Search results for: nonstationary processes
2170 Optimizing Recycling and Reuse Strategies for Circular Construction Materials with Life Cycle Assessment
Authors: Zhongnan Ye, Xiaoyi Liu, Shu-Chien Hsu
Abstract:
Rapid urbanization has led to a significant increase in construction and demolition waste (C&D waste), underscoring the need for sustainable waste management strategies in the construction industry. Aiming to enhance the sustainability of urban construction practices, this study develops an optimization model to effectively suggest the optimal recycling and reuse strategies for C&D waste, including concrete and steel. By employing Life Cycle Assessment (LCA), the model evaluates the environmental impacts of adopted construction materials throughout their lifecycle. The model optimizes the quantity of materials to recycle or reuse, the selection of specific recycling and reuse processes, and logistics decisions related to the transportation and storage of recycled materials with the objective of minimizing the overall environmental impact, quantified in terms of carbon emissions, energy consumption, and associated costs, while adhering to a range of constraints. These constraints include capacity limitations, quality standards for recycled materials, compliance with environmental regulations, budgetary limits, and temporal considerations such as project deadlines and material availability. The strategies are expected to be both cost-effective and environmentally beneficial, promoting a circular economy within the construction sector, aligning with global sustainability goals, and providing a scalable framework for managing construction waste in densely populated urban environments. The model is helpful in reducing the carbon footprint of construction projects, conserving valuable resources, and supporting the industry’s transition towards a more sustainable future.Keywords: circular construction, construction and demolition waste, material recycling, optimization modeling
Procedia PDF Downloads 612169 Geometric Model to Study the Mechanism of Machining and Predict the Damage Occurring During Milling of Unidirectional CFRP
Authors: Faisal Islam, J. Ramkumar
Abstract:
The applications of composite materials in aerospace, sporting and automotive industries need high quality machined surfaces and dimensional accuracy. Some studies have been done to understand the fiber failure mechanisms encountered during milling machining of CFRP composites but none are capable of explaining the exact nature of the orientation-based fiber failure mechanisms encountered in the milling machining process. The objective of this work is to gain a better understanding of the orientation-based fiber failure mechanisms occurring on the slot edges during CFRP milling machining processes. The occurrence of damage is predicted by a schematic explanation based on the mechanisms of material removal which in turn depends upon fiber cutting angles. A geometric model based on fiber cutting angle and fiber orientation angle is proposed that defines the critical and safe zone during machining and predicts the occurrence of delamination. Milling machining experiments were performed on composite samples of varying fiber orientations to verify the proposed theory. Mean fiber pulled out length was measured from the microscopic images of the damaged area to quantify the amount of damage produced. By observing the damage occurring for different fiber orientation angles and fiber cutting angles for up-milling and down-milling edges and correlating it with the material removal mechanisms as described earlier, it can be concluded that the damage/delamination mainly depends on the portion of the fiber cutting angles that lies within the critical cutting angle zone.Keywords: unidirectional composites, milling, machining damage, delamination, carbon fiber reinforced plastics (CFRPs)
Procedia PDF Downloads 5332168 Optimizing Recycling and Reuse Strategies for Circular Construction Materials with Life Cycle Assessment
Authors: Zhongnan Ye, Xiaoyi Liu, Shu-Chien Hsu
Abstract:
Rapid urbanization has led to a significant increase in construction and demolition waste (C&D waste), underscoring the need for sustainable waste management strategies in the construction industry. Aiming to enhance the sustainability of urban construction practices, this study develops an optimization model to effectively suggest the optimal recycling and reuse strategies for C&D waste, including concrete and steel. By employing Life Cycle Assessment (LCA), the model evaluates the environmental impacts of adopted construction materials throughout their lifecycle. The model optimizes the quantity of materials to recycle or reuse, the selection of specific recycling and reuse processes, and logistics decisions related to the transportation and storage of recycled materials with the objective of minimizing the overall environmental impact, quantified in terms of carbon emissions, energy consumption, and associated costs, while adhering to a range of constraints. These constraints include capacity limitations, quality standards for recycled materials, compliance with environmental regulations, budgetary limits, and temporal considerations such as project deadlines and material availability. The strategies are expected to be both cost-effective and environmentally beneficial, promoting a circular economy within the construction sector, aligning with global sustainability goals, and providing a scalable framework for managing construction waste in densely populated urban environments. The model is helpful in reducing the carbon footprint of construction projects, conserving valuable resources, and supporting the industry’s transition towards a more sustainable future.Keywords: circular construction, construction and demolition waste, life cycle assessment, material recycling
