Search results for: radial basis function networks
7380 Debunking Sexual Myths in Bangladesh through an Intervention on the Internet
Authors: E. Rommes, Els Toonen, Rahil Roodsaz, Suborna Camellia, Farhana Alam, Saad Khan, Jhalok Ranjon Talukder, Tanveer Hassan, Syeda Farjana Ahmed, Sabina Faiz Rashid
Abstract:
In Bangladesh, a country in which adults (both parents and teachers) find it particularly hard to speak with youth about sexuality, adolescents seem to struggle with various insecurities about their sexual feelings, thoughts, behavior and physical characteristics. On the basis of a large number of interviews and focus groups with rural and urban Bangla adolescent girls and boys of lower and middle class as part of the large-scale three-year project ‘Breaking the Shame’, we have identified ten sexual themes or ‘myths’ that youth struggle with most. These encompass amongst others beliefs and insecurities on masturbation, discharge, same-sex behavior and feelings, the effects of watching porn and gender norms. We argue that the Internet is a particularly suitable medium to ‘debunk’ those myths, as youth can consult it anonymously and privately and so avoid social shame. Moreover, amongst the myths, we have identified two kinds which may need different debunking techniques. One kind of myth concerns scientifically uncontested, generally biological related information, such as the effects of having sex with a pregnant woman, questions on the effects of a penile or vaginal discharge or questions on the effects of masturbation. The second kind of myths concerns more diverse information sources and deals with e.g. religious or culturally specific norms, such as on the meaning and existence of homosexuality or gender appropriate norms of behavior in Bangladesh. For addressing both kinds of myths, expert information including a wealth of references to information resources needs to be provided, which the Internet is very suitable for. For the second kind of myths, adolescents also need to learn how to deal with sometimes conflicting norms and information sources, and they need to develop and reflect on their own opinions as part of their identity formation. On the basis of a literature review, we thus distinguish general information needs from identity formation needs, which includes the need to be able to relate information and opinions to one’s own opinions and situation. Hence, we argue that youth not only need abstract expert information to be able to debunk sexual myths, but also the option to discuss this information with other adolescents and compare their own situation and opinions with other peers, who in that way serve as ‘warm experts’ for each other. In this paper, we will describe the outcomes of our qualitative study above. In addition, we will present our findings of an intervention by presenting youth with general, uncontested information on the Internet with additional peer discussion options to compare the debunking effects on different kinds of myths.Keywords: peer discussion, intervention, sexual myths, shame
Procedia PDF Downloads 2167379 Biorefinery as Extension to Sugar Mills: Sustainability and Social Upliftment in the Green Economy
Authors: Asfaw Gezae Daful, Mohsen Alimandagari, Kathleen Haigh, Somayeh Farzad, Eugene Van Rensburg, Johann F. Görgens
Abstract:
The sugar industry has to 're-invent' itself to ensure long-term economic survival and opportunities for job creation and enhanced community-level impacts, given increasing pressure from fluctuating and low global sugar prices, increasing energy prices and sustainability demands. We propose biorefineries for re-vitalisation of the sugar industry using low value lignocellulosic biomass (sugarcane bagasse, leaves, and tops) annexed to existing sugar mills, producing a spectrum of high value platform chemicals along with biofuel, bioenergy, and electricity. Opportunity is presented for greener products, to mitigate climate change and overcome economic challenges. Xylose from labile hemicellulose remains largely underutilized and the conversion to value-add products a major challenge. Insight is required on pretreatment and/or extraction to optimize production of cellulosic ethanol together with lactic acid, furfural or biopolymers from sugarcane bagasse, leaves, and tops. Experimental conditions for alkaline and pressurized hot water extraction dilute acid and steam explosion pretreatment of sugarcane bagasse and harvest residues were investigated to serve as a basis for developing various process scenarios under a sugarcane biorefinery scheme. Dilute acid and steam explosion pretreatment were optimized for maximum hemicellulose recovery, combined sugar yield and solids digestibility. An optimal range of conditions for alkaline and liquid hot water extraction of hemicellulosic biopolymers, as well as conditions for acceptable enzymatic digestibility of the solid residue, after such extraction was established. Using data from the above, a series of energy efficient biorefinery scenarios are under development and modeled using Aspen Plus® software, to simulate potential factories to better understand the biorefinery processes and estimate the CAPEX and OPEX, environmental impacts, and overall viability. Rigorous and detailed sustainability assessment methodology was formulated to address all pillars of sustainability. This work is ongoing and to date, models have been developed for some of the processes which can ultimately be combined into biorefinery scenarios. This will allow systematic comparison of a series of biorefinery scenarios to assess the potential to reduce negative impacts on and maximize the benefits of social, economic, and environmental factors on a lifecycle basis.Keywords: biomass, biorefinery, green economy, sustainability
Procedia PDF Downloads 5147378 Arginase Enzyme Activity in Human Serum as a Marker of Cognitive Function: The Role of Inositol in Combination with Arginine Silicate
Authors: Katie Emerson, Sara Perez-Ojalvo, Jim Komorowski, Danielle Greenberg
Abstract:
The purpose of this study was to evaluate arginase activity levels in response to combinations of an inositol-stabilized arginine silicate (ASI; Nitrosigine®), L-arginine, and Inositol. Arginine acts as a vasodilator that promotes increased blood flow resulting in enhanced delivery of oxygen and nutrients to the brain and other tissues. ASI alone has been shown to improve performance on cognitive tasks. Arginase, found in human serum, catalyzes the conversion of arginine to ornithine and urea, completing the last step in the urea cycle. Decreasing arginase levels maintains arginine and results in increased nitric oxide production. This study aimed to determine the most effective combination of ASI, L-arginine and inositol for minimizing arginase levels and therefore maximize ASI’s effect on cognition. Serum was taken from untreated healthy donors by separation from clotted factors. Arginase activity of serum in the presence or absence of test products was determined (QuantiChrom™, DARG-100, Bioassay Systems, Hayward CA). The remaining ultra-filtrated serum units were harvested and used as the source for the arginase enzyme. ASI alone or combined with varied levels of Inositol were tested as follows: ASI + inositol at 0.25 g, 0.5 g, 0.75 g, or 1.00 g. L-arginine was also tested as a positive control. All tests elicited changes in arginase activity demonstrating the efficacy of the method used. Adding L-arginine to serum from untreated subjects, with or without inositol only had a mild effect. Adding inositol at all levels reduced arginase activity. Adding 0.5 g to the standardized amount of ASI led to the lowest amount of arginase activity as compared to the 0.25g 0.75g or 1.00g doses of inositol or to L-arginine alone. The outcome of this study demonstrates an interaction of the pairing of inositol with ASI on the activity of the enzyme arginase. We found that neither the maximum nor minimum amount of inositol tested in this study led to maximal arginase inhibition. Since the inhibition of arginase activity is desirable for product formulations looking to maintain arginine levels, the most effective amount of inositol was deemed preferred. Subsequent studies suggest this moderate level of inositol in combination with ASI leads to cognitive improvements including reaction time, executive function, and concentration.Keywords: arginine, inositol, arginase, cognitive benefits
Procedia PDF Downloads 1127377 Determination of Antibiotic Residues in Carcasses of Cows Slaughtered in Amol City by Four-Plate-Test Method
Authors: Arezou Ghadi, Nasrollah Vahedi, Azam Sinkakarimi
Abstract:
For determination of antibiotic residues in slaughtered cow carcasses of Amol city in Iran, sampling has done from 100 heads of cow. For this purpose, the microbiological F.P.T (Four-Plate Test) method was used. Basis of this method, a clear zone is creating around the leachate on the plate that already has cultured a uniform layer of under test bacteria on agar plate. In this study from 100 heads of cow carcasses, at least 75 cases (75%) in one of the tested organs (muscle-liver-kidney) have been antibiotic residues. Also, it has been found that kidney have the most positive cases (60%) than other organs (liver and muscle), then the liver (58%) and finally are muscles (51%).Keywords: antibiotic residues, agar plate test, cow carcass
Procedia PDF Downloads 4557376 A Convolutional Deep Neural Network Approach for Skin Cancer Detection Using Skin Lesion Images
Authors: Firas Gerges, Frank Y. Shih
Abstract:
Malignant melanoma, known simply as melanoma, is a type of skin cancer that appears as a mole on the skin. It is critical to detect this cancer at an early stage because it can spread across the body and may lead to the patient's death. When detected early, melanoma is curable. In this paper, we propose a deep learning model (convolutional neural networks) in order to automatically classify skin lesion images as malignant or benign. Images underwent certain pre-processing steps to diminish the effect of the normal skin region on the model. The result of the proposed model showed a significant improvement over previous work, achieving an accuracy of 97%.Keywords: deep learning, skin cancer, image processing, melanoma
Procedia PDF Downloads 1487375 A Case from China on the Situation of Knowledge Management in Government
Authors: Qiaoyun Yang
Abstract:
Organizational scholars have paid enormous attention on how local governments manage their knowledge during the past two decades. Government knowledge management (KM) research recognizes that the management of knowledge flows and networks is critical to reforms on government service efficiency and the effect of administration. When dealing with complex affairs, all the limitations resulting from a lack of KM concept, processes and technologies among all the involved organizations begin to be exposed and further compound the processing difficulty of the affair. As a result, the challenges for individual or group knowledge sharing, knowledge digging and organizations’ collaboration in government's activities are diverse and immense. This analysis presents recent situation of government KM in China drawing from a total of more than 300 questionnaires and highlights important challenges that remain. The causes of the lapses in KM processes within and across the government agencies are discussed.Keywords: KM processes, KM technologies, government, KM situation
Procedia PDF Downloads 3627374 Fast Authentication Using User Path Prediction in Wireless Broadband Networks
Authors: Gunasekaran Raja, Rajakumar Arul, Kottilingam Kottursamy, Ramkumar Jayaraman, Sathya Pavithra, Swaminathan Venkatraman
Abstract:
Wireless Interoperability for Microwave Access (WiMAX) utilizes the IEEE 802.1X mechanism for authentication. However, this mechanism incurs considerable delay during handoffs. This delay during handoffs results in service disruption which becomes a severe bottleneck. To overcome this delay, our article proposes a key caching mechanism based on user path prediction. If the user mobility follows that path, the user bypasses the normal IEEE 802.1X mechanism and establishes the necessary authentication keys directly. Through analytical and simulation modeling, we have proved that our mechanism effectively decreases the handoff delay thereby achieving fast authentication.Keywords: authentication, authorization, and accounting (AAA), handoff, mobile, user path prediction (UPP) and user pattern
Procedia PDF Downloads 4057373 Integrated Gesture and Voice-Activated Mouse Control System
Authors: Dev Pratap Singh, Harshika Hasija, Ashwini S.
