juice can result in fluctuating product quality and quantity due to difficulties in control and scale up. This work describes a laboratory-scale batch fermentation process to produce a probiotic Annona muricata L. enzymatically extracted juice, which was modeled using the Doehlert design with independent extraction factors being incubation time, temperature, and enzyme concentration. It aimed at a better understanding of the traditional process as an initial step for future optimization. Annona muricata L. juice was fermented with L. acidophilus (NCDC 291) (LA), L. casei (NCDC 17) (LC), and a blend of LA and LC (LCA) for 72 h at 37 °C. Experimental data were fitted into mathematical models (Monod, Logistic and Luedeking and Piret models) using MATLAB software, to describe biomass growth, sugar utilization, and organic acid production. The optimal fermentation time was obtained based on cell viability, which was 24 h for LC and 36 h for LA and LCA. The model was particularly effective in estimating biomass growth, reducing sugar consumption, and lactic acid production. The values of the determination coefficient, R2, were 0.9946, 0.9913 and 0.9946, while the residual sum of square error, SSE, was 0.2876, 0.1738 and 0.1589 for LC, LA and LCA, respectively. The growth kinetic parameters included the maximum specific growth rate, µm, which was 0.2876 h-1, 0.1738 h-1 and 0.1589 h-1, as well as the substrate saturation, Ks, with 9.0680 g/L, 9.9337 g/L and 9.0709 g/L respectively for LC, LA and LCA. For the stoichiometric parameters, the yield of biomass based on utilized substrate (YXS) was 50.7932, 3.3940 and 61.0202, and the yield of product based on utilized substrate (YPS) was 2.4524, 0.2307 and 0.7415 for LC, LA, and LCA, respectively. In addition, the maintenance energy parameter (ms) was 0.0128, 0.0001 and 0.0004 with respect to LC, LA and LCA. With the kinetic model proposed by Luedeking and Piret for lactic acid production rate, the growth associated and non-growth associated coefficients were determined as 1.0028 and 0.0109, respectively. The model was demonstrated for batch growth of LA, LC, and LCA in Annona muricata L. juice. The present investigation validates the potential of Annona muricata L. based medium for heightened economical production of a probiotic medium.

Keywords: L. acidophilus, L. casei, fermentation, modelling, kinetics

Procedia PDF Downloads 68
378 Early Age Behavior of Wind Turbine Gravity Foundations

Authors: Janet Modu, Jean-Francois Georgin, Laurent Briancon, Eric Antoinet

Abstract:

The current practice during the repowering phase of wind turbines is deconstruction of existing foundations and construction of new foundations to accept larger wind loads or once the foundations have reached the end of their service lives. The ongoing research project FUI25 FEDRE (Fondations d’Eoliennes Durables et REpowering) therefore serves to propose scalable wind turbine foundation designs to allow reuse of the existing foundations. To undertake this research, numerical models and laboratory-scale models are currently being utilized and implemented in the GEOMAS laboratory at INSA Lyon following instrumentation of a reference wind turbine situated in the Northern part of France. Sensors placed within both the foundation and the underlying soil monitor the evolution of stresses from the foundation’s early age to stresses during service. The results from the instrumentation form the basis of validation for both the laboratory and numerical works conducted throughout the project duration. The study currently focuses on the effect of coupled mechanisms (Thermal-Hydro-Mechanical-Chemical) that induce stress during the early age of the reinforced concrete foundation, and scale factor considerations in the replication of the reference wind turbine foundation at laboratory-scale. Using THMC 3D models on COMSOL Multi-physics software, the numerical analysis performed on both the laboratory-scale and the full-scale foundations simulate the thermal deformation, hydration, shrinkage (desiccation and autogenous) and creep so as to predict the initial damage caused by internal processes during concrete setting and hardening. Results show a prominent effect of early age properties on the damage potential in full-scale wind turbine foundations. However, a prediction of the damage potential at laboratory scale shows significant differences in early age stresses in comparison to the full-scale model depending on the spatial position in the foundation. In addition to the well-known size effect phenomenon, these differences may contribute to inaccuracies encountered when predicting ultimate deformations of the on-site foundation using laboratory scale models.

