Search results for: leadership models
4170 3D Model Completion Based on Similarity Search with Slim-Tree
Authors: Alexis Aldo Mendoza Villarroel, Ademir Clemente Villena Zevallos, Cristian Jose Lopez Del Alamo
Abstract:
With the advancement of technology it is now possible to scan entire objects and obtain their digital representation by using point clouds or polygon meshes. However, some objects may be broken or have missing parts; thus, several methods focused on this problem have been proposed based on Geometric Deep Learning, such as GCNN, ACNN, PointNet, among others. In this article an approach from a different paradigm is proposed, using metric data structures to index global descriptors in the spectral domain and allow the recovery of a set of similar models in polynomial time; to later use the Iterative Close Point algorithm and recover the parts of the incomplete model using the geometry and topology of the model with less Hausdorff distance.Keywords: 3D reconstruction method, point cloud completion, shape completion, similarity search
Procedia PDF Downloads 1224169 Laboratory Diagnostic Testing of Peste des Petits Ruminants in Georgia
Authors: Nino G. Vepkhvadze, Tea Enukidze
Abstract:
Every year the number of countries around the world face the risk of the spread of infectious diseases that bring significant ecological and social-economic damage. Hence, the importance of food product safety is emphasized that is the issue of interest for many countries. To solve them, it’s necessary to conduct preventive measures against the diseases, have accurate diagnostic results, leadership, and management. The Peste des petits ruminants (PPR) disease is caused by a morbillivirus closely related to the rinderpest virus. PPR is a transboundary disease as it emerges and evolves, considered as one of the top most damaging animal diseases. The disease imposed a serious threat to sheep-breeding when the farms of sheep, goats are significantly growing within the country. In January 2016, PPR was detected in Georgia. Up to present the origin of the virus, the age relationship of affected ruminants and the distribution of PPRV in Georgia remains unclear. Due to the nature of PPR, and breeding practices in the country, reemerging of the disease in Georgia is highly likely. The purpose of the studies is to provide laboratories with efficient tools allowing the early detection of PPR emergence and re-emergences. This study is being accomplished under the Biological Threat Reduction Program project with the support of the Defense Threat Reduction Agency (DTRA). The purpose of the studies is to investigate the samples and identify areas at high risk of the disease. Georgia has a high density of small ruminant herds bred as free-ranging, close to international borders. Kakheti region, Eastern Georgia, will be considered as area of high priority for PPR surveillance. For this reason, in 2019, in Kakheti region investigated n=484 sheep and goat serum and blood samples from the same animals, utilized serology and molecular biology methods. All samples were negative by RT-PCR, and n=6 sheep samples were seropositive by ELISA-Ab. Future efforts will be concentrated in areas where the risk of PPR might be high such as international bordering regions of Georgia. For diagnostics, it is important to integrate the PPRV knowledge with epidemiological data. Based on these diagnostics, the relevant agencies will be able to control the disease surveillance.Keywords: animal disease, especially dangerous pathogen, laboratory diagnostics, virus
Procedia PDF Downloads 1164168 A Summary-Based Text Classification Model for Graph Attention Networks
Authors: Shuo Liu
Abstract:
In Chinese text classification tasks, redundant words and phrases can interfere with the formation of extracted and analyzed text information, leading to a decrease in the accuracy of the classification model. To reduce irrelevant elements, extract and utilize text content information more efficiently and improve the accuracy of text classification models. In this paper, the text in the corpus is first extracted using the TextRank algorithm for abstraction, the words in the abstract are used as nodes to construct a text graph, and then the graph attention network (GAT) is used to complete the task of classifying the text. Testing on a Chinese dataset from the network, the classification accuracy was improved over the direct method of generating graph structures using text.Keywords: Chinese natural language processing, text classification, abstract extraction, graph attention network
Procedia PDF Downloads 1024167 Application of Neuro-Fuzzy Technique for Optimizing the PVC Membrane Sensor
Authors: Majid Rezayi, Sh. Shahaboddin, HNM E. Mahmud, A. Yadollah, A. Saeid, A. Yatimah
Abstract:
In this study, the adaptive neuro-fuzzy inference system (ANFIS) was applied to obtain the membrane composition model affecting the potential response of our reported polymeric PVC sensor for determining the titanium (III) ions. The performance statistics of the artificial neural network (ANN) and linear regression models for potential slope prediction of membrane composition of titanium (III) ion selective electrode were compared with ANFIS technique. The results show that the ANFIS model can be used as a practical tool for obtaining the Nerntian slope of the proposed sensor in this study.Keywords: adaptive neuro fuzzy inference, PVC sensor, titanium (III) ions, Nerntian slope
Procedia PDF Downloads 2904166 An Examination of Economic Evaluation Approaches in Mental Health Promotion Initiatives Targeted at Black and Asian Minority Ethnic Communities in the UK: A Critical Discourse Analysis
Authors: Phillipa Denise Peart
Abstract:
Black Asian and Minority Ethnic (BAME) people are more at risk of developing mental health disorders because they are more exposed to unfavorable social, economic, and environmental circumstances. These include housing, education, employment, community development, stigma, and discrimination. However, the majority of BAME mental health intervention studies focus on treatment with therapeutically effective drugs and use basic economic methods to evaluate their effectiveness; as a result, little is invested in the economic assessment of psychosocial interventions in BAME mental health. The UK government’s austerity programme and reduced funds for mental health services, has increased the need for the evaluation and assessment of initiatives to focus on value for money. The No Health without Mental Health policy (2011) provides practice guidance to practitioners, but there is little or no mention of the need to provide mental health initiatives targeted at BAME communities that are effective in terms of their impact and the cost-effectiveness. This, therefore, appears to contradict with and is at odds with the wider political discourse, which suggests there should be an increasing focus on health economic evaluation. As a consequence, it could be argued that whilst such policies provide direction to organisations to provide mental health services to the BAME community, by not requesting effective governance, assurance, and evaluation processes, they are merely paying lip service to address these problems and not helping advance knowledge and practice through evidence-based approaches. As a result, BAME communities suffer due to lack of efficient resources that can aid in the recovery process. This research study explores the mental health initiatives targeted at BAME communities, and analyses the techniques used when examining the cost effectiveness of mental health initiatives for BAME mental health communities. Using critical discourse analysis as an approach and method, mental health services will be selected as case studies, and their evaluations will be examined, alongside the political drivers that frame, shape, and direct their work. In doing so, it will analyse what the mental health policies initiatives are, how the initiatives are directed and demonstrate how economic models of evaluation are used in mental health programmes and how the value for money impacts and outcomes are articulated by mental health programme staff. It is anticipated that this study will further our understanding in order to provide adequate mental health resources and will deliver creative, supportive research to ensure evaluation is effective for the government to provide and maintain high quality and efficient mental health initiatives targeted at BAME communities.Keywords: black, Asian and ethnic minority, economic models, mental health, health policy
Procedia PDF Downloads 1114165 An Integrated Intuitionistic Fuzzy Elimination Et Choix Traduisant La REalite (IFELECTRE) Model
Authors: Babak Daneshvar Rouyendegh
Abstract:
The aim of this study is to develop and describe a new methodology for the Multi-Criteria Decision-Making (MCDM) problem using Intuitionistic Fuzzy Elimination Et Choix Traduisant La REalite (IFELECTRE) model. The proposed models enable Decision-Makers (DMs) on the assessment and use Intuitionistic Fuzzy numbers (IFN). A numerical example is provided to demonstrate and clarify the proposed analysis procedure. Also, an empirical experiment is conducted to validation the effectiveness.Keywords: Decision-Makers (DMs), Multi-Criteria Decision-Making (MCDM), Intuitionistic Fuzzy Elimination Et Choix Traduisant La REalite (IFELECTRE), Intuitionistic Fuzzy Numbers (IFN)
Procedia PDF Downloads 6794164 Mechanism Design and Dynamic Analysis of Active Independent Front Steering System
Authors: Cheng-Chi Yu, Yu-Shiue Wang, Kei-Lin Kuo
Abstract:
Active Independent Front Steering system is a steering system which can according to vehicle driving situation adjusts the relation of steering angle between inner wheel and outer wheel. In low-speed cornering, AIFS sets the steering angles of inner and outer wheel into Ackerman steering geometry to make vehicle has less cornering radius. Besides, AIFS changes the steering geometry to parallel or even anti-Ackerman steering geometry to keep vehicle stability in high-speed cornering. Therefore, based on the analysis of the vehicle steering behavior from different steering geometries, this study develops a new screw type of active independent front steering system to make vehicles best cornering performance at any speeds. The screw type of active independent front steering system keeps the pinion and separates the rack into main rack and second rack. Two racks connect by a screw. Extra screw rotated motion powered by assistant motor through coupler makes second rack move relative to main rack, which can adjust both steering ratio and steering geometry. First of all, this study distinguishes the steering geometry by using Ackerman percentage and utilizes the software of ADAMS/Car to construct diverse steering geometry models. The different steering geometries are compared at low-speed and high-speed cornering, and then control strategies of the active independent front steering systems could be formulated. Secondly, this study applies closed loop equation to analyze tire steering angles and carries out optimization calculations to make the steering geometry from traditional rack and pinion steering system near to Ackerman steering geometry. Steering characteristics of the optimum steering mechanism and motion characteristics of vehicle installed the steering mechanism are verified by ADAMS/Car models of front suspension and full vehicle respectively. By adding dual auxiliary rack and dual motor to the optimum steering mechanism, the active independent front steering system could be developed to achieve the functions of variable steering ratio and variable steering geometry. At last, this study uses ADAMS/Car and Matlab/Simulink to co-simulate the cornering motion of vehicles confirms the vehicle installed the Active Independent Front Steering (AIFS) system has better handling performance than that with Active Independent Steering (AFS) system or with Electric Power Steering (EPS) system. At low-speed cornering, the vehicles with AIFS system and with AFS system have better maneuverability, less cornering radius, than the traditional vehicle with EPS system because that AIFS and AFS systems both provide function of variable steering ratio. However, there is a slight penalty in the motor(s) power consumption. In addition, because of the capability of variable steering geometry, the vehicle with AIFS system has better high-speed cornering stability, trajectory keeping, and even less motor(s) power consumption than that with EPS system and also with AFS system.Keywords: active front steering system, active independent front steering system, steering geometry, steering ratio
Procedia PDF Downloads 1904163 Translating the Australian National Health and Medical Research Council Obesity Guidelines into Practice into a Rural/Regional Setting in Tasmania, Australia
Authors: Giuliana Murfet, Heidi Behrens
Abstract:
Chronic disease is Australia’s biggest health concern and obesity the leading risk factor for many. Obesity and chronic disease have a higher representation in rural Tasmania, where levels of socio-disadvantage are also higher. People living outside major cities have less access to health services and poorer health outcomes. To help primary healthcare professionals manage obesity, the Australian NHMRC evidence-based clinical practice guidelines for management of overweight and obesity in adults were developed. They include recommendations for practice and models for obesity management. To our knowledge there has been no research conducted that investigates translation of these guidelines into practice in rural-regional areas; where implementation can be complicated by limited financial and staffing resources. Also, the systematic review that informed the guidelines revealed a lack of evidence for chronic disease models of obesity care. The aim was to establish and evaluate a multidisciplinary model for obesity management in a group of adult people with type 2 diabetes in a dispersed rural population in Australia. Extensive stakeholder engagement was undertaken to both garner support for an obesity clinic and develop a sustainable model of care. A comprehensive nurse practitioner-led outpatient model for obesity care was designed. Multidisciplinary obesity clinics for adults with type 2 diabetes including a dietitian, psychologist, physiotherapist and nurse practitioner were set up in the north-west of Tasmania at two geographically-rural towns. Implementation was underpinned by the NHMRC guidelines and recommendations focused on: assessment approaches; promotion of health benefits of weight loss; identification of relevant programs for individualising care; medication and bariatric surgery options for obesity management; and, the importance of long-term weight management. A clinical pathway for adult weight management is delivered by the multidisciplinary team with recognition of the impact of and adjustments needed for other comorbidities. The model allowed for intensification of intervention such as bariatric surgery according to recommendations, patient desires and suitability. A randomised controlled trial is ongoing, with the aim to evaluate standard care (diabetes-focused management) compared with an obesity-related approach with additional dietetic, physiotherapy, psychology and lifestyle advice. Key barriers and enablers to guideline implementation were identified that fall under the following themes: 1) health care delivery changes and the project framework development; 2) capacity and team-building; 3) stakeholder engagement; and, 4) the research project and partnerships. Engagement of not only local hospital but also state-wide health executives and surgical services committee were paramount to the success of the project. Staff training and collective development of the framework allowed for shared understanding. Staff capacity was increased with most taking on other activities (e.g., surgery coordination). Barriers were often related to differences of opinions in focus of the project; a desire to remain evidenced based (e.g., exercise prescription) without adjusting the model to allow for consideration of comorbidities. While barriers did exist and challenges overcome; the development of critical partnerships did enable the capacity for a potential model of obesity care for rural regional areas. Importantly, the findings contribute to the evidence base for models of diabetes and obesity care that coordinate limited resources.Keywords: diabetes, interdisciplinary, model of care, obesity, rural regional
Procedia PDF Downloads 2294162 A Regional Analysis on Co-movement of Sovereign Credit Risk and Interbank Risks
Authors: Mehdi Janbaz
Abstract:
The global financial crisis and the credit crunch that followed magnified the importance of credit risk management and its crucial role in the stability of all financial sectors and the whole of the system. Many believe that risks faced by the sovereign sector are highly interconnected with banking risks and most likely to trigger and reinforce each other. This study aims to examine (1) the impact of banking and interbank risk factors on the sovereign credit risk of Eurozone, and (2) how the EU Credit Default Swaps spreads dynamics are affected by the Crude Oil price fluctuations. The hypothesizes are tested by employing fitting risk measures and through a four-staged linear modeling approach. The sovereign senior 5-year Credit Default Swap spreads are used as a core measure of the credit risk. The monthly time-series data of the variables used in the study are gathered from the DataStream database for a period of 2008-2019. First, a linear model test the impact of regional macroeconomic and market-based factors (STOXX, VSTOXX, Oil, Sovereign Debt, and Slope) on the CDS spreads dynamics. Second, the bank-specific factors, including LIBOR-OIS spread (the difference between the Euro 3-month LIBOR rate and Euro 3-month overnight index swap rates) and Euribor, are added to the most significant factors of the previous model. Third, the global financial factors including EURO to USD Foreign Exchange Volatility, TED spread (the difference between 3-month T-bill and the 3-month LIBOR rate based in US dollars), and Chicago Board Options Exchange (CBOE) Crude Oil Volatility Index are added to the major significant factors of the first two models. Finally, a model is generated by a combination of the major factor of each variable set in addition to the crisis dummy. The findings show that (1) the explanatory power of LIBOR-OIS on the sovereign CDS spread of Eurozone is very significant, and (2) there is a meaningful adverse co-movement between the Crude Oil price and CDS price of Eurozone. Surprisingly, adding TED spread (the difference between the three-month Treasury bill and the three-month LIBOR based in US dollars.) to the analysis and beside the LIBOR-OIS spread (the difference between the Euro 3M LIBOR and Euro 3M OIS) in third and fourth models has been increased the predicting power of LIBOR-OIS. Based on the results, LIBOR-OIS, Stoxx, TED spread, Slope, Oil price, OVX, FX volatility, and Euribor are the determinants of CDS spreads dynamics in Eurozone. Moreover, the positive impact of the crisis period on the creditworthiness of the Eurozone is meaningful.Keywords: CDS, crude oil, interbank risk, LIBOR-OIS, OVX, sovereign credit risk, TED
Procedia PDF Downloads 1454161 Model-Viewer for Setting Interactive 3D Objects of Electronic Devices and Systems
Authors: Julio Brégains, Ángel Carro, José-Manuel Andión
Abstract:
Virtual 3D objects constitute invaluable tools for teaching practical engineering subjects at all -from basic to advanced- educational levels. For instance, they can be equipped with animation or informative labels, manipulated by mouse movements, and even be immersed in a real environment through augmented reality. In this paper, we present the investigation and description of a set of applications prepared for creating, editing, and making use of interactive 3D models to represent electric and electronic devices and systems. Several examples designed with the described tools are exhibited, mainly to show their capabilities as educational technological aids, applicable not only to the field of electricity and electronics but also to a much wider range of technical areas.Keywords: educational technology, Google model viewer, ICT educational tools, interactive teaching, new tools for teaching
Procedia PDF Downloads 764160 Exploring the Impact of Input Sequence Lengths on Long Short-Term Memory-Based Streamflow Prediction in Flashy Catchments
Authors: Farzad Hosseini Hossein Abadi, Cristina Prieto Sierra, Cesar Álvarez Díaz
Abstract:
Predicting streamflow accurately in flashy catchments prone to floods is a major research and operational challenge in hydrological modeling. Recent advancements in deep learning, particularly Long Short-Term Memory (LSTM) networks, have shown to be promising in achieving accurate hydrological predictions at daily and hourly time scales. In this work, a multi-timescale LSTM (MTS-LSTM) network was applied to the context of regional hydrological predictions at an hourly time scale in flashy catchments. The case study includes 40 catchments allocated in the Basque Country, north of Spain. We explore the impact of hyperparameters on the performance of streamflow predictions given by regional deep learning models through systematic hyperparameter tuning - where optimal regional values for different catchments are identified. The results show that predictions are highly accurate, with Nash-Sutcliffe (NSE) and Kling-Gupta (KGE) metrics values as high as 0.98 and 0.97, respectively. A principal component analysis reveals that a hyperparameter related to the length of the input sequence contributes most significantly to the prediction performance. The findings suggest that input sequence lengths have a crucial impact on the model prediction performance. Moreover, employing catchment-scale analysis reveals distinct sequence lengths for individual basins, highlighting the necessity of customizing this hyperparameter based on each catchment’s characteristics. This aligns with well known “uniqueness of the place” paradigm. In prior research, tuning the length of the input sequence of LSTMs has received limited focus in the field of streamflow prediction. Initially it was set to 365 days to capture a full annual water cycle. Later, performing limited systematic hyper-tuning using grid search, revealed a modification to 270 days. However, despite the significance of this hyperparameter in hydrological predictions, usually studies have overlooked its tuning and fixed it to 365 days. This study, employing a simultaneous systematic hyperparameter tuning approach, emphasizes the critical role of input sequence length as an influential hyperparameter in configuring LSTMs for regional streamflow prediction. Proper tuning of this hyperparameter is essential for achieving accurate hourly predictions using deep learning models.Keywords: LSTMs, streamflow, hyperparameters, hydrology
Procedia PDF Downloads 724159 Maintenance Wrench Time Improvement Project
Authors: Awadh O. Al-Anazi
Abstract:
As part of the organizational needs toward successful maintaining activities, a proper management system need to be put in place, ensuring the effectiveness of maintenance activities. The management system shall clearly describes the process of identifying, prioritizing, planning, scheduling, execution, and providing valuable feedback for all maintenance activities. Completion and accuracy of the system with proper implementation shall provide the organization with a strong platform for effective maintenance activities that are resulted in efficient outcomes toward business success. The purpose of this research was to introduce a practical tool for measuring the maintenance efficiency level within Saudi organizations. A comprehensive study was launched across many maintenance professionals throughout Saudi leading organizations. The study covered five main categories: work process, identification, planning and scheduling, execution, and performance monitoring. Each category was evaluated across many dimensions to determine its current effectiveness through a five-level scale from 'process is not there' to 'mature implementation'. Wide participation was received, responses were analyzed, and the study was concluded by highlighting major gaps and improvement opportunities within Saudi organizations. One effective implementation of the efficiency enhancement efforts was deployed in Saudi Kayan (one of Sabic affiliates). Below details describes the project outcomes: SK overall maintenance wrench time was measured at 20% (on average) from the total daily working time. The assessment indicates the appearance of several organizational gaps, such as a high amount of reactive work, poor coordination and teamwork, Unclear roles and responsibilities, as well as underutilization of resources. Multidiscipline team was assigned to design and implement an appropriate work process that is capable to govern the execution process, improve the maintenance workforce efficiency, and maximize wrench time (targeting > 50%). The enhanced work process was introduced through brainstorming and wide benchmarking, incorporated with a proper change management plan and leadership sponsorship. The project was completed in 2018. Achieved Results: SK WT was improved to 50%, which resulted in 1) reducing the Average Notification completion time. 2) reducing maintenance expenses on OT and manpower support (3.6 MSAR Actual Saving from Budget within 6 months).Keywords: efficiency, enhancement, maintenance, work force, wrench time
Procedia PDF Downloads 1464158 Reemergence of Behaviorism in Language Teaching
Authors: Hamid Gholami
Abstract:
During the years, the language teaching methods have been the offshoots of schools of thought in psychology. The methods were mainly influenced by their contemporary psychological approaches, as Audiolingualism was based on behaviorism and Communicative Language Teaching on constructivism. In 1950s, the text books were full of repetition exercises which were encouraged by Behaviorism. In 1980s they got filled with communicative exercises as suggested by constructivism. The trend went on to nowadays that sees no specific method as prevalent since none of the schools of thought seem to be illustrative of the complexity in human being learning. But some changes can be notable; some textbooks are giving more and more space to repetition exercises at least to enhance some aspects of language proficiency, namely collocations, rhythm and intonation, and conversation models. These changes may mark the reemergence of one of the once widely accepted schools of thought in psychology; behaviorism.Keywords: language teaching methods, psychology, schools of thought, Behaviorism