Abstract:
The project aims to provide a touchless, intuitive interface for human-computer interaction, enabling users to control their computers using hand gestures and voice commands. The system leverages advanced computer vision techniques using the Media Pipe framework and OpenCV to detect and interpret real-time hand gestures, transforming them into mouse actions such as clicking, dragging, and scrolling. Additionally, the integration of a voice assistant powered by the speech recognition library allows for seamless execution of tasks like web searches, location navigation, and gesture control in the system through voice commands.Keywords: gesture recognition, hand tracking, machine learning, convolutional neural networks, natural language processing, voice assistant
Procedia PDF Downloads 107372 Application of Neural Petri Net to Electric Control System Fault Diagnosis
Authors: Sadiq J. Abou-Loukh
Abstract:
The present work deals with implementation of Petri nets, which own the perfect ability of modeling, are used to establish a fault diagnosis model. Fault diagnosis of a control system received considerable attention in the last decades. The formalism of representing neural networks based on Petri nets has been presented. Neural Petri Net (NPN) reasoning model is investigated and developed for the fault diagnosis process of electric control system. The proposed NPN has the characteristics of easy establishment and high efficiency, and fault status within the system can be described clearly when compared with traditional testing methods. The proposed system is tested and the simulation results are given. The implementation explains the advantages of using NPN method and can be used as a guide for different online applications.Keywords: petri net, neural petri net, electric control system, fault diagnosis
Procedia PDF Downloads 4747371 Design and Development of an Algorithm to Predict Fluctuations of Currency Rates
Authors: Nuwan Kuruwitaarachchi, M. K. M. Peiris, C. N. Madawala, K. M. A. R. Perera, V. U. N Perera
Abstract:
Dealing with businesses with the foreign market always took a special place in a country’s economy. Political and social factors came into play making currency rate changes fluctuate rapidly. Currency rate prediction has become an important factor for larger international businesses since large amounts of money exchanged between countries. This research focuses on comparing the accuracy of mainly three models; Autoregressive Integrated Moving Average (ARIMA), Artificial Neural Networks(ANN) and Support Vector Machines(SVM). series of data import, export, USD currency exchange rate respect to LKR has been selected for training using above mentioned algorithms. After training the data set and comparing each algorithm, it was able to see that prediction in SVM performed better than other models. It was improved more by combining SVM and SVR models together.Keywords: ARIMA, ANN, FFNN, RMSE, SVM, SVR
Procedia PDF Downloads 2127370 Community Singing, a Pathway to Social Capital: A Cross-Cultural Comparative Assessment of the Benefits of Singing Communities in South Tyrol and South Africa
Authors: Johannes Van Der Sandt
Abstract:
This quantitative study investigates different approaches of community singing, in building social capital in South Tyrol, Italy, and South Africa. The impact of the various approaches of community singing is examined by investigating the main components of social capital, namely, social norms and obligations, social networks and associations and trust, and how these components are manifested in two different societies. The research is based on the premise that community singing is an important agent for the development of social capital. It seeks to establish in what form community singing can best enhance the social capital of communities in South Tyrol that are undergoing significant changes in the ways in which social capital is generally being generated on account of demographic, economic, technological and cultural changes. South Tyrol and South Africa share some similarities in the management of their multi-cultural composition. By comparing the different approaches to community singing in two multi-cultural societies, it is hoped to gain insight, and an understanding of the connections between culture, social cohesion, identity and therefore to be able to add to the understanding of the building of social capital through community singing. Participation in music contributes to the growth of social capital in communities, this is amongst others the finding of an ever increasing amount of research. In sociological discourses on social capital generation, the dimension of community music making is recognized as an important factor. Trust and mutual cooperation are products when people listen to each other, when they work or play together, and when they care about each other. This is how social capital develops as an important shared resource. Scholars of Community Music still do not agree on a short and concise definition for Community Music. For the purpose of this research, the author concurs with the definition of Community Music of the Community Music Activity commission of the International Society of Music Education as having the following characteristics: decentralization, accessibility, equal opportunity, and active participation in music-making. These principles are social and political ones, and there can be no doubt that community music activity is more than a purely musical one. Trust, shared norms and values civic and community involvement, networks, knowledge resources, contact with families and friends, and fellowship are key components in fostering group cohesion and social capital development in a community. The research will show that there is no better place for these factors to flourish than in a community singing group. Through this comparative study, it is the aim to identify, analyze and explain similarities and differences in approaches to community across societies that find themselves in a rapid transition from traditional cultural to global cultural habits characterized by a plurality of orientation points, with the aim to gain a better understanding of the various directions South Tyrolean singing culture can take.Keywords: community music, multicultural, singing, social capital
Procedia PDF Downloads 2837369 The Instruction of Imagination: A Theory of Language as a Social Communication Technology
