Search results for: correction factors for axisymmetric models
13425 Experimental Modeling of Spray and Water Sheet Formation Due to Wave Interactions with Vertical and Slant Bow-Shaped Model
Authors: Armin Bodaghkhani, Bruce Colbourne, Yuri S. Muzychka
Abstract:
The process of spray-cloud formation and flow kinematics produced from breaking wave impact on vertical and slant lab-scale bow-shaped models were experimentally investigated. Bubble Image Velocimetry (BIV) and Image Processing (IP) techniques were applied to study the various types of wave-model impacts. Different wave characteristics were generated in a tow tank to investigate the effects of wave characteristics, such as wave phase velocity, wave steepness on droplet velocities, and behavior of the process of spray cloud formation. The phase ensemble-averaged vertical velocity and turbulent intensity were computed. A high-speed camera and diffused LED backlights were utilized to capture images for further post processing. Various pressure sensors and capacitive wave probes were used to measure the wave impact pressure and the free surface profile at different locations of the model and wave-tank, respectively. Droplet sizes and velocities were measured using BIV and IP techniques to trace bubbles and droplets in order to measure their velocities and sizes by correlating the texture in these images. The impact pressure and droplet size distributions were compared to several previously experimental models, and satisfactory agreements were achieved. The distribution of droplets in front of both models are demonstrated. Due to the highly transient process of spray formation, the drag coefficient for several stages of this transient displacement for various droplet size ranges and different Reynolds number were calculated based on the ensemble average method. From the experimental results, the slant model produces less spray in comparison with the vertical model, and the droplet velocities generated from the wave impact with the slant model have a lower velocity as compared with the vertical model.Keywords: spray charachteristics, droplet size and velocity, wave-body interactions, bubble image velocimetry, image processing
Procedia PDF Downloads 30013424 The Integrated Strategy of Maintenance with a Scientific Analysis
Authors: Mahmoud Meckawey
Abstract:
This research is dealing with one of the most important aspects of maintenance fields, that is Maintenance Strategy. It's the branch which concerns the concepts and the schematic thoughts in how to manage maintenance and how to deal with the defects in the engineering products (buildings, machines, etc.) in general. Through the papers we will act with the followings: i) The Engineering Product & the Technical Systems: When we act with the maintenance process, in a strategic view, we act with an (engineering product) which consists of multi integrated systems. In fact, there is no engineering product with only one system. We will discuss and explain this topic, through which we will derivate a developed definition for the maintenance process. ii) The factors or basis of the functionality efficiency: That is the main factors affect the functional efficiency of the systems and the engineering products, then by this way we can give a technical definition of defects and how they occur. iii) The legality of occurrence of defects (Legal defects and Illegal defects): with which we assume that all the factors of the functionality efficiency been applied, and then we will discuss the results. iv) The Guarantee, the Functional Span Age and the Technical surplus concepts: In the complementation with the above topic, and associated with the Reliability theorems, where we act with the Probability of Failure state, with which we almost interest with the design stages, that is to check and adapt the design of the elements. But in Maintainability we act in a different way as we act with the actual state of the systems. So, we act with the rest of the story that means we have to act with the complementary part of the probability of failure term which refers to the actual surplus of the functionality for the systems.Keywords: engineering product and technical systems, functional span age, legal and illegal defects, technical and functional surplus
Procedia PDF Downloads 47513423 Endodontics Flare-Up
Authors: Khalid Mohammed Idrees
Abstract:
Endodontic treatment aims to reverse the disease process and thereby eliminate the associated signs of symptoms. When the treatment itself appears to initiate the onset of pain and /or swelling (endodontic flare-up), the result can be distressing to both the patient and the operator. Patient might even consider postoperative symptoms as a bench mark against which the clinician’s skills are measured. Obviously the treatment with the lowest prevalence of postoperative pain is usually the treatment of choice as long as effectiveness and cost are not compromised. Knowledge of the cause and mechanism behind intra appointment flare-up is of utmost importance for the clinician to properly prevent or manage this undesirable condition. This review lecture will discuss the causative factors of flare-up with special attention to the microorganism role, various modalities of preventive measures would be discussed. Those measures are based on scientific evidence combined with the long clinical experience of the lecturer.Keywords: endodontic flare-up, causative factors, inflammatory mediators, preventive measures
Procedia PDF Downloads 13413422 Level of Understanding of the Catholic Doctrines in Relation to the Way of Life of Ignatian Graduates
Authors: Maria Wendy Mendoza-Solomo
Abstract:
The study assessed the level of understanding of catholic doctrines in relation to the way of life of Ignatian graduates of Ateneo de Naga University (ADNU). It was conducted to find out if ADNU is successful in leading their students to a deeper moral understanding of the world centered on Jesus Christ through their curriculum, academic programs, activities and practices. This study further evaluated if their graduates live out their Catholic commitment to Christ in their current way of life. It also determined the factors that affected their level of understanding of Catholic doctrines and their current way of life. The descriptive, qualitative, evaluative and correlational analyses determined the level of understanding of the Catholic doctrines and the current way of life of 390 graduates. It also correlated the level of understanding to moral life and worship. The factors that affected the graduates’ level of understanding and their current way of life were measured. A researcher-made instrument was distributed to the respondents either using the traditional way or the online survey to reach out graduates across the globe. Major findings were (1) The weighted mean of graduates’ level of understanding of Catholic doctrines was 4.63. (2) Along moral life, 4.07 while along worship, 3.83. (3) The Catholic doctrines and moral life had Pearson r value of 0.79. The doctrines and worship, 0.87; and worship and moral life, 0.89. (4) The understanding of the doctrines was affected highly by the teacher factor with 4.09 mean. The moral life and worship were affected highly by the teacher and technological factors both ranked 1.5 (4.04). (5) Along Catholic doctrines, the teacher factor had 0.90 r value; and environmental, -0.40. Along moral life, teacher had r value of -0.30; technological (-0.92), socio-economic (-0.93), political (-0.83), and environmental (-0.90). Along worship, the teacher had 0.36 Pearson r value, technological and socio-economic (-0.78), political (-0.73) and environmental (-0.72). Major conclusions were: (1) Graduates had very high level of understanding of the Catholic doctrines as summarized in the Creed which is grounded in the Sacred Scriptures. (2) They live out this Catholic commitment to Christ by obeying the Commandments very extensively but needed more participation in religious and parish activities. They have overwhelming spirituality and religiosity in terms of receiving of sacraments and sacramental practices except reading the Bible and reflecting on its passages. (3) The graduates’ level of understanding of the Catholic doctrines had very strong correlation with their current way of life. (4) Teacher, socio-economic, technological, environmental, and political factors significantly affected their understanding of the Catholic doctrines and their current way of life. (5) The teacher factor had very strong relationship with the doctrines; technological and political, weak; environmental, moderate; and socio-economic, very weak relationship. The teacher factor had weak relationship but the other factors had very strong relationship with moral life and strong relationship with worship.Keywords: Catholic doctrines, Ignatian graduates, relationship, way of life
Procedia PDF Downloads 35613421 Marketing Strategy and Marketing Mix for Rural Tour Package in Bali: Case Study of Munduk
Authors: Made Darmiati, Ni Putu Evi Wijayanti, Ni Ketut Wiwiek Agustina, Putu Gde Arie Yudhistira, Marcel Hardono
Abstract:
The establishment of tourist village has been the main concern for pro-poor tourism in Indonesia especially in Bali in order to create alternative tourist destination. The case study of this research was Munduk, a tourist village located in Buleleng Regency, Bali Province. Munduk has been unstable in terms of tourist visit in 2012 until 2016. The concept of marketing strategy and its marketing mix are concepts that suitable for application in Munduk as the prime owner of trekking and other rural tour packages to increase the number of visitor in particularly during low season. The research study aims to determine the internal factors (strengths and weaknesses) and external factors (opportunities and threats) impacting the number of tourist visit so that they could formulate appropriate marketing strategy for Munduk Tourist Village. Data has been obtained by observation, interviews with stakeholders, questionnaire to 100 participants and documentation. In addition, this research study uses descriptive qualitative methods and techniques known as SWOT (Strengths, Weaknesses, Opportunities, Threats) analysis by internal factors and external factors impacting the level of tourist visit to Munduk Tourist Village in Buleleng Regency, Bali. The sampling was done by ‘accidental sampling technique’ to obtain the participants to analyse the results of the SWOT analysis. Further assessment of internal and external weights has resulted respectively (1.84 , 1.84) which are in the first quadrant of the diagram in which S-O (Strengths-Opportunities) Strategy. As the prime owner of the trekking and other rural tour packages in the village, Munduk should maximise its strengths and take other opportunities as possible to wrap and design trekking and other rural tour packages and then offer the package to travel agents in Bali.Keywords: marketing mix, marketing strategy, rural tourism, SWOT matrix
Procedia PDF Downloads 27813420 Socio-Demographic Factors and Testing Practices Are Associated with Spatial Patterns of Clostridium difficile Infection in the Australian Capital Territory, 2004-2014
Authors: Aparna Lal, Ashwin Swaminathan, Teisa Holani
Abstract:
Background: Clostridium difficile infections (CDIs) have been on the rise globally. In Australia, rates of CDI in all States and Territories have increased significantly since mid-2011. Identifying risk factors for CDI in the community can help inform targeted interventions to reduce infection. Methods: We examine the role of neighbourhood socio-economic status, demography, testing practices and the number of residential aged care facilities on spatial patterns in CDI incidence in the Australian Capital Territory. Data on all tests conducted for CDI were obtained from ACT Pathology by postcode for the period 1st January 2004 through 31 December 2014. Distribution of age groups and the neighbourhood Index of Relative Socio-economic Advantage Disadvantage (IRSAD) were obtained from the Australian Bureau of Statistics 2011 National Census data. A Bayesian spatial conditional autoregressive model was fitted at the postcode level to quantify the relationship between CDI and socio-demographic factors. To identify CDI hotspots, exceedance probabilities were set at a threshold of twice the estimated relative risk. Results: CDI showed a positive spatial association with the number of tests (RR=1.01, 95% CI 1.00, 1.02) and the resident population over 65 years (RR=1.00, 95% CI 1.00, 1.01). The standardized index of relative socio-economic advantage disadvantage (IRSAD) was significantly negatively associated with CDI (RR=0.74, 95% CI 0.56, 0.94). We identified three postcodes with high probability (0.8-1.0) of excess risk. Conclusions: Here, we demonstrate geographic variations in CDI in the ACT with a positive association of CDI with socioeconomic disadvantage and identify areas with a high probability of elevated risk compared with surrounding communities. These findings highlight community-based risk factors for CDI.Keywords: spatial, socio-demographic, infection, Clostridium difficile
Procedia PDF Downloads 32113419 Wrong Site Surgery Should Not Occur In This Day And Age!