Procedia PDF Downloads 842167 Finite Element Analysis of the Lumbar Spine after Unilateral and Bilateral Laminotomies and Laminectomy
Authors: Chih-Hsien Chen, Yi-Hung Ho, Chih-Wei Wang, Chih-Wei Chang, Yen-Nien Chen, Chih-Han Chang, Chun-Ting Li
Abstract:
Laminotomy is a spinal decompression surgery compatible with a minimally invasive approach. However, the unilateral laminotomy for bilateral side decompression leads to more perioperative complications than the bilateral laminotomy. Although the unilateral laminotomy removes the least bone tissue among the spinal decompression surgeries, the difference of spinal stability between unilateral and bilateral laminotomy and laminectomy is rarely investigated. This study aims to compare the biomechanical effects of unilateral and bilateral laminotomy and laminectomy on the lumbar spine by finite element (FE) simulation. A three-dimensional FE model of the lumbar spine (L1–L5) was constructed with the vertebral body, discs, and ligaments, as well as the sacrum was constructed. Three different surgical methods, namely unilateral laminotomy, bilateral laminotomy and laminectomy, at L3–L4 and L4–L5 were considered. Partial pedicle and entire ligamentum flavum were removed to simulate bilateral decompression in laminotomy. The entire lamina and spinal processes from the lower L3 to upper L5 were detached in the laminectomy model. Then, four kinds of loadings, namely flexion, extension, lateral bending and rotation, were applied on the lumbar with various decompression conditions. The results indicated that the bilateral and unilateral laminotomy both increased the range of motion (ROM) compared with intact lumbar, while the laminectomy increased more ROM than both laminotomy did. The difference of ROM between the bilateral and unilateral laminotomy was very minor. Furthermore, bilateral laminotomy demonstrated similar poster element stress with unilateral laminotomy. Unilateral and bilateral laminotomy are equally suggested to bilateral decompression of lumbar spine with minimally invasive technique because limited effect was aroused due to more bone remove in the bilateral laminotomy on the lumbar stability. Furthermore, laminectomy is the last option for lumbar decompression.Keywords: minimally invasive technique, lumbar decompression, laminotomy, laminectomy, finite element method
Procedia PDF Downloads 1912166 Efficient Chess Board Representation: A Space-Efficient Protocol
Authors: Raghava Dhanya, Shashank S.
Abstract:
This paper delves into the intersection of chess and computer science, specifically focusing on the efficient representation of chess game states. We propose two methods: the Static Method and the Dynamic Method, each offering unique advantages in terms of space efficiency and computational complexity. The Static Method aims to represent the game state using a fixedlength encoding, allocating 192 bits to capture the positions of all pieces on the board. This method introduces a protocol for ordering and encoding piece positions, ensuring efficient storage and retrieval. However, it faces challenges in representing pieces no longer in play. In contrast, the Dynamic Method adapts to the evolving game state by dynamically adjusting the encoding length based on the number of pieces in play. By incorporating Alive Bits for each piece kind, this method achieves greater flexibility and space efficiency. Additionally, it includes provisions for encoding additional game state information such as castling rights and en passant squares. Our findings demonstrate that the Dynamic Method offers superior space efficiency compared to traditional Forsyth-Edwards Notation (FEN), particularly as the game progresses and pieces are captured. However, it comes with increased complexity in encoding and decoding processes. In conclusion, this study provides insights into optimizing the representation of chess game states, offering potential applications in chess engines, game databases, and artificial intelligence research. The proposed methods offer a balance between space efficiency and computational overhead, paving the way for further advancements in the field.Keywords: chess, optimisation, encoding, bit manipulation
Procedia PDF Downloads 522165 Facilitating Conditions Mediating SME’s Intention to Use Social Media for Knowledge Sharing
Authors: Stevens Phaphadi Mamorobela
Abstract:
The Covid-19 pandemic has accelerated the use of social media in SMEs to stay abreast with information about the latest news and developments and to predict the future world of business. The national shutdown regulations for curbing the spread of the Covid-19 virus resulted in SMEs having to distribute large volumes of information through social media platforms to collaborate and conduct business remotely. How much of the information shared on social media is used by SMEs as significant knowledge for economic rent is yet to be known. This study aims to investigate the facilitating conditions that enable SMEs’ intention to use social media as a knowledge-sharing platform to create economic rent and to cope with the Covid-19 challenges. A qualitative research approach was applied where semi-structured interviews were conducted with 13 SME owners located in the Gauteng province in South Africa to identify and explain the facilitating conditions of SMEs towards their intention to use social media as a knowledge-sharing tool in the Covid-19 era. The study discovered that the national lockdown regulations towards curbing the spread of the Covid-19 pandemic had compelled SMEs to adopt digital technologies that enabled them to quickly transform their business processes to cope with the challenges of the pandemic. The facilitating conditions, like access to high bandwidth internet coverage in the Gauteng region, enable SMEs to have strong intentions to use social media to distribute content and to reach out to their target market. However, the content is shared informally using diverse social media platforms without any guidelines for transforming content into rent-yielding knowledge.Keywords: facilitating conditions, knowledge sharing, social media, intention to use, SME