Keywords: cement hydration, early age behavior, reinforced concrete, shrinkage, THMC 3D models, wind turbines

Procedia PDF Downloads 176
377 A New Method Separating Relevant Features from Irrelevant Ones Using Fuzzy and OWA Operator Techniques

Authors: Imed Feki, Faouzi Msahli

Abstract:

Selection of relevant parameters from a high dimensional process operation setting space is a problem frequently encountered in industrial process modelling. This paper presents a method for selecting the most relevant fabric physical parameters for each sensory quality feature. The proposed relevancy criterion has been developed using two approaches. The first utilizes a fuzzy sensitivity criterion by exploiting from experimental data the relationship between physical parameters and all the sensory quality features for each evaluator. Next an OWA aggregation procedure is applied to aggregate the ranking lists provided by different evaluators. In the second approach, another panel of experts provides their ranking lists of physical features according to their professional knowledge. Also by applying OWA and a fuzzy aggregation model, the data sensitivity-based ranking list and the knowledge-based ranking list are combined using our proposed percolation technique, to determine the final ranking list. The key issue of the proposed percolation technique is to filter automatically and objectively the relevant features by creating a gap between scores of relevant and irrelevant parameters. It permits to automatically generate threshold that can effectively reduce human subjectivity and arbitrariness when manually choosing thresholds. For a specific sensory descriptor, the threshold is defined systematically by iteratively aggregating (n times) the ranking lists generated by OWA and fuzzy models, according to a specific algorithm. Having applied the percolation technique on a real example, of a well known finished textile product especially the stonewashed denims, usually considered as the most important quality criteria in jeans’ evaluation, we separate the relevant physical features from irrelevant ones for each sensory descriptor. The originality and performance of the proposed relevant feature selection method can be shown by the variability in the number of physical features in the set of selected relevant parameters. Instead of selecting identical numbers of features with a predefined threshold, the proposed method can be adapted to the specific natures of the complex relations between sensory descriptors and physical features, in order to propose lists of relevant features of different sizes for different descriptors. In order to obtain more reliable results for selection of relevant physical features, the percolation technique has been applied for combining the fuzzy global relevancy and OWA global relevancy criteria in order to clearly distinguish scores of the relevant physical features from those of irrelevant ones.

Keywords: data sensitivity, feature selection, fuzzy logic, OWA operators, percolation technique

Procedia PDF Downloads 605
376 Three Foci of Trust as Potential Mediators in the Association Between Job Insecurity and Dynamic Organizational Capability: A Quantitative, Exploratory Study

Authors: Marita Heyns

Abstract:

Job insecurity is a distressing phenomenon which has far reaching consequences for both employees and their organizations. Previously, much attention has been given to the link between job insecurity and individual level performance outcomes, while less is known about how subjectively perceived job insecurity might transfer beyond the individual level to affect performance of the organization on an aggregated level. Research focusing on how employees’ fear of job loss might affect the organization’s ability to respond proactively to volatility and drastic change through applying its capabilities of sensing, seizing, and reconfiguring, appears to be practically non-existent. Equally little is known about the potential underlying mechanisms through which job insecurity might affect the dynamic capabilities of an organization. This study examines how job insecurity might affect dynamic organizational capability through trust as an underling process. More specifically, it considered the simultaneous roles of trust at an impersonal (organizational) level as well as trust at an interpersonal level (in leaders and co-workers) as potential underlying mechanisms through which job insecurity might affect the organization’s dynamic capability to respond to opportunities and imminent, drastic change. A quantitative research approach and a stratified random sampling technique enabled the collection of data among 314 managers at four different plant sites of a large South African steel manufacturing organization undergoing dramatic changes. To assess the study hypotheses, the following statistical procedures were employed: Structural equation modelling was performed in Mplus to evaluate the measurement and structural models. The Chi-square values test for absolute fit as well as alternative fit indexes such as the Comparative Fit Index and the Tucker-Lewis Index, the Root Mean Square Error of Approximation and the Standardized Root Mean Square Residual were used as indicators of model fit. Composite reliabilities were calculated to evaluate the reliability of the factors. Finally, interaction effects were tested by using PROCESS and the construction of two-sided 95% confidence intervals. The findings indicate that job insecurity had a lower-than-expected detrimental effect on evaluations of the organization’s dynamic capability through the conducive buffering effects of trust in the organization and in its leaders respectively. In contrast, trust in colleagues did not seem to have any noticeable facilitative effect. The study proposes that both job insecurity and dynamic capability can be managed more effectively by also paying attention to factors that could promote trust in the organization and its leaders; some practical recommendations are given in this regard.