Authors: C. Kuoh, C. Lucas, T. Lopes, I. Mechie, J. Yoong, W. Yoong
Abstract:
For all surgeons, there is one preventable but still highly occurring complication – wrong site surgeries. They can have potentially catastrophic, irreversible, or even fatal consequences on patients. With the exponential development of microsurgery and the use of advanced technological tools, the consequences of operating on the wrong side, anatomical part, or even person is seen as the most visible and destructive of all surgical errors and perhaps the error that is dreaded by most clinicians as it threatens their licenses and arouses feelings of guilt. Despite the implementation of the WHO surgical safety checklist more than a decade ago, the incidence of wrong-site surgeries remains relatively high, leading to tremendous physical and psychological repercussions for the clinicians involved, as well as a financial burden for the healthcare institution. In this presentation, the authors explore various factors which can lead to wrong site surgery – a combination of environmental and human factors and evaluate their impact amongst patients, practitioners, their families, and the medical industry. Major contributing factors to these “never events” include deviations from checklists, excessive workload, and poor communication. Two real-life cases are discussed, and systems that can be implemented to prevent these errors are highlighted alongside lessons learnt from other industries. The authors suggest that reinforcing speaking-up, implementing medical professional trainings, and higher patient’s involvements can potentially improve safety in surgeries and electrosurgeries.Keywords: wrong side surgery, never events, checklist, workload, communication
Procedia PDF Downloads 18413418 Hydrodynamics of Selected Ethiopian Rift Lakes
Authors: Kassaye Bewketu Zellelew
Abstract:
The Main Ethiopian Rift Valley lakes suffer from water level fluctuations due to several natural and anthropocentric factors. Lakes located at terminal positions are highly affected by the fluctuations. These fluctuations are disturbing the stability of ecosystems, putting very serious impacts on the lives of many animals and plants around the lakes. Hence, studying the hydrodynamics of the lakes was found to be very essential. The main purpose of this study is to find the most significant factors that contribute to the water level fluctuations and also to quantify the fluctuations so as to identify lakes that need special attention. The research method included correlations, least squares regressions, multi-temporal satellite image analysis and land use change assessment. The results of the study revealed that much of the fluctuations, specially, in Central Ethiopian Rift are caused by human activities. Lakes Abiyata, Chamo, Ziway and Langano are declining while Abaya and Hawassa are rising. Among the studied lakes, Abiyata is drastically reduced in size (about 28% of its area in 1986) due to both human activities (most dominant ones) and natural factors. The other seriously affected lake is Chamo with about 11% reduction in its area between 1986 and 2010. Lake Abaya was found to be relatively stable during this period (showed only a 0.8% increase in its area). Concerned bodies should pay special attention to and take appropriate measures on lakes Abiyata, Chamo and Hawassa.Keywords: correlations, hydrodynamics, lake level fluctuation, landsat satellite images
Procedia PDF Downloads 26513417 A Framework for Investigating Reverse Logistics Capability of E-Tailers
Authors: Wen-Shan Lin, Shu-Lu Hsu
Abstract:
Environmental concern and consumer rights have entailed e-tailers to adopt better strategies to facilitate product returns from customers. As the demand for reverse logistics (RL) continues to grow, little is known about what motivates e-tailers to enhance their RL capabilities and about the role RL capabilities plays in enabling e-tailers to achieve better customer satisfaction and economic performance. Based on resource-based theory and institutional theory, this article proposes that the following factors play a critical role in influencing the RL capability of e-tailers: (a) Financial resource commitment to RL, (b) managerial resource commitment to RL, and (c) institutional pressure to implement RL. Based on the role of these factors, the study provides a framework and propositions that serve to guide future research addressing the link among resources, institutional pressure, and RL capability.Keywords: reverse logistics, e-tailing, resource-based theory, institutional theory
Procedia PDF Downloads 44913416 Types of Motivation at a Rural University
Authors: Sandra Valdez-Hernández
Abstract:
Motivation is one of the most important factors when teaching language. Most institutions at least in Mexico, pay low attention to the types of motivation students have when they are studying English; however, considering the motivation they have, may lead to better understanding about their needs and purposes for learning English and the professors may understand and focus on their interests for making them persist in action through the course. This topic has been widely investigated in different countries, but more research needs to be done in Mexico to shed light on this area of potential impact. The aim of this research is to focus on the types of motivation, intrinsic and extrinsic, instrumental and integrative and the attitudes students have about English language to identify aspects that are alike to other contexts and research areas based on the theory of Dörnyei (2013) and Gardner (2001). It was carried out at a Mexican University in a small village in Quintana Roo. The potential implications, the findings as well as the limitations are presented.Keywords: attides of motivation, factors of motivation, extrinsic and intrinsic motivation, instrumental and integrative motivation
Procedia PDF Downloads 8913415 Mapping of Solar Radiation Anomalies Based on Climate Change
Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Francisco Pereira, Elton Rossini
Abstract:
The use of alternative energy sources to meet energy demand reduces environmental damage. To diversify an energy matrix and to minimize global warming, a solar energy is gaining space, being an important source of renewable energy, and its potential depends on the climatic conditions of the region. Brazil presents a great solar potential for a generation of electric energy, so the knowledge of solar radiation and its characteristics are fundamental for the study of energy use. Due to the above reasons, this article aims to verify the climatic variability corresponding to the variations in solar radiation anomalies, in the face of climate change scenarios. The data used in this research are part of the Intercomparison of Interconnected Models, Phase 5 (CMIP5), which contributed to the preparation of the fifth IPCC-AR5 report. The solar radiation data were extracted from The Australian Community Climate and Earth System Simulator (ACCESS) model using the RCP 4.5 and RCP 8.5 scenarios that represent an intermediate structure and a pessimistic framework, the latter being the most worrisome in all cases. In order to allow the use of solar radiation as a source of energy in a given location and/or region, it is important, first, to determine its availability, thus justifying the importance of the study. The results pointed out, for the 75-year period (2026-2100), based on a pessimistic scenario, indicate a drop in solar radiation of the approximately 12% in the eastern region of Rio Grande do Sul. Factors that influence the pessimistic prospects of this scenario should be better observed by the responsible authorities, since they can affect the possibility to produce electricity from solar radiation.Keywords: climate change, energy, IPCC, solar radiation
