Search results for: mathematical shape deformation model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19951

Search results for: mathematical shape deformation model

16441 Non-Targeted Adversarial Image Classification Attack-Region Modification Methods

Authors: Bandar Alahmadi, Lethia Jackson

Abstract:

Machine Learning model is used today in many real-life applications. The safety and security of such model is important, so the results of the model are as accurate as possible. One challenge of machine learning model security is the adversarial examples attack. Adversarial examples are designed by the attacker to cause the machine learning model to misclassify the input. We propose a method to generate adversarial examples to attack image classifiers. We are modifying the successfully classified images, so a classifier misclassifies them after the modification. In our method, we do not update the whole image, but instead we detect the important region, modify it, place it back to the original image, and then run it through a classifier. The algorithm modifies the detected region using two methods. First, it will add abstract image matrix on back of the detected image matrix. Then, it will perform a rotation attack to rotate the detected region around its axes, and embed the trace of image in image background. Finally, the attacked region is placed in its original position, from where it was removed, and a smoothing filter is applied to smooth the background with foreground. We test our method in cascade classifier, and the algorithm is efficient, the classifier confident has dropped to almost zero. We also try it in CNN (Convolutional neural network) with higher setting and the algorithm was successfully worked.

Keywords: adversarial examples, attack, computer vision, image processing

Procedia PDF Downloads 342
16440 Apricot Insurance Portfolio Risk

Authors: Kasirga Yildirak, Ismail Gur

Abstract:

We propose a model to measure hail risk of an Agricultural Insurance portfolio. Hail is one of the major catastrophic event that causes big amount of loss to an insurer. Moreover, it is very hard to predict due to its strange atmospheric characteristics. We make use of parcel based claims data on apricot damage collected by the Turkish Agricultural Insurance Pool (TARSIM). As our ultimate aim is to compute the loadings assigned to specific parcels, we build a portfolio risk model that makes use of PD and the severity of the exposures. PD is computed by Spherical-Linear and Circular –Linear regression models as the data carries coordinate information and seasonality. Severity is mapped into integer brackets so that Probability Generation Function could be employed. Individual regressions are run on each clusters estimated on different criteria. Loss distribution is constructed by Panjer Recursion technique. We also show that one risk-one crop model can easily be extended to the multi risk–multi crop model by assuming conditional independency.

Keywords: hail insurance, spherical regression, circular regression, spherical clustering

Procedia PDF Downloads 256
16439 Closest Possible Neighbor of a Different Class: Explaining a Model Using a Neighbor Migrating Generator

Authors: Hassan Eshkiki, Benjamin Mora

Abstract:

The Neighbor Migrating Generator is a simple and efficient approach to finding the closest potential neighbor(s) with a different label for a given instance and so without the need to calibrate any kernel settings at all. This allows determining and explaining the most important features that will influence an AI model. It can be used to either migrate a specific sample to the class decision boundary of the original model within a close neighborhood of that sample or identify global features that can help localising neighbor classes. The proposed technique works by minimizing a loss function that is divided into two components which are independently weighted according to three parameters α, β, and ω, α being self-adjusting. Results show that this approach is superior to past techniques when detecting the smallest changes in the feature space and may also point out issues in models like over-fitting.

Keywords: explainable AI, EX AI, feature importance, counterfactual explanations

Procedia PDF Downloads 200
16438 Seismic Performance of Reinforced Concrete Frame Structure Based on Plastic Rotation

Authors: Kahil Amar, Meziani Faroudja, Khelil Nacim

Abstract:

The principal objective of this study is the evaluation of the seismic performance of reinforced concrete frame structures, taking into account of the behavior laws, reflecting the real behavior of materials, using CASTEM2000 software. A finite element model used is based in modified Takeda model with Timoshenko elements for columns and beams. This model is validated on a Vecchio experimental reinforced concrete (RC) frame model. Then, a study focused on the behavior of a RC frame with three-level and three-story in order to visualize the positioning the plastic hinge (plastic rotation), determined from the curvature distribution along the elements. The results obtained show that the beams of the 1st and 2nd level developed a very large plastic rotations, or these rotations exceed the values corresponding to CP (Collapse prevention with cp qCP = 0.02 rad), against those developed at the 3rd level, are between IO and LS (Immediate occupancy and life Safety with qIO = 0.005 rad and rad qLS = 0.01 respectively), so the beams of first and second levels submit a very significant damage.