Procedia PDF Downloads 1112164 A Chemical-Free Colouration Technique for Regenerated Fibres Using Waste Alpaca Fibres
Authors: M. Abdullah Al Faruque, Rechana Remadevi, Abu Naser M. Ahsanul Haque, Joselito Razal, Xungai Wang, Maryam Naebe
Abstract:
Generally, the colouration of textile fibres is performed by using synthetic colourants in dope dyeing or conventional dyeing methods. However, the toxic effect of some synthetic colorants due to long-term exposure can cause several health threats including cancer, asthma and skin diseases. Moreover, in colouration process, these colourants not only consume a massive amount of water but also generates huge proportion of wastewater to the environment. Despite having the environmentally friendly characteristics, current natural colourants have downsides in their yield and need chemical extraction processes which are water consuming as well. In view of this, the present work focuses to develop a chemical-free biocompatible and natural pigment based colouration technique to colour regenerated fibres. Waste alpaca fibre was used as a colourant and the colour properties, as well as the mechanical properties, of the regenerated fibres were investigated. The colourant from waste alpaca was fabricated through mechanical milling process and it was directly applied to the polyacrylonitrile (PAN) dope solution in different ratios of alpaca: PAN (10:90, 20:80, 30:70). The results obtained from the chemical structure characterization suggested that all the coloured regenerated fibres exhibited chemical functional groups of both PAN and alpaca. Furthermore, the color strength was increased gradually with the increment of alpaca content and showed excellent washing fastness properties. These results reveal a potential new pathway for chemical-free dyeing technique for fibres with improved properties.Keywords: alpaca, chemical-free coloration, natural colorant, polyacrylonitrile, water consumption, wet spinning
Procedia PDF Downloads 1732163 Weakly Solving Kalah Game Using Artificial Intelligence and Game Theory
Authors: Hiba El Assibi
Abstract:
This study aims to weakly solve Kalah, a two-player board game, by developing a start-to-finish winning strategy using an optimized Minimax algorithm with Alpha-Beta Pruning. In weakly solving Kalah, our focus is on creating an optimal strategy from the game's beginning rather than analyzing every possible position. The project will explore additional enhancements like symmetry checking and code optimizations to speed up the decision-making process. This approach is expected to give insights into efficient strategy formulation in board games and potentially help create games with a fair distribution of outcomes. Furthermore, this research provides a unique perspective on human versus Artificial Intelligence decision-making in strategic games. By comparing the AI-generated optimal moves with human choices, we can explore how seemingly advantageous moves can, in the long run, be harmful, thereby offering a deeper understanding of strategic thinking and foresight in games. Moreover, this paper discusses the evaluation of our strategy against existing methods, providing insights on performance and computational efficiency. We also discuss the scalability of our approach to the game, considering different board sizes (number of pits and stones) and rules (different variations) and studying how that affects performance and complexity. The findings have potential implications for the development of AI applications in strategic game planning, enhancing our understanding of human cognitive processes in game settings, and offer insights into creating balanced and engaging game experiences.Keywords: minimax, alpha beta pruning, transposition tables, weakly solving, game theory
Procedia PDF Downloads 572162 [Keynote Talk] The Practices and Issues of Career Education: Focusing on Career Development Course on Various Problems of Society
Authors: Azusa Katsumata
Abstract:
Several universities in Japan have introduced activities aimed at the mutual enlightenment of a diversity of people in career education. However, several programs emphasize on delivering results, and on practicing the prepared materials as planned. Few programs focus on unexpected failures and setbacks. This way of learning is important in career education so that classmates can help each other, overcome difficulties, draw out each other’s strengths, and learn from them. Seijo University in Tokyo offered excursion focusing Various Problems of Society, as second year career education course, Students will learn about contraception, infertility, homeless people, LGBT, and they will discuss based on the excursion. This paper aims to study the ‘learning platform’ created by a series of processes such as the excursion, the discussion, and the presentation. In this course, students looked back on