Procedia PDF Downloads 5614157 Seismic Performance Point of RC Frame Buildings Using ATC-40, FEMA 356 and FEMA 440 Guidelines
Authors: Gram Y. Rivas Sanchez
Abstract:
The seismic design codes in the world allow the analysis of structures considering an elastic-linear behavior; however, against earthquakes, the structures exhibit non-linear behaviors that induce damage to their elements. For this reason, it is necessary to use non-linear methods to analyze these structures, being the dynamic methods that provide more reliable results but require a lot of computational costs; on the other hand, non-linear static methods do not have this disadvantage and are being used more and more. In the present work, the nonlinear static analysis (pushover) of RC frame buildings of three, five, and seven stories is carried out considering models of concentrated plasticity using plastic hinges; and the seismic performance points are determined using ATC-40, FEMA 356, and FEMA 440 guidelines. Using this last standard, the highest inelastic displacements and basal shears are obtained, providing designs that are more conservative.Keywords: pushover, nonlinear, RC building, FEMA 440, ATC 40
Procedia PDF Downloads 1464156 Statistical Modeling of Mandarin Tone Sandhi: Neutralization of Underlying Pitch Targets
Authors: Si Chen, Caroline Wiltshire, Bin Li
Abstract:
This study statistically models the surface f0 contour and the underlying pitch target of a well-studied third sandhi tone of Mandarin Chinese. Although the growth curve analysis on the surface f0 contours indicates non-neutralization of this sandhi tone (T3) and the base T2, their underlying pitch targets do show neutralization. These results in Mandarin are also consistent with the perception of native speakers, where they cannot distinguish the third T3 from the base T2, compensating contextual variation. It is possible to use the proposed statistical procedure of testing underlying pitch targets to verify tone sandhi processes in other tonal languages.Keywords: growth curve analysis, Mandarin Chinese, tone sandhi, underlying pitch target
Procedia PDF Downloads 3374155 Developing a Model for Information Giving Behavior in Virtual Communities
Authors: Pui-Lai To, Chechen Liao, Tzu-Ling Lin
Abstract:
Virtual communities have created a range of new social spaces in which to meet and interact with one another. Both as a stand-alone model or as a supplement to sustain competitive advantage for normal business models, building virtual communities has been hailed as one of the major strategic innovations of the new economy. However for a virtual community to evolve, the biggest challenge is how to make members actively give information or provide advice. Even in busy virtual communities, usually, only a small fraction of members post information actively. In order to investigate the determinants of information giving willingness of those contributors who usually actively provide their opinions, we proposed a model to understand the reasons for contribution in communities. The study will definitely serve as a basis for the future growth of information giving in virtual communities.Keywords: information giving, social identity, trust, virtual community
Procedia PDF Downloads 3224154 Effect of Sand Particle Distribution in Oil and Gas Pipeline Erosion
Authors: Christopher Deekia Nwimae, Nigel Simms, Liyun Lao
Abstract:
Erosion in pipe bends caused by particles is a major obstacle in the oil and gas fields and might cause the breakdown of production equipment. This work studied the effects imposed by flow velocity and impact of solid particles diameter in an elbow; erosion rate was verified with experimental data using the computational fluid dynamics (CFD) approach. Two-way coupled Euler-Lagrange and discrete phase model was employed to calculate the air/solid particle flow in an elbow. One erosion model and three-particle rebound models were used to predict the erosion rate on the 90° elbows. The generic erosion model was used in the CFD-based erosion model, and after comparing it with experimental data, results showed agreement with the CFD-based predictions as observed.Keywords: erosion, prediction, elbow, computational fluid dynamics
Procedia PDF Downloads 1584153 Fuzzy Linear Programming Approach for Determining the Production Amounts in Food Industry
Abstract:
In recent years, rapid and correct decision making is crucial for both people and enterprises. However, uncertainty makes decision-making difficult. Fuzzy logic is used for coping with this situation. Thus, fuzzy linear programming models are developed in order to handle uncertainty in objective function and the constraints. In this study, a problem of a factory in food industry is investigated, required data is obtained and the problem is figured out as a fuzzy linear programming model. The model is solved using Zimmerman approach which is one of the approaches for fuzzy linear programming. As a result, the solution gives the amount of production for each product type in order to gain maximum profit.Keywords: food industry, fuzzy linear programming, fuzzy logic, linear programming
Procedia PDF Downloads 6524152 An Architecture for New Generation of Distributed Intrusion Detection System Based on Preventive Detection
Authors: H. Benmoussa, A. A. El Kalam, A. Ait Ouahman
Abstract:
The design and implementation of intrusion detection systems (IDS) remain an important area of research in the security of information systems. Despite the importance and reputation of the current intrusion detection systems, their efficiency and effectiveness remain limited as they should include active defense approach to allow anticipating and predicting intrusions before their occurrence. Consequently, they must be readapted. For this purpose we suggest a new generation of distributed intrusion detection system based on preventive detection approach and using intelligent and mobile agents. Our architecture benefits from mobile agent features and addresses some of the issues with centralized and hierarchical models. Also, it presents advantages in terms of increasing scalability and flexibility.Keywords: Intrusion Detection System (IDS), preventive detection, mobile agents, distributed architecture
Procedia PDF Downloads 5844151 Predicting Football Player Performance: Integrating Data Visualization and Machine Learning
Authors: Saahith M. S., Sivakami R.