Keywords: seismic performance, performance level, pushover analysis, plastic rotation, plastic hinge

Procedia PDF Downloads 133
16437 Diversification of Indonesian Terasi Shrimp (Acetes indicus) Powder as Alternative and Sustainable Food for the Double Burden of Malnutrition

Authors: Galuh Asri Bestari, Hajar Shofiyya

Abstract:

Double burden of malnutrition (DBM) has been a global problem in these last decades occurs in both developed and developing countries. Overweight in adults and stunting among preschool children have dramatically increased and become the main problems of malnutrition that should be solved immediately since they are directly related with the health status and productivity. Reformulation of food product by using the local sea resources called terasi shrimp (Acetes indicus) has a potential possibility in facing the DBM. A study was carried out in Indonesia to determine the acceptability of terasi shrimp powder through sensory evaluation. Terasi shrimps were processed into powder form through sun drying and pounding methods. The powder form was directly added in food as alternative seasonings and tested among stunted and normal preschool children. Meanwhile, a further processing method is given to the shrimp powder tested in overweight and normal-weighed adults. The shrimp powder was mixed with sago flour and formed into balls, then steamed for 15-20 minutes, and finally served as alternative snacks. Based on the sensory evaluation, the shrimp powder has a good acceptance in taste (54%), shape (60%), and color properties (63%), while the shrimp balls has a good acceptance in size (65%), shape (50%), color (48%), taste (40%), and texture (36%). Terasi shrimp powder can be stored for a month in room temperature. In addition, carried out chemical analysis revealed that terasi shrimp (Acetes indicus) has higher percentage of protein, calcium, and iron than other animal sources, but conversely contains zero sodium and very low percentage of fat. Terasi shrimp’s shell also contains a substance called chitosan which acts by forming gels in the intestinal tract to entrap lipids, thus interfering with their absorption. After going through some processing methods, the shrimp powder and balls did not show any significant changes in their nutrient contents. So that, terasi shrimp powder is good to be consumed not only by overweight adults, but also by children to support their optimum growth. Intervention of terasi shrimp powder should be implemented step by step from national up to global governance program to face the DBM.

Keywords: Acetes indicus, alternative food, double burden of malnutrition, sensory evaluation

Procedia PDF Downloads 309
16436 The Organizational Structure of the Special Purpose Vehicle in Public-Private Partnership Projects

Authors: Samuel Capintero

Abstract:

Public-private partnerships (PPP) arrangements have emerged all around the world as a response to infrastructure deficits and the need to refurbish existing infrastructure. During the last decade, the Spanish companies have dominated the international market of PPP projects in Latin America, Western Europe and North America, particularly in the transportation sector. Arguably, one of the most influential factors has been the organizational structure of the concessionaire implemented by the Spanish consortiums. The model followed by most Spanish groups has been a bundled model, where the concessionaire integrates the functions of concessionaire, construction and operator companies. This paper examines this model and explores how it has provided the Spanish companies with a comparative advantage in the international PPP market.

Keywords: PPP, project management, concessionaire, concession, infrastructure, construction

Procedia PDF Downloads 392
16435 Model for Introducing Products to New Customers through Decision Tree Using Algorithm C4.5 (J-48)

Authors: Komol Phaisarn, Anuphan Suttimarn, Vitchanan Keawtong, Kittisak Thongyoun, Chaiyos Jamsawang

Abstract:

This article is intended to analyze insurance information which contains information on the customer decision when purchasing life insurance pay package. The data were analyzed in order to present new customers with Life Insurance Perfect Pay package to meet new customers’ needs as much as possible. The basic data of insurance pay package were collect to get data mining; thus, reducing the scattering of information. The data were then classified in order to get decision model or decision tree using Algorithm C4.5 (J-48). In the classification, WEKA tools are used to form the model and testing datasets are used to test the decision tree for the accurate decision. The validation of this model in classifying showed that the accurate prediction was 68.43% while 31.25% were errors. The same set of data were then tested with other models, i.e. Naive Bayes and Zero R. The results showed that J-48 method could predict more accurately. So, the researcher applied the decision tree in writing the program used to introduce the product to new customers to persuade customers’ decision making in purchasing the insurance package that meets the new customers’ needs as much as possible.

Keywords: decision tree, data mining, customers, life insurance pay package

Procedia PDF Downloads 433
16434 Effect on Occupational Health Safety and Environment at Work from Metal Handicraft Using Rattanakosin Local Wisdom

Authors: Witthaya Mekhum, Waleerak Sittisom

Abstract:

This research investigated the effect on occupational health safety and environment at work from metal handicraft using Rattanakosin local wisdom focusing on pollution, accidents, and injuries from work. The sample group in this study included 48 metal handicraft workers in 5 communities by using questionnaires and interview to collect data. The evaluation form TISI 18001 was used to analyze job safety analysis (JSA). The results showed that risk at work reduced after applying the developed model. Banbu Community produces alloy bowl rubbed with stone. The high risk process is melting and hitting process. Before the application, the work risk was 82.71%. After the application of the developed model, the work risk was reduced to 50.61%. Banbart Community produces monk’s food bowl. The high risk process is blow pipe welding. Before the application, the work risk was 93.59%. After the application of the developed model, the work risk was reduced to 48.14%. Bannoen Community produces circle gong. The high risk process is milling process. Before the application, the work risk was 85.18%. After the application of the developed model, the work risk was reduced to 46.91%. Teethong Community produces gold leaf. The high risk process is hitting and spreading process. Before the application, the work risk was 86.42%. After the application of the developed model, the work risk was reduced to 64.19%. Ban Changthong Community produces gold ornament. The high risk process is gold melting process. Before the application, the work risk was 67.90%. After the application of the developed model, the work risk was reduced to 37.03%. It can be concluded that with the application of the developed model, the work risk of 5 communities was reduced in the 3 main groups: (1) Work illness reduced by 16.77%; (2) Pollution from work reduced by 10.31%; (3) Accidents and injuries from work reduced by 15.62%.

Keywords: occupational health, safety, local wisdom, Rattanakosin

Procedia PDF Downloads 445
16433 Facial Emotion Recognition Using Deep Learning

Authors: Ashutosh Mishra, Nikhil Goyal

Abstract:

A 3D facial emotion recognition model based on deep learning is proposed in this paper. Two convolution layers and a pooling layer are employed in the deep learning architecture. After the convolution process, the pooling is finished. The probabilities for various classes of human faces are calculated using the sigmoid activation function. To verify the efficiency of deep learning-based systems, a set of faces. The Kaggle dataset is used to verify the accuracy of a deep learning-based face recognition model. The model's accuracy is about 65 percent, which is lower than that of other facial expression recognition techniques. Despite significant gains in representation precision due to the nonlinearity of profound image representations.

Keywords: facial recognition, computational intelligence, convolutional neural network, depth map

Procedia PDF Downloads 235
16432 Analysis of Translational Ship Oscillations in a Realistic Environment

Authors: Chen Zhang, Bernhard Schwarz-Röhr, Alexander Härting

Abstract:

To acquire accurate ship motions at the center of gravity, a single low-cost inertial sensor is utilized and applied on board to measure ship oscillating motions. As observations, the three axes accelerations and three axes rotational rates provided by the sensor are used. The mathematical model of processing the observation data includes determination of the distance vector between the sensor and the center of gravity in x, y, and z directions. After setting up the transfer matrix from sensor’s own coordinate system to the ship’s body frame, an extended Kalman filter is applied to deal with nonlinearities between the ship motion in the body frame and the observation information in the sensor’s frame. As a side effect, the method eliminates sensor noise and other unwanted errors. Results are not only roll and pitch, but also linear motions, in particular heave and surge at the center of gravity. For testing, we resort to measurements recorded on a small vessel in a well-defined sea state. With response amplitude operators computed numerically by a commercial software (Seaway), motion characteristics are estimated. These agree well with the measurements after processing with the suggested method.

Keywords: extended Kalman filter, nonlinear estimation, sea trial, ship motion estimation

Procedia PDF Downloads 527
16431 Design Optimization of a Micro Compressor for Micro Gas Turbine Using Computational Fluid Dynamics

Authors: Kamran Siddique, Hiroyuki Asada, Yoshifumi Ogami

Abstract:

The use of Micro Gas Turbine (MGT) as the engine in Unmanned Aerobic Vehicles (UAVs) and power source in Robotics is widespread these days. Research has been conducted in the past decade or so to improve the performance of different components of MGT. This type of engine has interrelated components which have non-linear characteristics. Therefore, the overall engine performance depends on the individual engine element’s performance. Computational Fluid Dynamics (CFD) is one of the simulation method tools used to analyze or even optimize MGT system performance. In this study, the compressor of the MGT is designed, and performance optimization is being done using CFD. Performance of the micro compressor is improved in order to increase the overall performance of MGT. A high value of pressure ratio is to be achieved by studying the effect of change of different operating parameters like mass flow rate and revolutions per minute (RPM) and aerodynamical and geometrical parameters on the pressure ratio of the compressor. Two types of compressor designs are considered in this study; 3D centrifugal and ‘planar’ designs. For a 10 mm impeller, the planar model is the simplest compressor model with the ease in manufacturability. On the other hand, 3D centrifugal model, although more efficient, is very difficult to manufacture using current microfabrication resources. Therefore, the planar model is the best-suited model for a micro compressor. So. a planar micro compressor has been designed that has a good pressure ratio, and it is easy to manufacture using current microfabrication technologies. Future work is to fabricate the compressor to get experimental results and validate the theoretical model.