their lives and imagined the future in concrete terms, performing tasks in groups. The students came across a range of values through lectures and conversations, thereby developing feelings of self-efficacy. We conducted a questionnaire to measure the development of career in class. From the results of the questionnaire, we can see, in the example of this class, that students respected diversity and understood the importance of uncertainty and discontinuity. Whereas the students developed career awareness, they actually did not come across that scene and would do so only in the future when it became necessary. In this class, students consciously considered social problems, but did not develop the practical skills necessary to deal with these. This is appropriate for one of project, but we need to consider how this can be incorporated into future courses. University constitutes only a single period in life-long career formation. Thus, further research may be indicated to determine whether the positive effects of career education at university continue to contribute to individual careers going forward.Keywords: career education of university, excursion, learning platform, problems of society
Procedia PDF Downloads 2632161 A Context Aware Mobile Learning System with a Cognitive Recommendation Engine
Authors: Jalal Maqbool, Gyu Myoung Lee
Abstract:
Using smart devices for context aware mobile learning is becoming increasingly popular. This has led to mobile learning technology becoming an indispensable part of today’s learning environment and platforms. However, some fundamental issues remain - namely, mobile learning still lacks the ability to truly understand human reaction and user behaviour. This is due to the fact that current mobile learning systems are passive and not aware of learners’ changing contextual situations. They rely on static information about mobile learners. In addition, current mobile learning platforms lack the capability to incorporate dynamic contextual situations into learners’ preferences. Thus, this thesis aims to address these issues highlighted by designing a context aware framework which is able to sense learner’s contextual situations, handle data dynamically, and which can use contextual information to suggest bespoke learning content according to a learner’s preferences. This is to be underpinned by a robust recommendation system, which has the capability to perform these functions, thus providing learners with a truly context-aware mobile learning experience, delivering learning contents using smart devices and adapting to learning preferences as and when it is required. In addition, part of designing an algorithm for the recommendation engine has to be based on learner and application needs, personal characteristics and circumstances, as well as being able to comprehend human cognitive processes which would enable the technology to interact effectively and deliver mobile learning content which is relevant, according to the learner’s contextual situations. The concept of this proposed project is to provide a new method of smart learning, based on a capable recommendation engine for providing an intuitive mobile learning model based on learner actions.Keywords: aware, context, learning, mobile
Procedia PDF Downloads 2482160 Overcoming the Impacts of Covid-19 Outbreak Using Value Integrated Project Delivery Model
Authors: G. Ramya
Abstract:
Value engineering is a systematic approach, widely used to optimize the design or process or product in the designing stage. It used to achieve the client's obligation by increasing the functionality and attain the targeted cost in the cost planning. Value engineering effectiveness and benefits decrease along with the progress of the project since the change in the scope of the work and design will account for more cost all along the lifecycle of the project. Integrating the value engineering with other project management activities will promote cost minimization, client satisfaction, and ensure early completion of the project in time. Previous research studies suggested that value engineering can integrate with other project delivery activities, but research studies unable to frame a model that collaborates the project management activities with the job plan of value engineering approach. I analyzed various project management activities and their synergy between each other. The project management activities and processes like a)risk analysis b)lifecycle cost analysis c)lean construction d)facility management e)Building information modelling f)Contract administration, collaborated, and project delivery model planned along with the RIBA plan of work. The key outcome of the research is a value-driven project delivery model, which will succeed in dealing with the economic impact, constraints and conflicts arise due to the COVID-19 outbreak in the Indian construction sector. Benefits associated with the structured framework is construction project delivery that ensures early contractor involvement, mutual risk sharing, and reviving the project with a cost overrun and delay back on track ,are discussed. Keywords: Value-driven project delivery model, Integration, RIBA plan of work Themes: Design EconomicsKeywords: value-driven project delivery model, Integration, RIBA
Procedia PDF Downloads 1232159 Real-Time Inventory Management and Operational Efficiency in Manufacturing
Authors: Tom Wanyama
Abstract:
We have developed a weight-based parts inventory monitoring system utilizing the Industrial Internet of Things (IIoT) to enhance operational efficiencies in manufacturing. The system addresses various challenges, including eliminating downtimes caused by stock-outs, preventing human errors in parts delivery and product assembly, and minimizing motion waste by reducing unnecessary worker movements. The system incorporates custom QR codes for simplified inventory tracking and retrieval processes. The generated data serves a dual purpose by enabling real-time optimization of parts flow within manufacturing facilities and facilitating retroactive optimization of stock levels for informed decision-making in inventory management. The pilot implementation at SEPT Learning Factory successfully eradicated data entry errors, optimized parts delivery, and minimized workstation downtimes, resulting in a remarkable increase of over 10% in overall equipment efficiency across all workstations. Leveraging the IIoT features, the system seamlessly integrates information into the process control system, contributing to the enhancement of product quality. This approach underscores the importance of effective tracking of parts inventory in manufacturing to achieve transparency, improved inventory control, and overall profitability. In the broader context, our inventory monitoring system aligns with the evolving focus on optimizing supply chains and maintaining well-managed warehouses to ensure maximum efficiency in the manufacturing industry.Keywords: industrial Internet of things, industrial systems integration, inventory monitoring, inventory control in manufacturing
Procedia PDF Downloads 402158 Optimal Continuous Scheduled Time for a Cumulative Damage System with Age-Dependent Imperfect Maintenance
Authors: Chin-Chih Chang
Abstract:
Many manufacturing systems suffer failures due to complex degradation processes and various environment conditions such as random shocks. Consider an operating system is subject to random shocks and works at random times for successive jobs. When successive jobs often result in production losses and performance deterioration, it would be better to do maintenance or replacement at a planned time. A preventive replacement (PR) policy is presented to replace the system before a failure occurs at a continuous time T. In such a policy, the failure characteristics of the system are designed as follows. Each job would cause a random amount of additive damage to the system, and the system fails when the cumulative damage has exceeded a failure threshold. Suppose that the deteriorating system suffers one of the two types of shocks with age-dependent probabilities: type-I (minor) shock is rectified by a minimal repair, or type-II (catastrophic) shock causes the system to fail. A corrective replacement (CR) is performed immediately when the system fails. In summary, a generalized maintenance model to scheduling replacement plan for an operating system is presented below. PR is carried out at time T, whereas CR is carried out when any type-II shock occurs and the total damage exceeded a failure level. The main objective is to determine the optimal continuous schedule time of preventive replacement through minimizing the mean cost rate function. The existence and uniqueness of optimal replacement policy are derived analytically. It can be seen that the present model is a generalization of the previous models, and the policy with preventive replacement outperforms the one without preventive replacement.Keywords: preventive replacement, working time, cumulative damage model, minimal repair, imperfect maintenance, optimization
Procedia PDF Downloads 3672157 Atom Probe Study of Early Stage of Precipitation on Binary Al-Li, Al-Cu Alloys and Ternary Al-Li-Cu Alloys
Authors: Muna Khushaim
Abstract:
Aluminum-based alloys play a key role in modern engineering, especially in the aerospace industry. Introduction of solute atoms such as Li and Cu is the main approach to improve the strength in age-hardenable Al alloys via the precipitation hardening phenomenon. Knowledge of the decomposition process of the microstructure during the precipitation reaction is particularly important for future technical developments. The objective of this study is to investigate the nano-scale chemical composition in the Al-Cu, Al-Li and Al-Li-Cu during the early stage of the precipitation sequence and to describe whether this compositional difference correlates with variations in the observed precipitation kinetics. Comparing the random binomial frequency distribution and the experimental frequency distribution of concentrations in atom probe tomography data was used to investigate the early stage of decomposition in the different binary and ternary alloys which were experienced different heat treatments. The results show that an Al-1.7 at.% Cu alloy requires a long ageing time of approximately 8 h at 160 °C to allow the diffusion of Cu atoms into Al matrix. For the Al-8.2 at.% Li alloy, a combination of both the natural ageing condition (48 h at room temperature) and a short artificial ageing condition (5 min at 160 °C) induces increasing on the number density of the Li clusters and hence increase number of precipitated δ' particles. Applying this combination of natural ageing and short artificial ageing conditions onto the ternary Al-4 at.% Li-1.7 at.% Cu alloy induces the formation of a Cu-rich phase. Increasing the Li content in the ternary alloy up to 8 at.% and increasing the ageing time to 30 min resulted in the precipitation processes ending with δ' particles. Thus, the results contribute to the understanding of Al-alloy design.Keywords: aluminum alloy, atom probe tomography, early stage, decomposition
Procedia PDF Downloads 3432156 Application of Adaptive Architecture in Building Technologies: A Case Study of Neuhoff Site in Nashville, Tennessee