Procedia PDF Downloads 19213414 AI for Efficient Geothermal Exploration and Utilization
Authors: Velimir Monty Vesselinov, Trais Kliplhuis, Hope Jasperson
Abstract:
Artificial intelligence (AI) is a powerful tool in the geothermal energy sector, aiding in both exploration and utilization. Identifying promising geothermal sites can be challenging due to limited surface indicators and the need for expensive drilling to confirm subsurface resources. Geothermal reservoirs can be located deep underground and exhibit complex geological structures, making traditional exploration methods time-consuming and imprecise. AI algorithms can analyze vast datasets of geological, geophysical, and remote sensing data, including satellite imagery, seismic surveys, geochemistry, geology, etc. Machine learning algorithms can identify subtle patterns and relationships within this data, potentially revealing hidden geothermal potential in areas previously overlooked. To address these challenges, a SIML (Science-Informed Machine Learning) technology has been developed. SIML methods are different from traditional ML techniques. In both cases, the ML models are trained to predict the spatial distribution of an output (e.g., pressure, temperature, heat flux) based on a series of inputs (e.g., permeability, porosity, etc.). The traditional ML (a) relies on deep and wide neural networks (NNs) based on simple algebraic mappings to represent complex processes. In contrast, the SIML neurons incorporate complex mappings (including constitutive relationships and physics/chemistry models). This results in ML models that have a physical meaning and satisfy physics laws and constraints. The prototype of the developed software, called GeoTGO, is accessible through the cloud. Our software prototype demonstrates how different data sources can be made available for processing, executed demonstrative SIML analyses, and presents the results in a table and graphic form.Keywords: science-informed machine learning, artificial inteligence, exploration, utilization, hidden geothermal
Procedia PDF Downloads 5413413 Internet Economy: Enhancing Information Communication Technology Adaptation, Service Delivery, Content and Digital Skills for Small Holder Farmers in Uganda
Authors: Baker Ssekitto, Ambrose Mbogo
Abstract:
The study reveals that indeed agriculture employs over 70% of Uganda’s population, of which majority are youth and women. The study further reveals that over 70% of the farmers are smallholder farmers based in rural areas, whose operations are greatly affected by; climate change, weak digital skills, limited access to productivity knowledge along value chains, limited access to quality farm inputs, weak logistics systems, limited access to quality extension services, weak business intelligence, limited access to quality markets among others. It finds that the emerging 4th industrial revolution powered by artificial intelligence, 5G and data science will provide possibilities of addressing some of these challenges. Furthermore, the study finds that despite rapid development of ICT4Agric Innovation, their uptake is constrained by a number of factors including; limited awareness of these innovations, low internet and smart phone penetration especially in rural areas, lack of appropriate digital skills, inappropriate programmes implementation models which are project and donor driven, limited articulation of value addition to various stakeholders among others. Majority of farmers and other value chain actors lacked knowledge and skills to harness the power of ICTs, especially their application of ICTs in monitoring and evaluation on quality of service in the extension system and farm level processes.Keywords: artificial intelligence, productivity, ICT4agriculture, value chain, logistics
Procedia PDF Downloads 7813412 Lifestyle Switching Phenomenon of Plant Associated Fungi
Authors: Gauravi Agarkar, Mahendra Rai
Abstract:
Fungi are closely associated with the plants in various types of interactions such as mycorrhizal, parasitic or endophytic. Some of these interactions are beneficial and a few are harmful to the host plants. It has been suggested that these plant-associated fungi are able to change their lifestyle abd this means endophyte may become parasite or vice versa. This phenomenon may have profound effect on plant-fungal interactions and various ecological niches. Therefore, it is necessary to identify the factors that trigger the change in fungal lifestyle and understand whether these different lifestyles are interconnected at some points either by physiological, biochemical or molecular routes. This review summarizes the factors affecting plant fungal interactions and discusses the possible mechanisms for lifestyles switching of fungi based on available experimental evidences. Research should be boosted in this direction to fetch more advantages in future and to avoid the severe consequences in agriculture and other related fields.Keywords: endophytic, lifestyle switching, mycorrhizal, parasitic, plant-fungal interactions
Procedia PDF Downloads 41513411 Optimized Real Ground Motion Scaling for Vulnerability Assessment of Building Considering the Spectral Uncertainty and Shape
Authors: Chen Bo, Wen Zengping
Abstract:
Based on the results of previous studies, we focus on the research of real ground motion selection and scaling method for structural performance-based seismic evaluation using nonlinear dynamic analysis. The input of earthquake ground motion should be determined appropriately to make them compatible with the site-specific hazard level considered. Thus, an optimized selection and scaling method are established including the use of not only Monte Carlo simulation method to create the stochastic simulation spectrum considering the multivariate lognormal distribution of target spectrum, but also a spectral shape parameter. Its applications in structural fragility analysis are demonstrated through case studies. Compared to the previous scheme with no consideration of the uncertainty of target spectrum, the method shown here can make sure that the selected records are in good agreement with the median value, standard deviation and spectral correction of the target spectrum, and greatly reveal the uncertainty feature of site-specific hazard level. Meanwhile, it can help improve computational efficiency and matching accuracy. Given the important infection of target spectrum’s uncertainty on structural seismic fragility analysis, this work can provide the reasonable and reliable basis for structural seismic evaluation under scenario earthquake environment.Keywords: ground motion selection, scaling method, seismic fragility analysis, spectral shape
Procedia PDF Downloads 29313410 Ending Wars Over Water: Evaluating the Extent to Which Artificial Intelligence Can Be Used to Predict and Prevent Transboundary Water Conflicts
Authors: Akhila Potluru
Abstract:
Worldwide, more than 250 bodies of water are transboundary, meaning they cross the political boundaries of multiple countries. This creates a system of hydrological, economic, and social interdependence between communities reliant on these water sources. Transboundary water conflicts can occur as a result of this intense interdependence. Many factors contribute to the sparking of transboundary water conflicts, ranging from natural hydrological factors to hydro-political interactions. Previous attempts to predict transboundary water conflicts by analysing changes or trends in the contributing factors have typically failed because patterns in the data are hard to identify. However, there is potential for artificial intelligence and machine learning to fill this gap and identify future ‘hotspots’ up to a year in advance by identifying patterns in data where humans can’t. This research determines the extent to which AI can be used to predict and prevent transboundary water conflicts. This is done via a critical literature review of previous case studies and datasets where AI was deployed to predict water conflict. This research not only delivered a more nuanced understanding of previously undervalued factors that contribute toward transboundary water conflicts (in particular, culture and disinformation) but also by detecting conflict early, governance bodies can engage in processes to de-escalate conflict by providing pre-emptive solutions. Looking forward, this gives rise to significant policy implications and water-sharing agreements, which may be able to prevent water conflicts from developing into wide-scale disasters. Additionally, AI can be used to gain a fuller picture of water-based conflicts in areas where security concerns mean it is not possible to have staff on the ground. Therefore, AI enhances not only the depth of our knowledge about transboundary water conflicts but also the breadth of our knowledge. With demand for water constantly growing, competition between countries over shared water will increasingly lead to water conflict. There has never been a more significant time for us to be able to accurately predict and take precautions to prevent global water conflicts.Keywords: artificial intelligence, machine learning, transboundary water conflict, water management
Procedia PDF Downloads 10513409 Threats to the Business Value: The Case of Mechanical Engineering Companies in the Czech Republic
Authors: Maria Reznakova, Michala Strnadova, Lukas Reznak
Abstract:
Successful achievement of strategic goals requires an effective performance management system, i.e. determining the appropriate indicators measuring the rate of goal achievement. Assuming that the goal of the owners is to grow the assets they invested in, it is vital to identify the key performance indicators, which contribute to value creation. These indicators are known as value drivers. Based on the undertaken literature search, a value driver is defined as any factor that affects the value of an enterprise. The important factors are then monitored by both financial and non-financial indicators. Financial performance indicators are most useful in strategic management, since they indicate whether a company's strategy implementation and execution are contributing to bottom line improvement. Non-financial indicators are mainly used for short-term decisions. The identification of value drivers, however, is problematic for companies which are not publicly traded. Therefore financial ratios continue to be used to measure the performance of companies, despite their considerable criticism. The main drawback of such indicators is the fact that they are calculated based on accounting data, while accounting rules may differ considerably across different environments. For successful enterprise performance management it is vital to avoid factors that may reduce (or even destroy) its value. Among the known factors reducing the enterprise value are the lack of capital, lack of strategic management system and poor quality of production. In order to gain further insight into the topic, the paper presents results of the research identifying factors that adversely affect the performance of mechanical engineering enterprises in the Czech Republic. The research methodology focuses on both the qualitative and the quantitative aspect of the topic. The qualitative data were obtained from a questionnaire survey of the enterprises senior management, while the quantitative financial data were obtained from the Analysis Major Database for European Sources (AMADEUS). The questionnaire prompted managers to list factors which negatively affect business performance of their enterprises. The range of potential factors was based on a secondary research – analysis of previously undertaken questionnaire surveys and research of studies published in the scientific literature. The results of the survey were evaluated both in general, by average scores, and by detailed sub-analyses of additional criteria. These include the company specific characteristics, such as its size and ownership structure. The evaluation also included a comparison of the managers’ opinions and the performance of their enterprises – measured by return on equity and return on assets ratios. The comparisons were tested by a series of non-parametric tests of statistical significance. The results of the analyses show that the factors most detrimental to the enterprise performance include the incompetence of responsible employees and the disregard to the customers‘ requirements.Keywords: business value, financial ratios, performance measurement, value drivers
Procedia PDF Downloads 22213408 Neural Networks-based Acoustic Annoyance Model for Laptop Hard Disk Drive
Authors: Yichao Ma, Chengsiong Chin, Wailok Woo
Abstract:
Since the last decade, there has been a rapid growth in digital multimedia, such as high-resolution media files and three-dimentional movies. Hence, there is a need for large digital storage such as Hard Disk Drive (HDD). As such, users expect to have a quieter HDD in their laptop. In this paper, a jury test has been conducted on a group of 34 people where 17 of them are students who is the potential consumer, and the remaining are engineers who know the HDD. A total 13 HDD sound samples have been selected from over hundred HDD noise recordings. These samples are selected based on an agreed subjective feeling. The samples are played to the participants using head acoustic playback system which enabled them to experience as similar as possible the same environment as have been recorded. Analysis has been conducted and the obtained results have indicated different group has different perception over the noises. Two neural network-based acoustic annoyance models are established based on back propagation neural network. Four psychoacoustic metrics, loudness, sharpness, roughness and fluctuation strength, are used as the input of the model, and the subjective evaluation results are taken as the output. The developed models are reasonably accurate in simulating both training and test samples.Keywords: hdd noise, jury test, neural network model, psychoacoustic annoyance
Procedia PDF Downloads 43813407 Data Modeling and Calibration of In-Line Pultrusion and Laser Ablation Machine Processes
Authors: David F. Nettleton, Christian Wasiak, Jonas Dorissen, David Gillen, Alexandr Tretyak, Elodie Bugnicourt, Alejandro Rosales
Abstract:
In this work, preliminary results are given for the modeling and calibration of two inline processes, pultrusion, and laser ablation, using machine learning techniques. The end product of the processes is the core of a medical guidewire, manufactured to comply with a user specification of diameter and flexibility. An ensemble approach is followed which requires training several models. Two state of the art machine learning algorithms are benchmarked: Kernel Recursive Least Squares (KRLS) and Support Vector Regression (SVR). The final objective is to build a precise digital model of the pultrusion and laser ablation process in order to calibrate the resulting diameter and flexibility of a medical guidewire, which is the end product while taking into account the friction on the forming die. The result is an ensemble of models, whose output is within a strict required tolerance and which covers the required range of diameter and flexibility of the guidewire end product. The modeling and automatic calibration of complex in-line industrial processes is a key aspect of the Industry 4.0 movement for cyber-physical systems.Keywords: calibration, data modeling, industrial processes, machine learning