Keywords: computational fluid dynamics, microfabrication, MEMS, unmanned aerobic vehicles

Procedia PDF Downloads 148
16430 Scheduling of Cross-Docking Center: An Auction-Based Algorithm

Authors: Eldho Paul, Brijesh Paul

Abstract:

This work proposes an auction mechanism based solution methodology for the optimum scheduling of trucks in a cross-docking centre. The cross-docking centre is an important element of lean supply chain. It reduces the amount of storage and transportation costs in the distribution system compared to an ordinary warehouse. Better scheduling of trucks in a cross-docking center is the best way to reduce storage and transportation costs. Auction mechanism is commonly used for allocation of limited resources in different real-life applications. Here, we try to schedule inbound trucks by integrating auction mechanism with the functioning of a cross-docking centre. A mathematical model is developed for the optimal scheduling of inbound trucks based on the auction methodology. The determination of exact solution for problems involving large number of trucks was found to be computationally difficult, and hence a genetic algorithm based heuristic methodology is proposed in this work. A comparative study of exact and heuristic solutions is done using five classes of data sets. It is observed from the study that the auction-based mechanism is capable of providing good solutions to scheduling problem in cross-docking centres.

Keywords: auction mechanism, cross-docking centre, genetic algorithm, scheduling of trucks

Procedia PDF Downloads 416
16429 A Mathematical Based Prediction of the Forming Limit of Thin-Walled Sheet Metals

Authors: Masoud Ghermezi

Abstract:

Studying the sheet metals is one of the most important research areas in the field of metal forming due to their extensive applications in the aerospace industries. A useful method for determining the forming limit of these materials and consequently preventing the rupture of sheet metals during the forming process is the use of the forming limit curve (FLC). In addition to specifying the forming limit, this curve also delineates a boundary for the allowed values of strain in sheet metal forming; these characteristics of the FLC along with its accuracy of computation and wide range of applications have made this curve the basis of research in the present paper. This study presents a new model that not only agrees with the results obtained from the above mentioned theory, but also eliminates its shortcomings. In this theory, like in the M-K theory, a thin sheet with an inhomogeneity as a gradient thickness reduction with a sinusoidal function has been chosen and subjected to two-dimensional stress. Through analytical evaluation, ultimately, a governing differential equation has been obtained. The numerical solution of this equation for the range of positive strains (stretched region) yields the results that agree with the results obtained from M-K theory. Also the solution of this equation for the range of negative strains (tension region) completes the FLC curve. The findings obtained by applying this equation on two alloys with the hardening exponents of 0.4 and 0.24 indicate the validity of the presented equation.

Keywords: sheet metal, metal forming, forming limit curve (FLC), M-K theory

Procedia PDF Downloads 368
16428 Detection of Cardiac Arrhythmia Using Principal Component Analysis and Xgboost Model

Authors: Sujay Kotwale, Ramasubba Reddy M.

Abstract:

Electrocardiogram (ECG) is a non-invasive technique used to study and analyze various heart diseases. Cardiac arrhythmia is a serious heart disease which leads to death of the patients, when left untreated. An early-time detection of cardiac arrhythmia would help the doctors to do proper treatment of the heart. In the past, various algorithms and machine learning (ML) models were used to early-time detection of cardiac arrhythmia, but few of them have achieved better results. In order to improve the performance, this paper implements principal component analysis (PCA) along with XGBoost model. The PCA was implemented to the raw ECG signals which suppress redundancy information and extracted significant features. The obtained significant ECG features were fed into XGBoost model and the performance of the model was evaluated. In order to valid the proposed technique, raw ECG signals obtained from standard MIT-BIH database were employed for the analysis. The result shows that the performance of proposed method is superior to the several state-of-the-arts techniques.

Keywords: cardiac arrhythmia, electrocardiogram, principal component analysis, XGBoost

Procedia PDF Downloads 125
16427 The Grade Six Pupils' Learning Styles and Their Achievements and Difficulties on Fractions Based on Kolb's Model

Authors: Faiza Abdul Latip

Abstract:

One of the ultimate goals of any nation is to produce competitive manpower and this includes Philippines. Inclination in the field of Mathematics has a significant role in achieving this goal. However, Mathematics, as considered by most people, is the most difficult subject matter along with its topics to learn. This could be manifested from the low performance of students in national and international assessments. Educators have been widely using learning style models in identifying the way students learn. Moreover, it could be the frontline in knowing the difficulties held by each learner in a particular topic specifically concepts pertaining to fractions. However, as what many educators observed, students show difficulties in doing mathematical tasks and in great degree in dealing with fractions most specifically in the district of Datu Odin Sinsuat, Maguindanao. This study focused on the Datu Odin Sinsuat district grade six pupils’ learning styles along with their achievements and difficulties in learning concepts on fractions. Five hundred thirty-two pupils from ten different public elementary schools of the Datu Odin Sinsuat districts were purposively used as the respondents of the study. A descriptive research using the survey method was employed in this study. Quantitative analysis on the pupils’ learning styles on the Kolb’s Learning Style Inventory (KLSI) and scores on the mathematics diagnostic test on fraction concepts were made using this method. The simple frequency and percentage counts were used to analyze the pupils’ learning styles and their achievements on fractions. To determine the pupils’ difficulties in fractions, the index of difficulty on every item was determined. Lastly, the Kruskal-Wallis Test was used in determining the significant difference in the pupils’ achievements on fractions classified by their learning styles. This test was set at 0.05 level of significance. The minimum H-Value of 7.82 was used to determine the significance of the test. The results revealed that the pupils of Datu Odin Sinsuat districts learn fractions in varied ways as they are of different learning styles. However, their achievements in fractions are low regardless of their learning styles. Difficulties in learning fractions were found most in the area of Estimation, Comparing/Ordering, and Division Interpretation of Fractions. Most of the pupils find it very difficult to use fraction as a measure, compare or arrange series of fractions and use the concept of fraction as a quotient.

Keywords: difficulties in fraction, fraction, Kolb's model, learning styles

Procedia PDF Downloads 218
16426 Stability of the Wellhead in the Seabed in One of the Marine Reservoirs of Iran

Authors: Mahdi Aghaei, Saeid Jamshidi, Mastaneh Hajipour

Abstract:

Effective factors on the mechanical wellbore stability are divided in to two categories: 1) Controllable factors, 2) Uncontrollable factors. The purpose of geo-mechanical modeling of wells is to determine the limit of controlled parameters change based on the stress regime at each point and by solving the governing equations the pore-elastic environment around the well. In this research, the mechanical analysis of wellbore stability was carried out for Soroush oilfield. For this purpose, the geo-mechanical model of the field is made using available data. This model provides the necessary parameters for obtaining the distribution of stress around the wellbore. Initially, a basic model was designed to perform various analysis, based on obtained data, using Abaqus software. All of the subsequent sensitivity analysis such as sensitivity analysis on porosity, permeability, etc. was done on the same basic model. The results obtained from these analysis gives various result such as: with the constant geomechanical parameters, and sensitivity analysis on porosity permeability is ineffective. After the most important parameters affecting the wellbore stability and instability are geo-mechanical parameters.

Keywords: wellbore stability, movement, stress, instability

Procedia PDF Downloads 207
16425 Model Development for Real-Time Human Sitting Posture Detection Using a Camera

Authors: Jheanel E. Estrada, Larry A. Vea

Abstract:

This study developed model to detect proper/improper sitting posture using the built in web camera which detects the upper body points’ location and distances (chin, manubrium and acromion process). It also established relationships of human body frames and proper sitting posture. The models were developed by training some well-known classifiers such as KNN, SVM, MLP, and Decision Tree using the data collected from 60 students of different body frames. Decision Tree classifier demonstrated the most promising model performance with an accuracy of 95.35% and a kappa of 0.907 for head and shoulder posture. Results also showed that there were relationships between body frame and posture through Body Mass Index.

Keywords: posture, spinal points, gyroscope, image processing, ergonomics

Procedia PDF Downloads 333
16424 Self-Attention Mechanism for Target Hiding Based on Satellite Images

Authors: Hao Yuan, Yongjian Shen, Xiangjun He, Yuheng Li, Zhouzhou Zhang, Pengyu Zhang, Minkang Cai

Abstract:

Remote sensing data can provide support for decision-making in disaster assessment or disaster relief. The traditional processing methods of sensitive targets in remote sensing mapping are mainly based on manual retrieval and image editing tools, which are inefficient. Methods based on deep learning for sensitive target hiding are faster and more flexible. But these methods have disadvantages in training time and cost of calculation. This paper proposed a target hiding model Self Attention (SA) Deepfill, which used self-attention modules to replace part of gated convolution layers in image inpainting. By this operation, the calculation amount of the model becomes smaller, and the performance is improved. And this paper adds free-form masks to the model’s training to enhance the model’s universal. The experiment on an open remote sensing dataset proved the efficiency of our method. Moreover, through experimental comparison, the proposed method can train for a longer time without over-fitting. Finally, compared with the existing methods, the proposed model has lower computational weight and better performance.