Keywords: dynamic organizational capability, impersonal trust, interpersonal trust, job insecurity

Procedia PDF Downloads 91
375 Exploration of Classic Models of Precipitation in Iran: A Case Study of Sistan and Baluchestan Province

Authors: Mohammad Borhani, Ahmad Jamshidzaei, Mehdi Koohsari

Abstract:

The study of climate has captivated human interest throughout history. In response to this fascination, individuals historically organized their daily activities in alignment with prevailing climatic conditions and seasonal variations. Understanding the elements and specific climatic parameters of each region, such as precipitation, which directly impacts human life, is essential because, in recent years, there has been a significant increase in heavy rainfall in various parts of the world attributed to the effects of climate change. Climate prediction models suggest a future scenario characterized by an increase in severe precipitation events and related floods on a global scale. This is a result of human-induced greenhouse gas emissions causing changes in the natural precipitation patterns. The Intergovernmental Panel on Climate Change reported global warming in 2001. The average global temperature has shown an increasing trend since 1861. In the 20th century, this increase has been between (0/2 ± 0/6) °C. The present study focused on examining the trend of monthly, seasonal, and annual precipitation in Sistan and Baluchestan provinces. The study employed data obtained from 13 precipitation measurement stations managed by the Iran Water Resources Management Company, encompassing daily precipitation records spanning the period from 1997 to 2016. The results indicated that the total monthly precipitation at the studied stations in Sistan and Baluchestan province follows a sinusoidal trend. The highest intense precipitation was observed in January, February, and March, while the lowest occurred in September, October, and then November. The investigation of the trend of seasonal precipitation in this province showed that precipitation follows an upward trend in the autumn season, reaching its peak in winter, and then shows a decreasing trend in spring and summer. Also, the examination of average precipitation indicated that the highest yearly precipitation occurred in 1997 and then in 2004, while the lowest annual precipitation took place between 1999 and 2001. The analysis of the annual precipitation trend demonstrates a decrease in precipitation from 1997 to 2016 in Sistan and Baluchestan province.

Keywords: climate change, extreme precipitation, greenhouse gas, trend analysis

Procedia PDF Downloads 72
374 Performance Assessment of the Gold Coast Desalination Plant Offshore Multiport Brine Diffuser during ‘Hot Standby’ Operation

Authors: M. J. Baum, B. Gibbes, A. Grinham, S. Albert, D. Gale, P. Fisher

Abstract:

Alongside the rapid expansion of Seawater Reverse Osmosis technologies there is a concurrent increase in the production of hypersaline brine by-products. To minimize environmental impact, these by-products are commonly disposed into open-coastal environments via submerged diffuser systems as inclined dense jet outfalls. Despite the widespread implementation of this process, diffuser designs are typically based on small-scale laboratory experiments under idealistic quiescent conditions. Studies concerning diffuser performance in the field are limited. A set of experiments were conducted to assess the near field characteristics of brine disposal at the Gold Coast Desalination Plant offshore multiport diffuser. The aim of the field experiments was to determine the trajectory and dilution characteristics of the plume under various discharge configurations with production ranging 66 – 100% of plant operative capacity. The field monitoring system employed an unprecedented static array of temperature and electrical conductivity sensors in a three-dimensional grid surrounding a single diffuser port. Complimenting these measurements, Acoustic Doppler Current Profilers were also deployed to record current variability over the depth of the water column and wave characteristics. Recorded data suggested the open-coastal environment was highly active over the experimental duration with ambient velocities ranging 0.0 – 0.5 m∙s-1, with considerable variability over the depth of the water column observed. Variations in background electrical conductivity corresponding to salinity fluctuations of ± 1.7 g∙kg-1 were also observed. Increases in salinity were detected during plant operation and appeared to be most pronounced 10 – 30 m from the diffuser, consistent with trajectory predictions described by existing literature. Plume trajectories and respective dilutions extrapolated from salinity data are compared with empirical scaling arguments. Discharge properties were found to adequately correlate with modelling projections. Temporal and spatial variation of background processes and their subsequent influence upon discharge outcomes are discussed with a view to incorporating the influence of waves and ambient currents in the design of brine outfalls into the future.