Procedia PDF Downloads 29913406 Risk and Uncertainty in Aviation: A Thorough Analysis of System Vulnerabilities
Authors: C. V. Pietreanu, S. E. Zaharia, C. Dinu
Abstract:
Hazard assessment and risks quantification are key components for estimating the impact of existing regulations. But since regulatory compliance cannot cover all risks in aviation, the authors point out that by studying causal factors and eliminating uncertainty, an accurate analysis can be outlined. The research debuts by making delimitations on notions, as confusion on the terms over time has reflected in less rigorous analysis. Throughout this paper, it will be emphasized the fact that the variation in human performance and organizational factors represent the biggest threat from an operational perspective. Therefore, advanced risk assessment methods analyzed by the authors aim to understand vulnerabilities of the system given by a nonlinear behavior. Ultimately, the mathematical modeling of existing hazards and risks by eliminating uncertainty implies establishing an optimal solution (i.e. risk minimization).Keywords: control, human factor, optimization, risk management, uncertainty
Procedia PDF Downloads 24913405 Prediction of Fillet Weight and Fillet Yield from Body Measurements and Genetic Parameters in a Complete Diallel Cross of Three Nile Tilapia (Oreochromis niloticus) Strains
Authors: Kassaye Balkew Workagegn, Gunnar Klemetsdal, Hans Magnus Gjøen
Abstract:
In this study, the first objective was to investigate whether non-lethal or non-invasive methods, utilizing body measurements, could be used to efficiently predict fillet weight and fillet yield for a complete diallel cross of three Nile tilapia (Oreochromis niloticus) strains collected from three Ethiopian Rift Valley lakes, Lakes Ziway, Koka and Chamo. The second objective was to estimate heritability of body weight, actual and predicted fillet traits, as well as genetic correlations between these traits. A third goal was to estimate additive, reciprocal, and heterosis effects for body weight and the various fillet traits. As in females, early sexual maturation was widespread, only 958 male fish from 81 full-sib families were used, both for the prediction of fillet traits and in genetic analysis. The prediction equations from body measurements were established by forward regression analysis, choosing models with the least predicted residual error sums of squares (PRESS). The results revealed that body measurements on live Nile tilapia is well suited to predict fillet weight but not fillet yield (R²= 0.945 and 0.209, respectively), but both models were seemingly unbiased. The genetic analyses were carried out with bivariate, multibreed models. Body weight, fillet weight, and predicted fillet weight were all estimated with a heritability ranged from 0.23 to 0.28, and with genetic correlations close to one. Contrary, fillet yield was only to a minor degree heritable (0.05), while predicted fillet yield obtained a heritability of 0.19, being a resultant of two body weight variables known to have high heritability. The latter trait was estimated with genetic correlations to body weight and fillet weight traits larger than 0.82. No significant differences among strains were found for their additive genetic, reciprocal, or heterosis effects, while total heterosis effects were estimated as positive and significant (P < 0.05). As a conclusion, prediction of prediction of fillet weight based on body measurements is possible, but not for fillet yield.Keywords: additive, fillet traits, genetic correlation, heritability, heterosis, prediction, reciprocal
Procedia PDF Downloads 18813404 Risk Factors and Outcome of Free Tissue Transfer at a Tertiary Care Referral Center
Authors: Majid Khan
Abstract:
Introduction: In this era of microsurgery, free flap holds a remarkable spot in reconstructive surgery. A free flap is well suited for composite defects as it provides sufficient and well-vascularized tissue for coverage. We report our experience with the use of the free flaps for the reconstruction of composite defects. Methods: This is a retrospective case series (chart review) of patients who underwent reconstruction of composite defects with a free flap at Aga Khan University Hospital, Karachi (Pakistan) from January 01, 2015, to December 31, 2019. Data were collected for patient demographics, size of the defect, size of flap, recipient vessels, postoperative complications, and outcome of the free flap. Results: Over this period, 532 free flaps are included in this study. The overall success rate is 95.5%. The mean age of the patient was 44.86 years. In 532 procedures, there were 448 defects from tumor ablation of head and neck cancer. The most frequent free flap was the anterolateral thigh flap in 232 procedures. In this study, the risk factor hypertension (p=0.004) was found significant for wound dehiscence, preop radiation/chemotherapy (p=0.003), and malnutrition (p=0.005) were found significant for fistula formation. Malnutrition (p=0.02) and use of vein grafts (p=0.025) were significant factors for flap failure. Conclusion: Free tissue transfer is a reliable option for the reconstruction of large and composite defects. Hypertension, malnutrition, and preoperative radiotherapy can cause significant morbidity.Keywords: free flap, free flap failure, risk factors for flap failure, free flap outcome
Procedia PDF Downloads 11513403 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions
Authors: Vikrant Gupta, Amrit Goswami
Abstract:
The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition
Procedia PDF Downloads 13613402 Immunoglobulins and Importance in Ruminants
Authors: M. Akoz, O. B. Citil, I. Aydin
Abstract:
Colostrum secreted by the mammary glands after birth in the early days, a high proportion of fat, protein and ash containing a secretion containing low amounts of casein and lactose. Especially immunoglobulins contain high proportions. Maternal immunoglobulins own immune system to protect the newborn against neonatal disease until development are very important matter. However, colostrum is transferred to the offspring due to placental barrier in ruminants. Immunoglobulins are absorbed through the intestinal epithelium but absorption can vary under the influence of some factors. These factors are among the priority ones taking colostrum first time, amount, concentration, the metabolic status of the newborn. intestinal absorption of immunoglobulins occurs over the first 24 h high. Absorption from the gut after nine hours, 50% after 24 hours was only 11%. On the other hand pup's digestive system degrade the enzymes after 24 hours immunoglobulins. Bovine colostrum in the composition while basic immune IgG, IgA and IgM are also available. Total IgG in colostrum of ruminants, while in other species is a greater amount in blood serum.Keywords: immunoglobulin, ruminants, colostrum, immune system
Procedia PDF Downloads 26813401 Enhancing ERP Implementation Processes in South African Retail SMEs: A Study on Operational Efficiency and Customer-Centric Approaches
Authors: Tshepo Mabotja
Abstract:
Purpose: The purpose of this study is to identify and analyse the factors influencing ERP implementation in South African SMEs in the textile & apparel retail sector, with the goal of providing insights that improve decision-making, enhance operational efficiency, and meet customer expectations. Design/Methodology/Approach: A quantitative research methodology was employed, utilising a probability (random) sampling technique to ensure equal opportunity for sample selection. The researcher conducted an extensive review of current literature to identify knowledge gaps and applied data analysis methods, including descriptive statistics, reliability tests, exploratory factor analysis, and normality testing. Findings/Results: The study revealed that South African SMEs in the textile & apparel retail industry must evaluate critical factors before implementing an ERP model. These factors include assessing client requirements, examining the experiences of existing ERP system users, understanding system maintenance needs, and forecasting expected performance outcomes. Practical Implications: The findings provide actionable recommendations for textile and apparel retail SMEs aiming to adopt ERP systems. By focusing on the identified critical factors, businesses can enhance their ERP adoption processes, reduce operational inefficiencies, and better align with customer and sustainability demands. Originality/Value: This study contributes to the limited body of knowledge on ERP implementation challenges in South African textile and apparel retail SMEs. It provides a unique perspective on how strategic ERP adoption can drive operational improvements and support sustainable development practices within the industry.Keywords: retail SMEs, enterprise resource planning, operational efficiency, customer centricity
Procedia PDF Downloads 613400 Assessment of Taiwan Railway Occurrences Investigations Using Causal Factor Analysis System and Bayesian Network Modeling Method
Authors: Lee Yan Nian
Abstract:
Safety investigation is different from an administrative investigation in that the former is conducted by an independent agency and the purpose of such investigation is to prevent accidents in the future and not to apportion blame or determine liability. Before October 2018, Taiwan railway occurrences were investigated by local supervisory authority. Characteristics of this kind of investigation are that enforcement actions, such as administrative penalty, are usually imposed on those persons or units involved in occurrence. On October 21, 2018, due to a Taiwan Railway accident, which caused 18 fatalities and injured another 267, establishing an agency to independently investigate this catastrophic railway accident was quickly decided. The Taiwan Transportation Safety Board (TTSB) was then established on August 1, 2019 to take charge of investigating major aviation, marine, railway and highway occurrences. The objective of this study is to assess the effectiveness of safety investigations conducted by the TTSB. In this study, the major railway occurrence investigation reports published by the TTSB are used for modeling and analysis. According to the classification of railway occurrences investigated by the TTSB, accident types of Taiwan railway occurrences can be categorized into: derailment, fire, Signal Passed at Danger and others. A Causal Factor Analysis System (CFAS) developed by the TTSB is used to identify the influencing causal factors and their causal relationships in the investigation reports. All terminologies used in the CFAS are equivalent to the Human Factors Analysis and Classification System (HFACS) terminologies, except for “Technical Events” which was added to classify causal factors resulting from mechanical failure. Accordingly, the Bayesian network structure of each occurrence category is established based on the identified causal factors in the CFAS. In the Bayesian networks, the prior probabilities of identified causal factors are obtained from the number of times in the investigation reports. Conditional Probability Table of each parent node is determined from domain experts’ experience and judgement. The resulting networks are quantitatively assessed under different scenarios to evaluate their forward predictions and backward diagnostic capabilities. Finally, the established Bayesian network of derailment is assessed using investigation reports of the same accident which was investigated by the TTSB and the local supervisory authority respectively. Based on the assessment results, findings of the administrative investigation is more closely tied to errors of front line personnel than to organizational related factors. Safety investigation can identify not only unsafe acts of individual but also in-depth causal factors of organizational influences. The results show that the proposed methodology can identify differences between safety investigation and administrative investigation. Therefore, effective intervention strategies in associated areas can be better addressed for safety improvement and future accident prevention through safety investigation.Keywords: administrative investigation, bayesian network, causal factor analysis system, safety investigation
Procedia PDF Downloads 12313399 Relational and Personal Variables Predicting Marital Satisfaction
Authors: Sezen Gulec, Bilge Uzun
Abstract:
Almost all of the world population marries at least once in their lifetime. Nevertheless, in reality, only half of all marriages last a lifetime. The most important factor in marriage to manage is the satisfaction that they obtain. It is reality that marital satisfaction does not only related to maintain the relationship but also related to the social and work relationships. In this respect, the purpose of the present research is to find the personal and relational factors predicted marital satisfaction. The sample including 378 (178 male and 200 females) married individuals were administered to marital life scale, multidimensional perfectionism scale, trait forgivingness scale, adjective based personality test and relationship happiness questionnaire. The findings revealed marital happiness, forgiveness and extravertedness and emotional inconsistency factors were found to be significant predictors of marital satisfaction.Keywords: marital satisfaction, happiness, perfectionism, forgiveness, five factor personality
Procedia PDF Downloads 66613398 A Cross-Cultural Investigation of Self-Compassion in Adolescents Across Gender
Authors: H. N. Cheung
Abstract:
Self-compassion encourages one to accept oneself, reduce self-criticism and self-judgment, and see one’s shortcomings and setbacks in a balanced view. Adolescent self-compassion is a crucial protective factor against mental illness. It is, however, affected by gender. Given the scarcity of self-compassion scales for adolescents, the current study evaluates the Self-Compassion Scale for Youth (SCS-Y) in a large cross-cultural sample and investigates how the subscales of SCS-Y relate to the dimensions of depressive symptoms across gender. Through the internet-based Qualtrics, a total of 2881 teenagers aged 12 to 18 years were recruited from Hong Kong (HK), China, and the United Kingdom. A Multiple Indicator Multiple Cause (MIMIC) model was used to evaluate measurement invariance of the SCS-Y, and differential item functioning (DIF) was checked across gender. Upon the establishment of the best model, a multigroup structural equation model (SEM) was built between factors of SCS-Y and Multidimensional depression assessment scale (MDAS) which assesses four dimensions of depressive symptoms (emotional, cognitive, somatic and interpersonal). The SCS-Y was shown to have good reliability and validity. The MIMIC model produced a good model fit for a hypothetical six-factor model (CFI = 0.980; TLI = 0.974; RMSEA = 0.038) and no item was flagged for DIF across gender. A gender difference was observed between SCS-Y factors and depression dimensions. Conclusions: The SCS-Y exhibits good psychometric characteristics, including measurement invariance across gender. The study also highlights the gender difference between self-compassion factors and depression dimensions.Keywords: self compassion, gender, depression, structural equation modelling, MIMIC model
Procedia PDF Downloads 7113397 Natural Factors of Interannual Variability of Winter Precipitation over the Altai Krai
Authors: Sukovatov K.Yu., Bezuglova N.N.