Authors: Shohreh Moshiri, Hossein Alimohammadi
Abstract:
Building construction has a great impact on climate change. Adaptive design strategies were developed to provide new life and purpose to old buildings and create new environments with economic benefits to meet resident needs. The role of smart material systems is undeniable in providing adaptivity of the architectural environments and their effects on creating better adaptive building environments. In this research, a case study named Neuhoff site located near Cumberland River in the Germantown neighborhood in the city of Nashville, Tennessee, was considered. This building in the early 1920s was constructed as a meat-packing facility and then served as a mixed-use space; however, New City has partnered with world-class architects to reinvent this site to be changed to mixed-use waterfront development. The future office space will be designed with LEED certification as a goal. Environmentally friendly sensitive materials and designs will offer for all adaptive reuse of the building. The smart materials and their applications, especially in the field of building technology and architecture, were emphasized in providing a renovation plan for the site. The advantages and qualities of smart material systems were targeted to explore in this research on the field of architecture. Also, this research helps to understand better the effects of smart material systems on the construction and design processes, exploration of the way to make architecture with better adaptive characteristics, plus provide optimal environmental situations for the users, which reflect on the climatic, structural, and architectural performances.Keywords: adaptive architecture, building technology, case study, smart material systems
Procedia PDF Downloads 752155 Literature Review of Empirical Studies on the Psychological Processes of End-of-Life Cancer Patients
Authors: Kimiyo Shimomai, Mihoko Harada
Abstract:
This study is a literature review of the psychological reactions that occur in end-of-life cancer patients who are nearing death. It searched electronic databases and selected literature related to psychological studies of end-of-life patients. There was no limit on the search period, and the search was conducted until the second week of December 2021. The keywords were specified as “death and dying”, “terminal illness”, “end-of-life”, “palliative care”, “psycho-oncology” and “research”. These literatures referred to Holly (2017): Comprehensive Systematic Review for Advanced Practice Nursing, P268 Figure 10.3 to ensure quality. These literatures were selected with a dissertation score of 4 or 5. The review was conducted in two stages with reference to the procedure of George (2002). First, these references were searched for keywords in the database, and then relevant references were selected from the psychology and nursing studies of end-of-life patients. The number of literatures analyzed was 76 for overseas and 17 for domestic. As for the independent variables, "physical variable" was the most common in 36 literatures (66.7%), followed by "psychological variable" in 35 literatures (64.8%), "spiritual variable" in 21 literatures (38%), and "social variable" in 17 literatures. (31.5%), "Variables related to medical care / treatment" were 16 literatures (29.6%). To summarize the relationship between these independent variables and the dependent variable, when the dependent variable is "psychological variable", the independent variables are "psychological variable", "social variable", and "physical variable". Among the independent variables, the physical variables were the most common. The psychological responses that occur in end-stage cancer patients who are nearing death are mutually influenced by psychological, social, and physical variables. Therefore, it supported the "total pain" advocated by Cicely Saunders.Keywords: cancer patient, end-of-life, literature review, psychological process
Procedia PDF Downloads 1322154 Effects of Spent Dyebath Recycling on Pollution and Cost of Production in a Cotton Textile Industry
Authors: Dinesh Kumar Sharma, Sanjay Sharma
Abstract:
Textile manufacturing industry uses a substantial amount of chemicals not only in the production processes but also in manufacturing the raw materials. Dyes are the most significant raw material which provides colour to the fabric and yarn. Dyes are produced by using a large amount of chemicals both organic and inorganic in nature. Dyes are further classified as Reactive or Vat Dyes which are mostly used in cotton textiles. In the process of application of dyes to the cotton fiber, yarn or fabric, several auxiliary chemicals are also used in the solution called dyebath to improve the absorption of dyes. There is a very little absorption of dyes and auxiliary chemicals and a residual amount of all these substances is released as the spent dye bath effluent. Because of the wide variety of chemicals used in cotton textile dyes, there is always a risk of harmful effects which may not be apparent immediately but may have an irreversible impact in the long term. Colour imparted by the dyes to the water also has an adverse effect on its public acceptability and the potability. This study has been conducted with an objective to assess the feasibility of reuse of the spent dye bath. Studies have been conducted in two independent industries manufacturing dyed cotton yarn and dyed cotton fabric respectively. These have been referred as Unit-I and Unit-II. The studies included assessment of reduction in pollution levels and the economic benefits of such reuse. The study conclusively establishes that the reuse of spent dyebath results in prevention of pollution, reduction in pollution loads and cost of effluent treatment & production. This pollution prevention technique presents a good preposition for pollution prevention in cotton textile industry.Keywords: dyes, dyebath, reuse, toxic, pollution, costs