Authors: Daniel Dor
Abstract:
The research presents a new general theory of language as a socially-constructed communication technology, designed by cultural evolution for a very specific function: the instruction of imagination. As opposed to all the other systems of intentional communication, which provide materials for the interlocutors to experience, language allows speakers to instruct their interlocutors in the process of imagining the intended meaning-instead of experiencing it. It is thus the only system that bridges the experiential gaps between speakers. This is the key to its enormous success.Keywords: experience, general theory of language, imagination, language as technology, social essence of language
Procedia PDF Downloads 5867368 Path Planning for Collision Detection between two Polyhedra
Authors: M. Khouil, N. Saber, M. Mestari
Abstract:
This study aimed to propose, a different architecture of a Path Planning using the NECMOP. where several nonlinear objective functions must be optimized in a conflicting situation. The ability to detect and avoid collision is very important for mobile intelligent machines. However, many artificial vision systems are not yet able to quickly and cheaply extract the wealth information. This network, which has been particularly reviewed, has enabled us to solve with a new approach the problem of collision detection between two convex polyhedra in a fixed time (O (1) time). We used two types of neurons linear and threshold logic, which simplified the actual implementation of all the networks proposed. This article represents a comprehensive algorithm that determine through the AMAXNET network a measure (a mini-maximum point) in a fixed time, which allows us to detect the presence of a potential collision.Keywords: path planning, collision detection, convex polyhedron, neural network
Procedia PDF Downloads 4387367 Proposed Terminal Device for End-to-End Secure SMS in Cellular Networks
Authors: Neetesh Saxena, Narendra S. Chaudhari
Abstract:
Nowadays, SMS is a very popular mobile service and even the poor, illiterate people and those living in rural areas use SMS service very efficiently. Although many mobile operators have already started 3G and 4G services, 2G services are still being used by the people in many countries. In 2G (GSM), only encryption provided is between the MS and the BTS, there is no end-to-end encryption available. Sometimes we all need to send some confidential message to other person containing bank account number, some password, financial details, etc. Normally, a message is sent in plain text only to the recipient and it is not an acceptable standard for transmitting such important and confidential information. Authors propose an end-to-end encryption approach by proposing a terminal for sending/receiving a secure message. An asymmetric key exchange algorithm is used in order to transmit secret shared key securely to the recipient. The proposed approach with terminal device provides authentication, confidentiality, integrity and non-repudiation.Keywords: AES, DES, Diffie-Hellman, ECDH, A5, SMS
Procedia PDF Downloads 4177366 Large-scale GWAS Investigating Genetic Contributions to Queerness Will Decrease Stigma Against LGBTQ+ Communities
Authors: Paul J. McKay
Abstract:
Large-scale genome-wide association studies (GWAS) investigating genetic contributions to sexual orientation and gender identity are largely lacking and may reduce stigma experienced in the LGBTQ+ community by providing an underlying biological explanation for queerness. While there is a growing consensus within the scientific community that genetic makeup contributes – at least in part – to sexual orientation and gender identity, there is a marked lack of genomics research exploring polygenic contributions to queerness. Based on recent (2019) findings from a large-scale GWAS investigating the genetic architecture of same-sex sexual behavior, and various additional peer-reviewed publications detailing novel insights into the molecular mechanisms of sexual orientation and gender identity, we hypothesize that sexual orientation and gender identity are complex, multifactorial, and polygenic; meaning that many genetic factors contribute to these phenomena, and environmental factors play a possible role through epigenetic modulation. In recent years, large-scale GWAS studies have been paramount to our modern understanding of many other complex human traits, such as in the case of autism spectrum disorder (ASD). Despite possible benefits of such research, including reduced stigma towards queer people, improved outcomes for LGBTQ+ in familial, socio-cultural, and political contexts, and improved access to healthcare (particularly for trans populations); important risks and considerations remain surrounding this type of research. To mitigate possibilities such as invalidation of the queer identities of existing LGBTQ+ individuals, genetic discrimination, or the possibility of euthanasia of embryos with a genetic predisposition to queerness (through reproductive technologies like IVF and/or gene-editing in utero), we propose a community-engaged research (CER) framework which emphasizes the privacy and confidentiality of research participants. Importantly, the historical legacy of scientific research attempting to pathologize queerness (in particular, falsely equating gender variance to mental illness) must be acknowledged to ensure any future research conducted in this realm does not propagate notions of homophobia, transphobia or stigma against queer people. Ultimately, in a world where same-sex sexual activity is criminalized in 69 UN member states, with 67 of these states imposing imprisonment, 8 imposing public flogging, 6 (Brunei, Iran, Mauritania, Nigeria, Saudi Arabia, Yemen) invoking the death penalty, and another 5 (Afghanistan, Pakistan, Qatar, Somalia, United Arab Emirates) possibly invoking the death penalty, the importance of this research cannot be understated, as finding a biological basis for queerness would directly oppose the harmful rhetoric that “being LGBTQ+ is a choice.” Anti-trans legislation is similarly widespread: In the United States in 2022 alone (as of Oct. 13), 155 anti-trans bills have been introduced preventing trans girls and women from playing on female sports teams, barring trans youth from using bathrooms and locker rooms that align with their gender identity, banning access to gender affirming medical care (e.g., hormone-replacement therapy, gender-affirming surgeries), and imposing legal restrictions on name changes. Understanding that a general lack of knowledge about the biological basis of queerness may be a contributing factor to the societal stigma faced by gender and sexual orientation minorities, we propose the initiation of large-scale GWAS studies investigating the genetic basis of gender identity and sexual orientation.Keywords: genome-wide association studies (GWAS), sexual and gender minorities (SGM), polygenicity, community-engaged research (CER)