Abstract:
Winter precipitation variability over the Altai Krai was investigated by retrieving temporal patterns. The spectral singular analysis was used to describe the variance distribution and to reduce the precipitation data into a few components (modes). The associated time series were related to large-scale atmospheric and oceanic circulation indices by using lag cross-correlation and wavelet-coherence analysis. GPCC monthly precipitation data for rectangular field limited by 50-550N, 77-880E and monthly climatological circulation index data for the cold season were used to perform SSA decomposition and retrieve statistics for analyzed parameters on the time period 1951-2017. Interannual variability of winter precipitation over the Altai Krai are mostly caused by three natural factors: intensity variations of momentum exchange between mid and polar latitudes over the North Atlantic (explained variance 11.4%); wind speed variations in equatorial stratosphere (quasi-biennial oscillation, explained variance 15.3%); and surface temperature variations for equatorial Pacific sea (ENSO, explained variance 2.8%). It is concluded that under the current climate conditions (Arctic amplification and increasing frequency of meridional processes in mid-latitudes) the second and the third factors are giving more significant contribution into explained variance of interannual variability for cold season atmospheric precipitation over the Altai Krai than the first factor.Keywords: interannual variability, winter precipitation, Altai Krai, wavelet-coherence
Procedia PDF Downloads 18813396 Tip60’s Novel RNA-Binding Function Modulates Alternative Splicing of Pre-mRNA Targets Implicated in Alzheimer’s Disease
Authors: Felice Elefant, Akanksha Bhatnaghar, Keegan Krick, Elizabeth Heller
Abstract:
Context: The severity of Alzheimer’s Disease (AD) progression involves an interplay of genetics, age, and environmental factors orchestrated by histone acetyltransferase (HAT) mediated neuroepigenetic mechanisms. While disruption of Tip60 HAT action in neural gene control is implicated in AD, alternative mechanisms underlying Tip60 function remain unexplored. Altered RNA splicing has recently been highlighted as a widespread hallmark in the AD transcriptome that is implicated in the disease. Research Aim: The aim of this study was to identify a novel RNA binding/splicing function for Tip60 in human hippocampus and impaired in brains from AD fly models and AD patients. Methodology/Analysis: The authors used RNA immunoprecipitation using RNA isolated from 200 pooled wild type Drosophila brains for each of the 3 biological replicates. To identify Tip60’s RNA targets, they performed genome sequencing (DNB-SequencingTM technology, BGI genomics) on 3 replicates for Input RNA and RNA IPs by Tip60. Findings: The authors' transcriptomic analysis of RNA bound to Tip60 by Tip60-RNA immunoprecipitation (RIP) revealed Tip60 RNA targets enriched for critical neuronal processes implicated in AD. Remarkably, 79% of Tip60’s RNA targets overlap with its chromatin gene targets, supporting a model by which Tip60 orchestrates bi-level transcriptional regulation at both the chromatin and RNA level, a function unprecedented for any HAT to date. Since RNA splicing occurs co-transcriptionally and splicing defects are implicated in AD, the authors investigated whether Tip60-RNA targeting modulates splicing decisions and if this function is altered in AD. Replicate multivariate analysis of transcript splicing (rMATS) analysis of RNA-Seq data sets from wild-type and AD fly brains revealed a multitude of mammalian-like AS defects. Strikingly, over half of these altered RNAs were bonafide Tip60-RNA targets enriched for in the AD-gene curated database, with some AS alterations prevented against by increasing Tip60 in fly brain. Importantly, human orthologs of several Tip60-modulated spliced genes in Drosophila are well characterized aberrantly spliced genes in human AD brains, implicating disruption of Tip60’s splicing function in AD pathogenesis. Theoretical Importance: The authors' findings support a novel RNA interaction and splicing regulatory function for Tip60 that may underlie AS impairments that hallmark AD etiology. Data Collection: The authors collected data from RNA immunoprecipitation experiments using RNA isolated from 200 pooled wild type Drosophila brains for each of the 3 biological replicates. They also performed genome sequencing (DNBSequencingTM technology, BGI genomics) on 3 replicates for Input RNA and RNA IPs by Tip60. Questions: The question addressed by this study was whether Tip60 has a novel RNA binding/splicing function in human hippocampus and whether this function is impaired in brains from AD fly models and AD patients. Conclusions: The authors' findings support a novel RNA interaction and splicing regulatory function for Tip60 that may underlie AS impairments that hallmark AD etiology.Keywords: Alzheimer's disease, cognition, aging, neuroepigenetics
Procedia PDF Downloads 76