Procedia PDF Downloads 3972153 Geostatistical Simulation of Carcinogenic Industrial Effluent on the Irrigated Soil and Groundwater, District Sheikhupura, Pakistan
Authors: Asma Shaheen, Javed Iqbal
Abstract:
The water resources are depleting due to an intrusion of industrial pollution. There are clusters of industries including leather tanning, textiles, batteries, and chemical causing contamination. These industries use bulk quantity of water and discharge it with toxic effluents. The penetration of heavy metals through irrigation from industrial effluent has toxic effect on soil and groundwater. There was strong positive significant correlation between all the heavy metals in three media of industrial effluent, soil and groundwater (P < 0.001). The metal to the metal association was supported by dendrograms using cluster analysis. The geospatial variability was assessed by using geographically weighted regression (GWR) and pollution model to identify the simulation of carcinogenic elements in soil and groundwater. The principal component analysis identified the metals source, 48.8% variation in factor 1 have significant loading for sodium (Na), calcium (Ca), magnesium (Mg), iron (Fe), chromium (Cr), nickel (Ni), lead (Pb) and zinc (Zn) of tannery effluent-based process. In soil and groundwater, the metals have significant loading in factor 1 representing more than half of the total variation with 51.3 % and 53.6 % respectively which showed that pollutants in soil and water were driven by industrial effluent. The cumulative eigen values for the three media were also found to be greater than 1 representing significant clustering of related heavy metals. The results showed that heavy metals from industrial processes are seeping up toxic trace metals in the soil and groundwater. The poisonous pollutants from heavy metals turned the fresh resources of groundwater into unusable water. The availability of fresh water for irrigation and domestic use is being alarming.Keywords: groundwater, geostatistical, heavy metals, industrial effluent
Procedia PDF Downloads 2302152 Assessing Natura 2000 Network Effectiveness in Landscape Conservation: A Case Study in Castile and León, Spain (1990-2018)
Authors: Paula García-Llamas, Polonia Díez González, Angela Taboada
Abstract:
In an era marked by unprecedented anthropogenic alterations to landscapes and biodiversity, the consequential loss of fauna, flora, and habitats poses a grave concern. It is imperative to evaluate our capacity to manage and mitigate such changes effectively. This study aims to scrutinize the efficacy of the Natura 2000 Network (NN2000) in landscape conservation within the autonomous community of Castile and Leon (Spain), spanning from 1990 to 2018. Leveraging land use change maps from the European Corine Land Cover database across four subperiods (1990-2000, 2000-2006, 2006-2012, and 2012-2018), we quantified alterations occurring both within NN2000 protected sites and within a 5km buffer zone. Additionally, we spatially assess land use/land cover patterns of change considering fluxes of various habitat types defined within NN2000. Our findings reveal that the protected areas under NN2000 were particularly susceptible to change, with the most significant transformations observed during the 1990-2000 period. Predominant change processes include secondary succession and scrubland formation due to land use cessation, deforestation, and agricultural intensification. While NN2000 demonstrates efficacy in curtailing urbanization and industrialization within buffer zones, its management measures have proven insufficient in safeguarding landscapes against the dynamic changes witnessed between 1990 and 2018, especially in relation to rural abandonment.Keywords: Corine land cover, land cover changes, site of community importance, special protection area
Procedia PDF Downloads 522151 The Optimization of the Parameters for Eco-Friendly Leaching of Precious Metals from Waste Catalyst
Authors: Silindile Gumede, Amir Hossein Mohammadi, Mbuyu Germain Ntunka
Abstract:
Goal 12 of the 17 Sustainable Development Goals (SDGs) encourages sustainable consumption and production patterns. This necessitates achieving the environmentally safe management of chemicals and all wastes throughout their life cycle and the proper disposal of pollutants and toxic waste. Fluid catalytic cracking (FCC) catalysts are widely used in the refinery to convert heavy feedstocks to lighter ones. During the refining processes, the catalysts are deactivated and discarded as hazardous toxic solid waste. Spent catalysts (SC) contain high-cost metal, and the recovery of metals from SCs is a tactical plan for supplying part of the demand for these substances and minimizing the environmental impacts. Leaching followed by solvent extraction, has been found to be the most efficient method to recover valuable metals with high purity from spent catalysts. However, the use of inorganic acids during the leaching process causes a secondary environmental issue. Therefore, it is necessary to explore other alternative efficient leaching agents that are economical and environmentally friendly. In this study, the waste catalyst was collected from a domestic refinery and was characterised using XRD, ICP, XRF, and SEM. Response surface methodology (RSM) and Box Behnken design were used to model and optimize the influence of some parameters affecting the acidic leaching process. The parameters selected in this investigation were the acid concentration, temperature, and leaching time. From the characterisation results, it was found that the spent catalyst consists of high concentrations of Vanadium (V) and Nickel (Ni); hence this study focuses on the leaching of Ni and V using a biodegradable acid to eliminate the formation of the secondary pollution.Keywords: eco-friendly leaching, optimization, metal recovery, leaching