Procedia PDF Downloads 697365 Next Generation Radiation Risk Assessment and Prediction Tools Generation Applying AI-Machine (Deep) Learning Algorithms
Authors: Selim M. Khan
Abstract:
Indoor air quality is strongly influenced by the presence of radioactive radon (222Rn) gas. Indeed, exposure to high 222Rn concentrations is unequivocally linked to DNA damage and lung cancer and is a worsening issue in North American and European built environments, having increased over time within newer housing stocks as a function of as yet unclear variables. Indoor air radon concentration can be influenced by a wide range of environmental, structural, and behavioral factors. As some of these factors are quantitative while others are qualitative, no single statistical model can determine indoor radon level precisely while simultaneously considering all these variables across a complex and highly diverse dataset. The ability of AI- machine (deep) learning to simultaneously analyze multiple quantitative and qualitative features makes it suitable to predict radon with a high degree of precision. Using Canadian and Swedish long-term indoor air radon exposure data, we are using artificial deep neural network models with random weights and polynomial statistical models in MATLAB to assess and predict radon health risk to human as a function of geospatial, human behavioral, and built environmental metrics. Our initial artificial neural network with random weights model run by sigmoid activation tested different combinations of variables and showed the highest prediction accuracy (>96%) within the reasonable iterations. Here, we present details of these emerging methods and discuss strengths and weaknesses compared to the traditional artificial neural network and statistical methods commonly used to predict indoor air quality in different countries. We propose an artificial deep neural network with random weights as a highly effective method for assessing and predicting indoor radon.Keywords: radon, radiation protection, lung cancer, aI-machine deep learnng, risk assessment, risk prediction, Europe, North America
Procedia PDF Downloads 967364 Order vs. Justice: The Cases of Libya and Syria from the Perspective of the English School Theory
Authors: A. Gün Güneş
Abstract:
This study aims to explicate the functionality of the responsibility to protect (R2P) in terms of order and justice within the context of the main traditions of the English School theory. The conflicts in Libya and Syria and the response of the international society to these crises are analyzed in the pluralism-solidarism dichotomy of the English School. In this regard, the intervention under R2P in Libya exemplifies the solidaristic side emphasizing justice, while the non-intervention in Syria exemplifies the pluralistic side emphasizing order. This study discusses the cases of Libya and Syria on the basis of Great Powers.Keywords: English school theory, international society, order, justice, responsibility to protect
Procedia PDF Downloads 4357363 Single Pass Design of Genetic Circuits Using Absolute Binding Free Energy Measurements and Dimensionless Analysis
Authors: Iman Farasat, Howard M. Salis
Abstract:
Engineered genetic circuits reprogram cellular behavior to act as living computers with applications in detecting cancer, creating self-controlling artificial tissues, and dynamically regulating metabolic pathways. Phenemenological models are often used to simulate and design genetic circuit behavior towards a desired behavior. While such models assume that each circuit component’s function is modular and independent, even small changes in a circuit (e.g. a new promoter, a change in transcription factor expression level, or even a new media) can have significant effects on the circuit’s function. Here, we use statistical thermodynamics to account for the several factors that control transcriptional regulation in bacteria, and experimentally demonstrate the model’s accuracy across 825 measurements in several genetic contexts and hosts. We then employ our first principles model to design, experimentally construct, and characterize a family of signal amplifying genetic circuits (genetic OpAmps) that expand the dynamic range of cell sensors. To develop these models, we needed a new approach to measuring the in vivo binding free energies of transcription factors (TFs), a key ingredient of statistical thermodynamic models of gene regulation. We developed a new high-throughput assay to measure RNA polymerase and TF binding free energies, requiring the construction and characterization of only a few constructs and data analysis (Figure 1A). We experimentally verified the assay on 6 TetR-homolog repressors and a CRISPR/dCas9 guide RNA. We found that our binding free energy measurements quantitatively explains why changing TF expression levels alters circuit function. Altogether, by combining these measurements with our biophysical model of translation (the RBS Calculator) as well as other measurements (Figure 1B), our model can account for changes in TF binding sites, TF expression levels, circuit copy number, host genome size, and host growth rate (Figure 1C). Model predictions correctly accounted for how these 8 factors control a promoter’s transcription rate (Figure 1D). Using the model, we developed a design framework for engineering multi-promoter genetic circuits that greatly reduces the number of degrees of freedom (8 factors per promoter) to a single dimensionless unit. We propose the Ptashne (Pt) number to encapsulate the 8 co-dependent factors that control transcriptional regulation into a single number. Therefore, a single number controls a promoter’s output rather than these 8 co-dependent factors, and designing a genetic circuit with N promoters requires specification of only N Pt numbers. We demonstrate how to design genetic circuits in Pt number space by constructing and characterizing 15 2-repressor OpAmp circuits that act as signal amplifiers when within an optimal Pt region. We experimentally show that OpAmp circuits using different TFs and TF expression levels will only amplify the dynamic range of input signals when their corresponding Pt numbers are within the optimal region. Thus, the use of the Pt number greatly simplifies the genetic circuit design, particularly important as circuits employ more TFs to perform increasingly complex functions.Keywords: transcription factor, synthetic biology, genetic circuit, biophysical model, binding energy measurement