Keywords: brine disposal, desalination, field study, negatively buoyant discharge

Procedia PDF Downloads 239
373 Examining Moderating Mechanisms of Alignment Practice and Community Response through the Self-Construal Perspective

Authors: Chyong-Ru Liu, Wen-Shiung Huang, Wan-Ching Tang, Shan-Pei Chen

Abstract:

Two of the biggest challenges companies involved in sports and exercise information services face are how to strengthen participation in virtual sports/exercise communities and how to increase the ongoing participatoriness of those communities. In the past, relatively little research has explored mechanisms for strengthening alignment practice and community response from the perspective of self-construal, and as such this study seeks to explore the self-construal of virtual sports/exercise communities, the role it plays in the emotional commitment of forming communities, and the factor that can strengthen alignment practice. Moreover, which factor of the emotional commitment of forming virtual communities have the effect of strengthening interference in the process of transforming customer citizenship behaviors? This study collected 625 responses from the two leading websites in terms of fan numbers in the provision of information on road race and marathon events in Taiwan, with model testing conducted through linear structural equation modelling and the bootstrapping technique to test the proposed hypotheses. The results proved independent construal had a stronger positive direct effect on affective commitment to fellow customers than did interdependent construal, and the influences of affective commitment to fellow customers in enhancing customer citizenship behavior. Public self-consciousness moderates the relationships among independent self-construal and interdependent self-construal on effective commitment to fellow customers. Perceived playfulness moderates the relationships between effective commitment to fellow customers and customer citizenship behavior. The findings of this study provide significant insights for the researchers and related organizations. From the theoretical perspective, this is empirical research that investigated the self-construal theory and responses (i.e., affective commitment to fellow customers, customer citizenship behavior) in virtual sports/exercise communities. We further explore how to govern virtual sports/exercise community participants’ heterogeneity through public self-consciousness mechanism to align participants’ affective commitment. Moreover, perceived playfulness has the effect of strengthening effective commitment to fellow customers with customer citizenship behaviors. The results of this study can provide a foundation for the construction of future theories and can be provided to related organizations for reference in their planning of virtual communities.

Keywords: self-construal theory, public self-consciousness, affective commitment, customer citizenship behavior

Procedia PDF Downloads 107
372 Formulation and Test of a Model to explain the Complexity of Road Accident Events in South Africa

Authors: Dimakatso Machetele, Kowiyou Yessoufou

Abstract:

Whilst several studies indicated that road accident events might be more complex than thought, we have a limited scientific understanding of this complexity in South Africa. The present project proposes and tests a more comprehensive metamodel that integrates multiple causality relationships among variables previously linked to road accidents. This was done by fitting a structural equation model (SEM) to the data collected from various sources. The study also fitted the GARCH Model (Generalized Auto-Regressive Conditional Heteroskedasticity) to predict the future of road accidents in the country. The analysis shows that the number of road accidents has been increasing since 1935. The road fatality rate follows a polynomial shape following the equation: y = -0.0114x²+1.2378x-2.2627 (R²=0.76) with y = death rate and x = year. This trend results in an average death rate of 23.14 deaths per 100,000 people. Furthermore, the analysis shows that the number of crashes could be significantly explained by the total number of vehicles (P < 0.001), number of registered vehicles (P < 0.001), number of unregistered vehicles (P = 0.003) and the population of the country (P < 0.001). As opposed to expectation, the number of driver licenses issued and total distance traveled by vehicles do not correlate significantly with the number of crashes (P > 0.05). Furthermore, the analysis reveals that the number of casualties could be linked significantly to the number of registered vehicles (P < 0.001) and total distance traveled by vehicles (P = 0.03). As for the number of fatal crashes, the analysis reveals that the total number of vehicles (P < 0.001), number of registered (P < 0.001) and unregistered vehicles (P < 0.001), the population of the country (P < 0.001) and the total distance traveled by vehicles (P < 0.001) correlate significantly with the number of fatal crashes. However, the number of casualties and again the number of driver licenses do not seem to determine the number of fatal crashes (P > 0.05). Finally, the number of crashes is predicted to be roughly constant overtime at 617,253 accidents for the next 10 years, with the worse scenario suggesting that this number may reach 1 896 667. The number of casualties was also predicted to be roughly constant at 93 531 overtime, although this number may reach 661 531 in the worst-case scenario. However, although the number of fatal crashes may decrease over time, it is forecasted to reach 11 241 fatal crashes within the next 10 years, with the worse scenario estimated at 19 034 within the same period. Finally, the number of fatalities is also predicted to be roughly constant at 14 739 but may also reach 172 784 in the worse scenario. Overall, the present study reveals the complexity of road accidents and allows us to propose several recommendations aimed to reduce the trend of road accidents, casualties, fatal crashes, and death in South Africa.