Keywords: remote sensing mapping, image inpainting, self-attention mechanism, target hiding

Procedia PDF Downloads 144
16423 Meta Model for Optimum Design Objective Function of Steel Frames Subjected to Seismic Loads

Authors: Salah R. Al Zaidee, Ali S. Mahdi

Abstract:

Except for simple problems of statically determinate structures, optimum design problems in structural engineering have implicit objective functions where structural analysis and design are essential within each searching loop. With these implicit functions, the structural engineer is usually enforced to write his/her own computer code for analysis, design, and searching for optimum design among many feasible candidates and cannot take advantage of available software for structural analysis, design, and searching for the optimum solution. The meta-model is a regression model used to transform an implicit objective function into objective one and leads in turn to decouple the structural analysis and design processes from the optimum searching process. With the meta-model, well-known software for structural analysis and design can be used in sequence with optimum searching software. In this paper, the meta-model has been used to develop an explicit objective function for plane steel frames subjected to dead, live, and seismic forces. Frame topology is assumed as predefined based on architectural and functional requirements. Columns and beams sections and different connections details are the main design variables in this study. Columns and beams are grouped to reduce the number of design variables and to make the problem similar to that adopted in engineering practice. Data for the implicit objective function have been generated based on analysis and assessment for many design proposals with CSI SAP software. These data have been used later in SPSS software to develop a pure quadratic nonlinear regression model for the explicit objective function. Good correlations with a coefficient, R2, in the range from 0.88 to 0.99 have been noted between the original implicit functions and the corresponding explicit functions generated with meta-model.

Keywords: meta-modal, objective function, steel frames, seismic analysis, design

Procedia PDF Downloads 249
16422 Computation of Induction Currents in a Set of Dendrites

Authors: R. B. Mishra, Sudhakar Tripathi

Abstract:

In this paper, the cable model of dendrites have been considered. The dendrites are cylindrical cables of various segments having variable length and reducing radius from start point at synapse and end points. For a particular event signal being received by a neuron in response only some dendrite are active at a particular instance. Initial current signals with different current flows in dendrite are assumed. Due to overlapping and coupling of active dendrite, they induce currents in the dendrite segments of each other at a particular instance. But how these currents are induced in the various segments of active dendrites due to coupling between these dendrites, It is not presented in the literature. Here the paper presents a model for induced currents in active dendrite segments due to mutual coupling at the starting instance of an activity in dendrite. The model is as discussed further.

Keywords: currents, dendrites, induction, simulation

Procedia PDF Downloads 398
16421 Biophotovoltaics in 3D: Simplifying Concepts

Authors: Mary Booth

Abstract:

Biophotovoltaics is a method of green energy generation derived from exposing plants to lights. Its vast potential is hampered by the public’s relative ignorance of its existence. This work aims to formalize the principles of the physical processes of biophotovoltaics into a comprehensible visual software model, thus amplifying the human thought process. The methods used involve initially crafting a scale model of a working biophotovoltaic system from household materials inspired by the work of Paolo Bombelli. The scale model is then programmed into a system-level simulation, wherein a 3D animation dissects the system and its general energy generation process. The completed 3D system-level simulation ultimately creates a simplified visual understanding of the complex principles of the biophotovoltaic system.

Keywords: 3D, biophotovoltaics, render

Procedia PDF Downloads 88
16420 Modeling of Bed Level Changes in Larak Island

Authors: Saeed Zeinali, Nasser Talebbeydokhti, Mehdi Saeidian, Shahrad Vosough

Abstract:

In this article, bathymetry changes have been studied as a case study for Larak Island, located in The South of Iran. The advanced 2D model of Mike21 has been used for this purpose. A simple procedure has been utilized in this model. First, the hydrodynamic (HD) module of Mike21 has been used to obtain the required output for sediment transport model (ST module). The ST module modeled the area for tidal currents only. Bed level changes are resulted by series of modeling for both HD and ST module in 3 months time step. The final bathymetry in each time step is used as the primary bathymetry for next time step. This consecutive procedure been continued until bathymetry for the year 2020 is obtained.

Keywords: bed level changes, Larak Island, hydrodynamic, sediment transport

Procedia PDF Downloads 270
16419 Applying Theory of Self-Efficacy in Intelligent Transportation Systems by Potential Usage of Vehicle as a Sensor

Authors: Aby Nesan Raj, Sumil K. Raj, Sumesh Jayan

Abstract:

The objective of the study is to formulate a self-regulation model that shall enhance the usage of Intelligent Transportation Systems by understanding the theory of self-efficacy. The core logic of the self-regulation model shall monitor driver's behavior based on the situations related to the various sources of Self Efficacy like enactive mastery, vicarious experience, verbal persuasion and physiological arousal in addition to the vehicle data. For this study, four different vehicle data, speed, drowsiness, diagnostic data and surround camera views are considered. This data shall be given to the self-regulation model for evaluation. The oddness, which is the output of self-regulation model, shall feed to Intelligent Transportation Systems where appropriate actions are being taken. These actions include warning to the user as well as the input to the related transportation systems. It is also observed that the usage of vehicle as a sensor reduces the wastage of resource utilization or duplication. Altogether, this approach enhances the intelligence of the transportation systems especially in safety, productivity and environmental performance.