Procedia PDF Downloads 4737362 Identification of Rice Quality Using Gas Sensors and Neural Networks
Authors: Moh Hanif Mubarok, Muhammad Rivai
Abstract:
The public's response to quality rice is very high. So it is necessary to set minimum standards in checking the quality of rice. Most rice quality measurements still use manual methods, which are prone to errors due to limited human vision and the subjectivity of testers. So, a gas detection system can be a solution that has high effectiveness and subjectivity for solving current problems. The use of gas sensors in testing rice quality must pay attention to several parameters. The parameters measured in this research are the percentage of rice water content, gas concentration, output voltage, and measurement time. Therefore, this research was carried out to identify carbon dioxide (CO₂), nitrous oxide (N₂O) and methane (CH₄) gases in rice quality using a series of gas sensors using the Neural Network method.Keywords: carbon dioxide, dinitrogen oxide, methane, semiconductor gas sensor, neural network
Procedia PDF Downloads 487361 6D Posture Estimation of Road Vehicles from Color Images
Authors: Yoshimoto Kurihara, Tad Gonsalves
Abstract:
Currently, in the field of object posture estimation, there is research on estimating the position and angle of an object by storing a 3D model of the object to be estimated in advance in a computer and matching it with the model. However, in this research, we have succeeded in creating a module that is much simpler, smaller in scale, and faster in operation. Our 6D pose estimation model consists of two different networks – a classification network and a regression network. From a single RGB image, the trained model estimates the class of the object in the image, the coordinates of the object, and its rotation angle in 3D space. In addition, we compared the estimation accuracy of each camera position, i.e., the angle from which the object was captured. The highest accuracy was recorded when the camera position was 75°, the accuracy of the classification was about 87.3%, and that of regression was about 98.9%.Keywords: 6D posture estimation, image recognition, deep learning, AlexNet
Procedia PDF Downloads 1557360 Strategic Planning in South African Higher Education
Authors: Noxolo Mafu
Abstract:
This study presents an overview of strategic planning in South African higher education institutions by tracing its trends and mystique in order to identify its impact. Over the democratic decades, strategic planning has become integral to institutional survival. It has been used as a potent tool by several institutions to catch up and surpass counterparts. While planning has always been part of higher education, strategic planning should be considered different. Strategic planning is primarily about development and maintenance of a strategic fitting between an institution and its dynamic opportunities. This presupposes existence of sets of stages that institutions pursue of which, can be regarded for assessment of the impact of strategic planning in an institution. The network theory serves guides the study in demystifying apparent organisational networks in strategic planning processes.Keywords: network theory, strategy, planning, strategic planning, assessment, impact
Procedia PDF Downloads 5627359 Predicting Football Player Performance: Integrating Data Visualization and Machine Learning
Authors: Saahith M. S., Sivakami R.
Abstract:
In the realm of football analytics, particularly focusing on predicting football player performance, the ability to forecast player success accurately is of paramount importance for teams, managers, and fans. This study introduces an elaborate examination of predicting football player performance through the integration of data visualization methods and machine learning algorithms. The research entails the compilation of an extensive dataset comprising player attributes, conducting data preprocessing, feature selection, model selection, and model training to construct predictive models. The analysis within this study will involve delving into feature significance using methodologies like Select Best and Recursive Feature Elimination (RFE) to pinpoint pertinent attributes for predicting player performance. Various machine learning algorithms, including Random Forest, Decision Tree, Linear Regression, Support Vector Regression (SVR), and Artificial Neural Networks (ANN), will be explored to develop predictive models. The evaluation of each model's performance utilizing metrics such as Mean Squared Error (MSE) and R-squared will be executed to gauge their efficacy in predicting player performance. Furthermore, this investigation will encompass a top player analysis to recognize the top-performing players based on the anticipated overall performance scores. Nationality analysis will entail scrutinizing the player distribution based on nationality and investigating potential correlations between nationality and player performance. Positional analysis will concentrate on examining the player distribution across various positions and assessing the average performance of players in each position. Age analysis will evaluate the influence of age on player performance and identify any discernible trends or patterns associated with player age groups. The primary objective is to predict a football player's overall performance accurately based on their individual attributes, leveraging data-driven insights to enrich the comprehension of player success on the field. By amalgamating data visualization and machine learning methodologies, the aim is to furnish valuable tools for teams, managers, and fans to effectively analyze and forecast player performance. This research contributes to the progression of sports analytics by showcasing the potential of machine learning in predicting football player performance and offering actionable insights for diverse stakeholders in the football industry.Keywords: football analytics, player performance prediction, data visualization, machine learning algorithms, random forest, decision tree, linear regression, support vector regression, artificial neural networks, model evaluation, top player analysis, nationality analysis, positional analysis