Abstract:
In the realm of football analytics, particularly focusing on predicting football player performance, the ability to forecast player success accurately is of paramount importance for teams, managers, and fans. This study introduces an elaborate examination of predicting football player performance through the integration of data visualization methods and machine learning algorithms. The research entails the compilation of an extensive dataset comprising player attributes, conducting data preprocessing, feature selection, model selection, and model training to construct predictive models. The analysis within this study will involve delving into feature significance using methodologies like Select Best and Recursive Feature Elimination (RFE) to pinpoint pertinent attributes for predicting player performance. Various machine learning algorithms, including Random Forest, Decision Tree, Linear Regression, Support Vector Regression (SVR), and Artificial Neural Networks (ANN), will be explored to develop predictive models. The evaluation of each model's performance utilizing metrics such as Mean Squared Error (MSE) and R-squared will be executed to gauge their efficacy in predicting player performance. Furthermore, this investigation will encompass a top player analysis to recognize the top-performing players based on the anticipated overall performance scores. Nationality analysis will entail scrutinizing the player distribution based on nationality and investigating potential correlations between nationality and player performance. Positional analysis will concentrate on examining the player distribution across various positions and assessing the average performance of players in each position. Age analysis will evaluate the influence of age on player performance and identify any discernible trends or patterns associated with player age groups. The primary objective is to predict a football player's overall performance accurately based on their individual attributes, leveraging data-driven insights to enrich the comprehension of player success on the field. By amalgamating data visualization and machine learning methodologies, the aim is to furnish valuable tools for teams, managers, and fans to effectively analyze and forecast player performance. This research contributes to the progression of sports analytics by showcasing the potential of machine learning in predicting football player performance and offering actionable insights for diverse stakeholders in the football industry.Keywords: football analytics, player performance prediction, data visualization, machine learning algorithms, random forest, decision tree, linear regression, support vector regression, artificial neural networks, model evaluation, top player analysis, nationality analysis, positional analysis
Procedia PDF Downloads 394150 Emerging Methods as a Tool for Obtaining Subconscious Feedback in E-Commerce and Marketplace
Authors: J. Berčík, A. Mravcová, A. Rusková, P. Jurčišin, R. Virágh
Abstract:
The online world is changing every day. With this comes the emergence and development of new business models. One of them is the sale of several types of products in one place. This type of sales in the form of online marketplaces has undergone a positive development in recent years and represents a kind of alternative to brick-and-mortar shopping centres. The main philosophy is to buy several products under one roof. Examples of popular e-commerce marketplaces are Amazon, eBay, and Allegro. Their share of total e-commerce turnover is expected to even double in the coming years. The paper highlights possibilities for testing web applications and online marketplace using emerging methods like stationary eye cameras (eye tracking) and facial analysis (FaceReading).Keywords: emerging methods, consumer neuroscience, e-commerce, marketplace, user experience, user interface
Procedia PDF Downloads 724149 Adaptive Environmental Control System Strategy for Cabin Air Quality in Commercial Aircrafts
Authors: Paolo Grasso, Sai Kalyan Yelike, Federico Benzi, Mathieu Le Cam
Abstract:
The cabin air quality (CAQ) in commercial aircraft is of prime interest, especially in the context of the COVID-19 pandemic. Current Environmental Control Systems (ECS) rely on a prescribed fresh airflow per passenger to dilute contaminants. An adaptive ECS strategy is proposed, leveraging air sensing and filtration technologies to ensure a better CAQ. This paper investigates the CAQ level achieved in commercial aircraft’s cabin during various flight scenarios. The modeling and simulation analysis is performed in a Modelica-based environment describing the dynamic behavior of the system. The model includes the following three main systems: cabin, recirculation loop and air-conditioning pack. The cabin model evaluates the thermo-hygrometric conditions and the air quality in the cabin depending on the number of passengers and crew members, the outdoor conditions and the conditions of the air supplied to the cabin. The recirculation loop includes models of the recirculation fan, ordinary and novel filtration technology, mixing chamber and outflow valve. The air-conditioning pack includes models of heat exchangers and turbomachinery needed to condition the hot pressurized air bled from the engine, as well as selected contaminants originated from the outside or bled from the engine. Different ventilation control strategies are modeled and simulated. Currently, a limited understanding of contaminant concentrations in the cabin and the lack of standardized and systematic methods to collect and record data constitute a challenge in establishing a causal relationship between CAQ and passengers' comfort. As a result, contaminants are neither measured nor filtered during flight, and the current sub-optimal way to avoid their accumulation is their dilution with the fresh air flow. However, the use of a prescribed amount of fresh air comes with a cost, making the ECS the most energy-demanding non-propulsive system within an aircraft. In such a context, this study shows that an ECS based on a reduced and adaptive fresh air flow, and relying on air sensing and filtration technologies, provides promising results in terms of CAQ control. The comparative simulation results demonstrate that the proposed adaptive ECS brings substantial improvements to the CAQ in terms of both controlling the asymptotic values of the concentration of the contaminant and in mitigating hazardous scenarios, such as fume events. Original architectures allowing for adaptive control of the inlet air flow rate based on monitored CAQ will change the requirements for filtration systems and redefine the ECS operation.Keywords: cabin air quality, commercial aircraft, environmental control system, ventilation