Keywords: emergency management, intelligent transportation system, self-efficacy, traffic management

Procedia PDF Downloads 249
16418 Nonlinear Pollution Modelling for Polymeric Outdoor Insulator

Authors: Rahisham Abd Rahman

Abstract:

In this paper, a nonlinear pollution model has been proposed to compute electric field distribution over the polymeric insulator surface under wet contaminated conditions. A 2D axial-symmetric insulator geometry, energized with 11kV was developed and analysed using Finite Element Method (FEM). A field-dependent conductivity with simplified assumptions was established to characterize the electrical properties of the pollution layer. Comparative field studies showed that simulation of dynamic pollution model results in a more realistic field profile, offering better understanding on how the electric field behaves under wet polluted conditions.

Keywords: electric field distributions, pollution layer, dynamic model, polymeric outdoor insulators, finite element method (FEM)

Procedia PDF Downloads 403
16417 Aerodynamic Investigation of Rear Vehicle by Geometry Variations on the Backlight Angle

Authors: Saud Hassan

Abstract:

This paper shows simulation for the prediction of the flow around the backlight angle of the passenger vehicle. The CFD simulations are carried out on different car models. The Ahmed model “bluff body” used as the stander model to study aerodynamics of the backlight angle. This paper described the airflow over the different car models with different backlight angles and also on the Ahmed model to determine the trailing vortices with the varying backlight angle of a passenger vehicle body. The CFD simulation is carried out with the Ahmed body which has simplified car model mainly used in automotive industry to investigate the flow over the car body surface. The main goal of the simulation is to study the behavior of trailing vortices of these models. In this paper the air flow over the slant angle of 0,5o, 12.5o, 20o, 30o, 40o are considered. As investigating on the rear backlight angle two dimensional flows occurred at the rear slant, on the other hand when the slant angle is 30o the flow become three dimensional. Above this angle sudden drop occurred in drag.

Keywords: aerodynamics, Ahemd vehicle , backlight angle, finite element method

Procedia PDF Downloads 793
16416 RBF Modelling and Optimization Control for Semi-Batch Reactors

Authors: Magdi M. Nabi, Ding-Li Yu

Abstract:

This paper presents a neural network based model predictive control (MPC) strategy to control a strongly exothermic reaction with complicated nonlinear kinetics given by Chylla-Haase polymerization reactor that requires a very precise temperature control to maintain product uniformity. In the benchmark scenario, the operation of the reactor must be guaranteed under various disturbing influences, e.g., changing ambient temperatures or impurity of the monomer. Such a process usually controlled by conventional cascade control, it provides a robust operation, but often lacks accuracy concerning the required strict temperature tolerances. The predictive control strategy based on the RBF neural model is applied to solve this problem to achieve set-point tracking of the reactor temperature against disturbances. The result shows that the RBF based model predictive control gives reliable result in the presence of some disturbances and keeps the reactor temperature within a tight tolerance range around the desired reaction temperature.

Keywords: Chylla-Haase reactor, RBF neural network modelling, model predictive control, semi-batch reactors

Procedia PDF Downloads 471
16415 Virtual Modelling of Turbulent Fibre Flow in a Low Consistency Refiner for a Sustainable and Energy Efficient Process

Authors: Simon Ingelsten, Anton Lundberg, Vijay Shankar, Lars-Olof Landström, Örjan Johansson

Abstract:

The flow in a low consistency disc refiner is simulated with the aim of identifying flow structures possibly being of importance for a future study to optimise the energy efficiency in refining processes. A simplified flow geometry is used, where a single groove of a refiner disc is modelled. Two different fibre models are used to simulate turbulent fibre suspension flow in the groove. The first model is a Bingham viscoplastic fluid model where the fibre suspension is treated as a non-Newtonian fluid with a yield stress. The second model is a new model proposed in a recent study where the suspended fibres effect on flow is accounted for through a modelled orientation distribution function (ODF). Both models yielded similar results with small differences. Certain flow characteristics that were expected and that was found in the literature were identified. Some of these flow characteristics may be of importance in a future process to optimise the refiner geometry to increase the energy efficiency. Further study and a more detailed flow model is; however, needed in order for the simulations to yield results valid for quantitative use in such an optimisation study. An outline of the next steps in such a study is proposed.

Keywords: disc refiner, fibre flow, sustainability, turbulence modelling

Procedia PDF Downloads 412
16414 Verification of Dosimetric Commissioning Accuracy of Flattening Filter Free Intensity Modulated Radiation Therapy and Volumetric Modulated Therapy Delivery Using Task Group 119 Guidelines

Authors: Arunai Nambi Raj N., Kaviarasu Karunakaran, Krishnamurthy K.