Procedia PDF Downloads 387358 The Application of Pareto Local Search to the Single-Objective Quadratic Assignment Problem
Authors: Abdullah Alsheddy
Abstract:
This paper presents the employment of Pareto optimality as a strategy to help (single-objective) local search escaping local optima. Instead of local search, Pareto local search is applied to solve the quadratic assignment problem which is multi-objectivized by adding a helper objective. The additional objective is defined as a function of the primary one with augmented penalties that are dynamically updated.Keywords: Pareto optimization, multi-objectivization, quadratic assignment problem, local search
Procedia PDF Downloads 4667357 High Productivity Fed-Batch Process for Biosurfactant Production for Enhanced Oil Recovery Applications
Authors: G. A. Amin, A. D. Al-Talhi
Abstract:
The bacterium B. subtilis produced surfactin in conventional batch culture as a growth associated product and a growth rate (0.4 h-1). A fed-batch process was developed and the fermentative substrate and other nutrients were fed on hourly basis and according to the growth rate of the bacterium. Conversion of different quantities of Maldex-15 into surfactin was investigated in five different fermentation runs. In all runs, most of Maldex-15 was consumed and converted into surfactin and cell biomass with appreciable efficiencies. The best results were obtained with fermentation run supplied with 200 g Maldex-15. Up to 35.4 g.l-1 of surfactin and cell biomass of 30.2 g.l-1 were achieved in 12 hrs. Also, markedly substrate yield of 0.269 g/g and volumetric reactor productivity of 2.61 g.1-1.h-1 were obtained confirming the establishment of a cost effective commercial surfactin production.Keywords: Bacillus subtilis, biosurfactant, exponentially fed-batch fermentation, surfactin
Procedia PDF Downloads 5327356 Pattern in Splitting Sequence in Okike’s Merged Irregular Transposition Cipher for Encrypting Cyberspace Messages
Authors: Okike Benjamin, E. J. D. Garba
Abstract:
The protection of sensitive information against unauthorized access or fraudulent changes has been of prime concern throughout the centuries. Modern communication techniques, using computers connected through networks, make all data even more vulnerable to these threats. The researchers in this work propose a new encryption technique to be known as Merged Irregular Transposition Cipher. In this proposed encryption technique, a message to be encrypted will first of all be split into multiple parts depending on the length of the message. After the split, different keywords are chosen to encrypt different parts of the message. After encrypting all parts of the message, the positions of the encrypted message could be swapped to other position thereby making it very difficult to decrypt by any unauthorized user.Keywords: information security, message splitting, pattern, sequence
Procedia PDF Downloads 2897355 Social Problems and Gender Wage Gap Faced by Working Women in Readymade Garment Sector of Pakistan
Authors: Narjis Kahtoon
Abstract:
The issue of the wage discrimination on the basis of gender and social problem has been a significant research problem for several decades. Whereas lots of have explored reasons for the persistence of an inequality in the wages of male and female, none has successfully explained away the entire differentiation. The wage discrimination on the basis of gender and social problem of working women is a global issue. Although inequality in political and economic and social make-up of countries all over the world, the gender wage discrimination, and social constraint is present. The aim of the research is to examine the gender wage discrimination and social constraint from an international perspective and to determine whether any pattern exists among cultural dimensions of a country and the man and women remuneration gap in Readymade Garment Sector of Pakistan. Population growth rate is significant indicator used to explain the change in population and play a crucial point in the economic development of a country. In Pakistan, readymade garment sector consists of small, medium and large sized firms. With an estimated 30 percent of the workforce in textile- Garment is females’. Readymade garment industry is a labor intensive industry and relies on the skills of individual workers and provides highest value addition in the textile sector. In the Garment sector, female workers are concentrated in poorly paid, labor-intensive down-stream production (readymade garments, linen, towels, etc.), while male workers dominate capital- intensive (ginning, spinning and weaving) processes. Gender wage discrimination and social constraint are reality in Pakistan Labor Market. This research allows us not only to properly detect the size of gender wage discrimination and social constraint but to also fully understand its consequences in readymade garment sector of Pakistan. Furthermore, research will evaluated this measure for the three main clusters like Lahore, Karachi, and Faisalabad. These data contain complete details of male and female workers and supervisors in the readymade garment sector of Pakistan. These sources of information provide a unique opportunity to reanalyze the previous finding in the literature. The regression analysis focused on the standard 'Mincerian' earning equation and estimates it separately by gender, the research will also imply the cultural dimensions developed by Hofstede (2001) to profile a country’s cultural status and compare those cultural dimensions to the wage inequalities. Readymade garment of Pakistan is one of the important sectors since its products have huge demand at home and abroad. These researches will a major influence on the measures undertaken to design a public policy regarding wage discrimination and social constraint in readymade garment sector of Pakistan.Keywords: gender wage differentials, decomposition, garment, cultural
Procedia PDF Downloads 2097354 Characterization of a Putative Type 1 Toxin-Antitoxin System in Shigella Flexneri