Procedia PDF Downloads 1024148 Moving Target Defense against Various Attack Models in Time Sensitive Networks
Authors: Johannes Günther
Abstract:
Time Sensitive Networking (TSN), standardized in the IEEE 802.1 standard, has been lent increasing attention in the context of mission critical systems. Such mission critical systems, e.g., in the automotive domain, aviation, industrial, and smart factory domain, are responsible for coordinating complex functionalities in real time. In many of these contexts, a reliable data exchange fulfilling hard time constraints and quality of service (QoS) conditions is of critical importance. TSN standards are able to provide guarantees for deterministic communication behaviour, which is in contrast to common best-effort approaches. Therefore, the superior QoS guarantees of TSN may aid in the development of new technologies, which rely on low latencies and specific bandwidth demands being fulfilled. TSN extends existing Ethernet protocols with numerous standards, providing means for synchronization, management, and overall real-time focussed capabilities. These additional QoS guarantees, as well as management mechanisms, lead to an increased attack surface for potential malicious attackers. As TSN guarantees certain deadlines for priority traffic, an attacker may degrade the QoS by delaying a packet beyond its deadline or even execute a denial of service (DoS) attack if the delays lead to packets being dropped. However, thus far, security concerns have not played a major role in the design of such standards. Thus, while TSN does provide valuable additional characteristics to existing common Ethernet protocols, it leads to new attack vectors on networks and allows for a range of potential attacks. One answer to these security risks is to deploy defense mechanisms according to a moving target defense (MTD) strategy. The core idea relies on the reduction of the attackers' knowledge about the network. Typically, mission-critical systems suffer from an asymmetric disadvantage. DoS or QoS-degradation attacks may be preceded by long periods of reconnaissance, during which the attacker may learn about the network topology, its characteristics, traffic patterns, priorities, bandwidth demands, periodic characteristics on links and switches, and so on. Here, we implemented and tested several MTD-like defense strategies against different attacker models of varying capabilities and budgets, as well as collaborative attacks of multiple attackers within a network, all within the context of TSN networks. We modelled the networks and tested our defense strategies on an OMNET++ testbench, with networks of different sizes and topologies, ranging from a couple dozen hosts and switches to significantly larger set-ups.Keywords: network security, time sensitive networking, moving target defense, cyber security
Procedia PDF Downloads 754147 The Challenge of Assessing Social AI Threats
Authors: Kitty Kioskli, Theofanis Fotis, Nineta Polemi
Abstract:
The European Union (EU) directive Artificial Intelligence (AI) Act in Article 9 requires that risk management of AI systems includes both technical and human oversight, while according to NIST_AI_RFM (Appendix C) and ENISA AI Framework recommendations, claim that further research is needed to understand the current limitations of social threats and human-AI interaction. AI threats within social contexts significantly affect the security and trustworthiness of the AI systems; they are interrelated and trigger technical threats as well. For example, lack of explainability (e.g. the complexity of models can be challenging for stakeholders to grasp) leads to misunderstandings, biases, and erroneous decisions. Which in turn impact the privacy, security, accountability of the AI systems. Based on the NIST four fundamental criteria for explainability it can also classify the explainability threats into four (4) sub-categories: a) Lack of supporting evidence: AI systems must provide supporting evidence or reasons for all their outputs. b) Lack of Understandability: Explanations offered by systems should be comprehensible to individual users. c) Lack of Accuracy: The provided explanation should accurately represent the system's process of generating outputs. d) Out of scope: The system should only function within its designated conditions or when it possesses sufficient confidence in its outputs. Biases may also stem from historical data reflecting undesired behaviors. When present in the data, biases can permeate the models trained on them, thereby influencing the security and trustworthiness of the of AI systems. Social related AI threats are recognized by various initiatives (e.g., EU Ethics Guidelines for Trustworthy AI), standards (e.g. ISO/IEC TR 24368:2022 on AI ethical concerns, ISO/IEC AWI 42105 on guidance for human oversight of AI systems) and EU legislation (e.g. the General Data Protection Regulation 2016/679, the NIS 2 Directive 2022/2555, the Directive on the Resilience of Critical Entities 2022/2557, the EU AI Act, the Cyber Resilience Act). Measuring social threats, estimating the risks to AI systems associated to these threats and mitigating them is a research challenge. In this paper it will present the efforts of two European Commission Projects (FAITH and THEMIS) from the HorizonEurope programme that analyse the social threats by building cyber-social exercises in order to study human behaviour, traits, cognitive ability, personality, attitudes, interests, and other socio-technical profile characteristics. The research in these projects also include the development of measurements and scales (psychometrics) for human-related vulnerabilities that can be used in estimating more realistically the vulnerability severity, enhancing the CVSS4.0 measurement.Keywords: social threats, artificial Intelligence, mitigation, social experiment
Procedia PDF Downloads 664146 Factors Affecting Profitability of Pharmaceutical Company During the COVID-19 Pandemic: An Indonesian Evidence
Authors: Septiany Trisnaningtyas
Abstract:
Purpose: This research aims to examine the factors affecting the profitability of pharmaceutical company during the Covid-19 Pandemic in Indonesia. A sharp decline in the number of patients coming to the hospital for treatment during the pandemic has an impact on the growth of the pharmaceutical sector and brought major changes in financial position and business performance. Pharmaceutical companies that provide products related to the Covid-19 pandemic can survive and continue to grow. This study investigates the factors affecting the profitability of pharmaceutical company during the Covid-19 Pandemic in Indonesia associated with the number of Covid-19 cases. Design/methodology/approach: This study uses panel-data regression models to evaluate the influence of the number of Covid-19 confirmed cases on profitability of ninelisted pharmaceuticalcompanies in Indonesia. This research is based on four independent variables that were empirically examined for their relationship with profitability. These variables are liquidity (current ratio), growth rate (sales growth), firm size (total sales), and market power (the Lerner index). Covid-19 case is used as moderating variable. Data of nine pharmaceutical companies listed on the Indonesia Stock Exchange covering the period of 2018–2021 were extracted from companies’ quarterly annual reports. Findings: In the period during Covid-19, company growth (sales growth) and market power (lerner index) have a positive and significant relationship to ROA and ROE. Total of confirmed Covid-19 cases has a positive and significant relationship to ROA and is proven to have a moderating effect between company’s growth (sales growth) to ROA and ROE and market power (Lerner index) to ROA. Research limitations/implications: Due to data availability, this study only includes data from nine listed pharmaceutical companies in Indonesian Stock exchange and quarterly annual reportscovering the period of 2018-2021. Originality/value: This study focuses onpharmaceutical companies in Indonesia during Covid-19 pandemic. Previous study analyzes the data from pharmaceutical companies’ annual reports since 2014 and focus on universal health coverage (national health insurance) implementation from the Indonesian government. This study analyzes the data using fixed effect panel-data regression models to evaluate the influence of Covid-19 confirmed cases on profitability. Pooled ordinary least squares regression and fixed effects were used to analyze the data in previous study. This study also investigate the moderating effect of Covid-19 confirmed cases to profitability in relevant with the pandemic situation.Keywords: profitability, indonesia, pharmaceutical, Covid-19
Procedia PDF Downloads 1234145 Study of the Optical Illusion Effects of Color Contrasts on Body Image Perception
Authors: A. Hadj Taieb, H. Ennouri
Abstract:
The current study aimed to investigate the effect that optical illusion garments have on a woman’s self-perception of her own body shape. First, we created different optical illusion garment by using color contrasts. Second, a short survey based on visual perception is addressed to women in order to compare the different optical illusion garments to determine if they met the established 'ideal' body shape. A ‘visual analysis method’ was used to investigate the clothing models with optical illusions. The theories in relation with the optical illusion were used through this method. The effects of the optical illusion of color contrast on body shape in the fashion sector were tried to be revealed.Keywords: optical illusion, color contrasts, body image perception, self-esteem
Procedia PDF Downloads 2744144 A Fuzzy Nonlinear Regression Model for Interval Type-2 Fuzzy Sets
Authors: O. Poleshchuk, E. Komarov
Abstract:
This paper presents a regression model for interval type-2 fuzzy sets based on the least squares estimation technique. Unknown coefficients are assumed to be triangular fuzzy numbers. The basic idea is to determine aggregation intervals for type-1 fuzzy sets, membership functions of whose are low membership function and upper membership function of interval type-2 fuzzy set. These aggregation intervals were called weighted intervals. Low and upper membership functions of input and output interval type-2 fuzzy sets for developed regression models are considered as piecewise linear functions.Keywords: interval type-2 fuzzy sets, fuzzy regression, weighted interval
Procedia PDF Downloads 3764143 Advanced Machine Learning Algorithm for Credit Card Fraud Detection
Authors: Manpreet Kaur
Abstract:
When legitimate credit card users are mistakenly labelled as fraudulent in numerous financial delated applications, there are numerous ethical problems. The innovative machine learning approach we have suggested in this research outperforms the current models and shows how to model a data set for credit card fraud detection while minimizing false positives. As a result, we advise using random forests as the best machine learning method for predicting and identifying credit card transaction fraud. The majority of victims of these fraudulent transactions were discovered to be credit card users over the age of 60, with a higher percentage of fraudulent transactions taking place between the specific hours.Keywords: automated fraud detection, isolation forest method, local outlier factor, ML algorithm, credit card
Procedia PDF Downloads 1154142 Innate Immunity of Insects in Brief
Authors: Ehsan Soleymaninejadian
Abstract:
As the field of immunology is growing day by day, and its chaotic system amazes more people, greed of research in this area is growing; however dealing with human or mammalian cells such as mice make the research expensive. Although there are some differences between higher animals with insects, importance of innate immunity during evolution made it untouched. So, for understanding the innate immunity insects can be good models. They are cheap; reproduction is fast and in the case genetics, less complicated. In this review, we tried to briefly tackle with important factors in insects’ innate immunity such as melanization, encapsulation, JAK-STAT, IMD, and Toll pathways. At the end, we explained how hormones and nerve system also can impact on immune system and make it more beautiful. In concluding remarks, the possibility of taking help from insect immune system to fight against diseases such as cancer has been considered.Keywords: insects, innate immunity, melanization, intracellular pathways, hormones
Procedia PDF Downloads 2264141 Approaches of Flight Level Selection for an Unmanned Aerial Vehicle Round-Trip in Order to Reach Best Range Using Changes in Flight Level Winds
Authors: Dmitry Fedoseyev
Abstract:
The ultimate success of unmanned aerial vehicles (UAVs) depends largely on the effective control of their flight, especially in variable wind conditions. This paper investigates different approaches to selecting the optimal flight level to maximize the range of UAVs. We propose to consider methods based on mathematical models of atmospheric conditions, as well as the use of sensor data and machine learning algorithms to automatically optimize the flight level in real-time. The proposed approaches promise to improve the efficiency and range of UAVs in various wind conditions, which may have significant implications for the application of these systems in various fields, including geodesy, environmental surveillance, and search and rescue operations.Keywords: drone, UAV, flight trajectory, wind-searching, efficiency
Procedia PDF Downloads 67