Abstract:

The purpose of this study was to create American Association of Physicist in Medicine (AAPM) Task Group 119 (TG 119) benchmark plans for flattening filter free beam (FFF) deliveries of intensity modulated radiation therapy (IMRT) and volumetric arc therapy (VMAT) in the Eclipse treatment planning system. The planning data were compared with the flattening filter (FF) IMRT & VMAT plan data to verify the dosimetric commissioning accuracy of FFF deliveries. AAPM TG 119 proposed a set of test cases called multi-target, mock prostate, mock head and neck, and C-shape to ascertain the overall accuracy of IMRT planning, measurement, and analysis. We used these test cases to investigate the performance of the Eclipse Treatment planning system for the flattening filter free beam deliveries. For these test cases, we generated two sets of treatment plans, the first plan using 7–9 IMRT fields and a second plan utilizing two arc VMAT technique for both the beam deliveries (6 MV FF, 6MV FFF, 10 MV FF and 10 MV FFF). The planning objectives and dose were set as described in TG 119. The dose prescriptions for multi-target, mock prostate, mock head and neck, and C-shape were taken as 50, 75.6, 50 and 50 Gy, respectively. The point dose (mean dose to the contoured chamber volume) at the specified positions/locations was measured using compact (CC‑13) ion chamber. The composite planar dose and per-field gamma analysis were measured with IMatriXX Evaluation 2D array with OmniPro IMRT Software (version 1.7b). FFF beam deliveries of IMRT and VMAT plans were comparable to flattening filter beam deliveries. Our planning and quality assurance results matched with TG 119 data. AAPM TG 119 test cases are useful to generate FFF benchmark plans. From the obtained data in this study, we conclude that the commissioning of FFF IMRT and FFF VMAT delivery were found within the limits of TG-119 and the performance of the Eclipse treatment planning system for FFF plans were found satisfactorily.

Keywords: flattening filter free beams, intensity modulated radiation therapy, task group 119, volumetric modulated arc therapy

Procedia PDF Downloads 148
16413 Multiphase Coexistence for Aqueous System with Hydrophilic Agent

Authors: G. B. Hong

Abstract:

Liquid-Liquid Equilibrium (LLE) data are measured for the ternary mixtures of water + 1-butanol + butyl acetate and quaternary mixtures of water + 1-butanol + butyl acetate + glycerol at atmospheric pressure at 313.15 K. In addition, isothermal Vapor–Liquid–Liquid Equilibrium (VLLE) data are determined experimentally at 333.15 K. The region of heterogeneity is found to increase as the hydrophilic agent (glycerol) is introduced into the aqueous mixtures. The experimental data are correlated with the NRTL model. The predicted results from the solution model with the model parameters determined from the constituent binaries are also compared with the experimental values.

Keywords: LLE, VLLE, hydrophilic agent, NRTL

Procedia PDF Downloads 247
16412 A Radiomics Approach to Predict the Evolution of Prostate Imaging Reporting and Data System Score 3/5 Prostate Areas in Multiparametric Magnetic Resonance

Authors: Natascha C. D'Amico, Enzo Grossi, Giovanni Valbusa, Ala Malasevschi, Gianpiero Cardone, Sergio Papa

Abstract:

Purpose: To characterize, through a radiomic approach, the nature of areas classified PI-RADS (Prostate Imaging Reporting and Data System) 3/5, recognized in multiparametric prostate magnetic resonance with T2-weighted (T2w), diffusion and perfusion sequences with paramagnetic contrast. Methods and Materials: 24 cases undergoing multiparametric prostate MR and biopsy were admitted to this pilot study. Clinical outcome of the PI-RADS 3/5 was found through biopsy, finding 8 malignant tumours. The analysed images were acquired with a Philips achieva 1.5T machine with a CE- T2-weighted sequence in the axial plane. Semi-automatic tumour segmentation was carried out on MR images using 3DSlicer image analysis software. 45 shape-based, intensity-based and texture-based features were extracted and represented the input for preprocessing. An evolutionary algorithm (a TWIST system based on KNN algorithm) was used to subdivide the dataset into training and testing set and select features yielding the maximal amount of information. After this pre-processing 20 input variables were selected and different machine learning systems were used to develop a predictive model based on a training testing crossover procedure. Results: The best machine learning system (three-layers feed-forward neural network) obtained a global accuracy of 90% ( 80 % sensitivity and 100% specificity ) with a ROC of 0.82. Conclusion: Machine learning systems coupled with radiomics show a promising potential in distinguishing benign from malign tumours in PI-RADS 3/5 areas.

Keywords: machine learning, MR prostate, PI-Rads 3, radiomics

Procedia PDF Downloads 191