Authors: David Sarpong, Waleed Khursheed, Ernest Danquah, Erin Murphy
Abstract:
Shigella is a pathogenic bacterium responsible for shigellosis, a severe diarrheal disease that claims the lives of immunocompromised individuals worldwide. To develop therapeutics against this disease, an understanding of the molecular mechanisms underlying the pathogen’s physiology is crucial. Small non-coding RNAs (sRNAs) have emerged as important regulators of bacterial physiology, including as components of toxin-antitoxin systems. In this study, we investigated the role of RyfA in S. flexneri physiology and virulence. RyfA, originally identified as an sRNA in Escherichia coli, is conserved within the Enterobacteriaceae family, including Shigella. Whereas two copies of ryfA are present in S. dysenteriae, all other Shigella species contain only one copy of the gene. Additionally, we identified a putative open reading frame within the RyfA transcript, suggesting that it may be a dual-functioning gene encoding a small protein in addition to its sRNA function. To study ryfA in vitro, we cloned the gene into an inducible plasmid and observed the effect on bacterial growth. Here, we report that RyfA production inhibits the growth of S. flexneri, and this inhibition is dependent on the contained open reading frame. In-silico analyses have revealed the presence of two divergently transcribed sRNAs, RyfB1 and RyfB2, which share nucleotide complementarity with RyfA and thus are predicted to function as anti-toxins. Our data demonstrate that RyfB2 has a stronger antitoxin effect than RyfB1. This regulatory pattern suggests a novel form of a toxin-antitoxin system in which the activity of a single toxin is inhibited to varying degrees by two sRNA antitoxins. Studies are ongoing to investigate the regulatory mechanism(s) of the antitoxin genes, as well as the downstream targets and mechanism of growth inhibition by the RyfA toxin. This study offers distinct insights into the regulatory mechanisms underlying Shigella physiology and may inform the development of new anti-Shigella therapeutics.Keywords: sRNA, shigella, toxin-antitoxin, Type 1 toxin antitoxin
Procedia PDF Downloads 517353 Full Analytical Procedure to Derive P-I Diagram of a Steel Beam under Blast Loading
Authors: L. Hamra, J. F. Demonceau, V. Denoël
Abstract:
The aim of this paper is to study a beam extracted from a frame and subjected to blast loading. The demand of ductility depends on six dimensionless parameters: two related to the blast loading, two referring to the bending behavior of the beam and two corresponding to the dynamic behavior of the rest of the structure. We develop a full analytical procedure that provides the ductility demand as a function of these six dimensionless parameters.Keywords: analytical procedure, blast loading, membrane force, P-I diagram
Procedia PDF Downloads 4277352 Floating Populations, Rooted Networks Tracing the Evolution of Russeifa City in Relation to Marka Refugee Camp
Authors: Dina Dahood Dabash
Abstract:
Refugee camps are habitually defined as receptive sites, transient spaces of exile and nondescript depoliticized places of exception. However, such arguments form partial sides of reality, especially in countries that are geopolitically challenged and rely immensely on international aid. In Jordan, the dynamics brought with the floating population of refugees (Palestinian amongst others) have resulted in spatial after-effects that cannot be easily overlooked. For instance, Palestine refugee camps have turned by time into socioeconomic centers of gravity and cores of spatial evolution. Yet, such a position is not instantaneous. Amongst various reasons, it can be related, according to this paper, to a distinctive institutional climate that has been co-produced by the refugees, host community and the state. This paper aims to investigate the evolution of urban and spatial regulations in Jordan between 1948 and 1995, more specifically, state regulations, community regulations and refugee-self-regulation that all dynamically interacted that period. The paper aims to unpack the relations between refugee camps and their environs to further explore the agency of such floating populations in establishing rooted networks that extended the time and place boundaries. The paper’s argument stems from the fact that the spatial configuration of urban systems is not only an outcome of a historical evolutionary process but is also a result of interactions between the actors. The research operationalizes Marka camp in Jordan as a case study. Marka Camp is one of the six "emergency" camps erected in 1968 to shelter 15,000 Palestine refugees and displaced persons who left the West Bank and Gaza Strip. Nowadays, camp shelters more than 50,000 refugees in the same area of land. The camp is located in Russeifa, a city in Zarqa Governorate in Jordan. Together with Amman and Zarqa, Russeifa is part of a larger metropolitan area that acts as a home to more than half of Jordan’s businesses. The paper aspires to further understand the post-conflict strategies which were historically applied in Jordan and can be employed to handle more recent geopolitical challenges such as the Syrian refugee crisis. Methodological framework: The paper traces the evolution of the refugee-camp regulating norms in Jordan, parallel with the horizontal and vertical evolution of the Marka camp and its surroundings. Consequently, the main methods employed are historical and mental tracing, Interviews, in addition to using available Aerial and archival photos of the Marka camp and its surrounding.Keywords: forced migration, Palestine refugee camps, spatial agency, urban regulations
Procedia PDF Downloads 1867351 Analytical Modeling of Globular Protein-Ferritin in α-Helical Conformation: A White Noise Functional Approach
Authors: Vernie C. Convicto, Henry P. Aringa, Wilson I. Barredo
Abstract:
This study presents a conformational model of the helical structures of globular protein particularly ferritin in the framework of white noise path integral formulation by using Associated Legendre functions, Bessel and convolution of Bessel and trigonometric functions as modulating functions. The model incorporates chirality features of proteins and their helix-turn-helix sequence structural motif.Keywords: globular protein, modulating function, white noise, winding probability
Procedia PDF Downloads 477