Keywords: road accidents, South Africa, statistical modelling, trends

Procedia PDF Downloads 161
371 Alphabet Recognition Using Pixel Probability Distribution

Authors: Vaidehi Murarka, Sneha Mehta, Dishant Upadhyay

Abstract:

Our project topic is “Alphabet Recognition using pixel probability distribution”. The project uses techniques of Image Processing and Machine Learning in Computer Vision. Alphabet recognition is the mechanical or electronic translation of scanned images of handwritten, typewritten or printed text into machine-encoded text. It is widely used to convert books and documents into electronic files etc. Alphabet Recognition based OCR application is sometimes used in signature recognition which is used in bank and other high security buildings. One of the popular mobile applications includes reading a visiting card and directly storing it to the contacts. OCR's are known to be used in radar systems for reading speeders license plates and lots of other things. The implementation of our project has been done using Visual Studio and Open CV (Open Source Computer Vision). Our algorithm is based on Neural Networks (machine learning). The project was implemented in three modules: (1) Training: This module aims “Database Generation”. Database was generated using two methods: (a) Run-time generation included database generation at compilation time using inbuilt fonts of OpenCV library. Human intervention is not necessary for generating this database. (b) Contour–detection: ‘jpeg’ template containing different fonts of an alphabet is converted to the weighted matrix using specialized functions (contour detection and blob detection) of OpenCV. The main advantage of this type of database generation is that the algorithm becomes self-learning and the final database requires little memory to be stored (119kb precisely). (2) Preprocessing: Input image is pre-processed using image processing concepts such as adaptive thresholding, binarizing, dilating etc. and is made ready for segmentation. “Segmentation” includes extraction of lines, words, and letters from the processed text image. (3) Testing and prediction: The extracted letters are classified and predicted using the neural networks algorithm. The algorithm recognizes an alphabet based on certain mathematical parameters calculated using the database and weight matrix of the segmented image.

Keywords: contour-detection, neural networks, pre-processing, recognition coefficient, runtime-template generation, segmentation, weight matrix

Procedia PDF Downloads 390
370 Creating Futures: Using Fictive Scripting Methods for Institutional Strategic Planning

Authors: Christine Winberg, James Garraway

Abstract:

Many key university documents, such as vision and mission statements and strategic plans, are aspirational and future-oriented. There is a wide range of future-oriented methods that are used in planning applications, ranging from mathematical modelling to expert opinions. Many of these methods have limitations, and planners using these tools might, for example, make the technical-rational assumption that their plans will unfold in a logical and inevitable fashion, thus underestimating the many complex forces that are at play in planning for an unknown future. This is the issue that this study addresses. The overall project aim was to assist a new university of technology in developing appropriate responses to its social responsibility, graduate employability and research missions in its strategic plan. The specific research question guiding the research activities and approach was: how might the use of innovative future-oriented planning tools enable or constrain a strategic planning process? The research objective was to engage collaborating groups in the use of an innovative tool to develop and assess future scenarios, for the purpose of developing deeper understandings of possible futures and their challenges. The scenario planning tool chosen was ‘fictive scripting’, an analytical technique derived from Technology Forecasting and Innovation Studies. Fictive scripts are future projections that also take into account the present shape of the world and current developments. The process thus began with a critical diagnosis of the present, highlighting its tensions and frictions. The collaborative groups then developed fictive scripts, each group producing a future scenario that foregrounded different institutional missions, their implications and possible consequences. The scripts were analyzed with a view to identifying their potential contribution to the university’s strategic planning exercise. The unfolding fictive scripts revealed a number of insights in terms of unexpected benefits, unexpected challenges, and unexpected consequences. These insights were not evident in previous strategic planning exercises. The contribution that this study offers is to show how better choices can be made and potential pitfalls avoided through a systematic foresight exercise. When universities develop strategic planning documents, they are looking into the future. In this paper it is argued that the use of appropriate tools for future-oriented exercises, can help planners to understand more fully what achieving desired outcomes might entail, what challenges might be encountered, and what unexpected consequences might ensue.

Keywords: fictive scripts, scenarios, strategic planning, technological forecasting

Procedia PDF Downloads 122
369 The Effect of Air Filter Performance on Gas Turbine Operation

Authors: Iyad Al-Attar

Abstract:

Air filters are widely used in gas turbines applications to ensure that the large mass (500kg/s) of clean air reach the compressor. The continuous demand of high availability and reliability has highlighted the critical role of air filter performance in providing enhanced air quality. In addition to being challenged with different environments [tropical, coastal, hot], gas turbines confront wide array of atmospheric contaminants with various concentrations and particle size distributions that would lead to performance degradation and components deterioration. Therefore, the role of air filters is of a paramount importance since fouled compressor can reduce power output and availability of the gas turbine to over 70 % throughout operation. Consequently, accurate filter performance prediction is critical tool in their selection considering their role in minimizing the economic impact of outages. In fact, actual performance of Efficient Particulate Air [EPA] filters used in gas turbine tend to deviate from the performance predicted by laboratory results. This experimental work investigates the initial pressure drop and fractional efficiency curves of full-scale pleated V-shaped EPA filters used globally in gas turbine. The investigation involved examining the effect of different operational conditions such as flow rates [500 to 5000 m3/h] and design parameters such as pleat count [28, 30, 32 and 34 pleats per 100mm]. This experimental work has highlighted the underlying reasons behind the reduction in filter permeability due to the increase of flow rates and pleat density. The reasons, which led to surface area losses of filtration media, are due to one or combination of the following effects: pleat-crowding, deflection of the entire pleated panel, pleat distortion at the corner of the pleat and/or filtration medium compression. This paper also demonstrates that the effect of increasing the flow rate has more pronounced effect on filter performance compared to pleating density. This experimental work suggests that a valid comparison of the pleat densities should be based on the effective surface area, namely, the area that participates in the filtration process, and not the total surface area the pleat density provides. Throughout this study, optimal pleat count that satisfies both initial pressure drop and efficiency requirements may not have necessarily existed.

Keywords: filter efficiency, EPA Filters, pressure drop, permeability

Procedia PDF Downloads 241
368 Emissions and Total Cost of Ownership Assessment of Hybrid Propulsion Concepts for Bus Transport with Compressed Natural Gases or Diesel Engine

Authors: Volker Landersheim, Daria Manushyna, Thinh Pham, Dai-Duong Tran, Thomas Geury, Omar Hegazy, Steven Wilkins

Abstract:

Air pollution is one of the emerging problems in our society. Targets of reduction of CO₂ emissions address low-carbon and resource-efficient transport. (Plug-in) hybrid electric propulsion concepts offer the possibility to reduce total cost of ownership (TCO) and emissions for public transport vehicles (e.g., bus application). In this context, typically, diesel engines are used to form the hybrid propulsion system of the vehicle. Though the technological development of diesel engines experience major advantages, some challenges such as the high amount of particle emissions remain relevant. Gaseous fuels (i.e., compressed natural gases (CNGs) or liquefied petroleum gases (LPGs) represent an attractive alternative to diesel because of their composition. In the framework of the research project 'Optimised Real-world Cost-Competitive Modular Hybrid Architecture' (ORCA), which was funded by the EU, two different hybrid-electric propulsion concepts have been investigated: one using a diesel engine as internal combustion engine and one using CNG as fuel. The aim of the current study is to analyze specific benefits for the aforementioned hybrid propulsion systems for predefined driving scenarios with regard to emissions and total cost of ownership in bus application. Engine models based on experimental data for diesel and CNG were developed. For the purpose of designing optimal energy management strategies for each propulsion system, maps-driven or quasi-static models for specific engine types are used in the simulation framework. An analogous modelling approach has been chosen to represent emissions. This paper compares the two concepts regarding their CO₂ and NOx emissions. This comparison is performed for relevant bus missions (urban, suburban, with and without zero-emission zone) and with different energy management strategies. In addition to the emissions, also the downsizing potential of the combustion engine has been analysed to minimize the powertrain TCO (pTCO) for plug-in hybrid electric buses. The results of the performed analyses show that the hybrid vehicle concept using the CNG engine shows advantages both with respect to emissions as well as to pTCO. The pTCO is 10% lower, CO₂ emissions are 13% lower, and the NOx emissions are more than 50% lower than with the diesel combustion engine. These results are consistent across all usage profiles under investigation.

Keywords: bus transport, emissions, hybrid propulsion, pTCO, CNG

Procedia PDF Downloads 149