Procedia PDF Downloads 702150 The Effect of the Epstein-Barr Virus on the Development of Multiple Sclerosis
Authors: Sina Mahdavi
Abstract:
Background and Objective: Multiple sclerosis (MS) is the most common inflammatory autoimmune disease of the central nervous system (CNS) that affects the myelination process in the CNS. Complex interactions of various "environmental or infectious" factors may act as triggers in autoimmunity and disease progression. The association between viral infections, especially Epstein-Barr virus (EBV) and MS, is one potential cause that is not well understood. In this study, we aim to summarize the available data on EBV infection in MS disease progression. Materials and Methods: For this study, the keywords "Multiple sclerosis," "Epstein-Barr virus," and "central nervous system" in the databases PubMed, Google Scholar, Sid, and MagIran between 2016 and 2022 were searched, and 14 articles were chosen, studied, and analyzed. Results: Demyelinated lesions isolated from MS patients contain EBNAs from EBV proteins. The EBNA1 domain contains a pentapeptide fragment identical to B-crystallin, a heat shock peptide, that is increased in peripheral B cells in response to B-crystallin infection, resulting in myelin-directed autoimmunity mediated by proinflammatory T cells. EBNA2, which is involved in the regulation of viral transcription, may enhance transcription from MS risk loci. A 7-fold increase in the risk of MS has been observed in EBV infection with HLA-DR15 synergy. Conclusion: EBV infection along with a variety of specific genetic risk alleles, cause inflammatory cascades in the CNS by infected B cells. There is a high expression of EBV during the course of MS, which indicates the relationship between EBV and MS, that this virus can play a role in the development of MS by creating an inflammatory state. Therefore, measures to modulate the expression of EBV may be effective in reducing inflammatory processes in demyelinated areas of MS patients.Keywords: multiple sclerosis, Epstein-Barr virus, central nervous system, EBNAs
Procedia PDF Downloads 972149 The Development Stages of Transformation of Water Policy Management in Victoria
Authors: Ratri Werdiningtyas, Yongping Wei, Andrew Western
Abstract:
The status quo of social-ecological systems is the results of not only natural processes but also the accumulated consequence of policies applied in the past. Often water management objectives are challenging and are only achieved to a limited degree on the ground. In choosing water management approaches, it is important to account for current conditions and important differences due to varied histories. Since the mid-nineteenth century, Victorian water management has evolved through a series of policy regime shifts. The main goal of this research to explore and identify the stages of the evolution of the water policy instruments as practiced in Victoria from 1890-2016. This comparative historical analysis has identified four stages in Victorian policy instrument development. In the first stage, the creation of policy instruments aimed to match the demand and supply of the resource (reserve condition). The second stage begins after natural system alone failed to balance supply and demand. The focus of the policy instrument shifted to an authority perspective in this stage. Later, the increasing number of actors interested in water led to another change in policy instrument. The third stage focused on the significant role of information from different relevant actors. The fourth and current stage is the most advanced, in that it involved the creation of a policy instrument for synergizing the previous three focal factors: reserve, authority, and information. When considering policy in other jurisdiction, these findings suggest that a key priority should be to reflect on the jurisdictions current position among these four evolutionary stages and try to make improve progressively rather than directly adopting approaches from elsewhere without understanding the current position.Keywords: policy instrument, policy transformation, socio-ecolgical system, water management
Procedia PDF Downloads 1462148 Numerical Investigation of the Transverse Instability in Radiation Pressure Acceleration
Authors: F. Q. Shao, W. Q. Wang, Y. Yin, T. P. Yu, D. B. Zou, J. M. Ouyang
Abstract:
The Radiation Pressure Acceleration (RPA) mechanism is very promising in laser-driven ion acceleration because of high laser-ion energy conversion efficiency. Although some experiments have shown the characteristics of RPA, the energy of ions is quite limited. The ion energy obtained in experiments is only several MeV/u, which is much lower than theoretical prediction. One possible limiting factor is the transverse instability incited in the RPA process. The transverse instability is basically considered as the Rayleigh-Taylor (RT) instability, which is a kind of interfacial instability and occurs when a light fluid pushes against a heavy fluid. Multi-dimensional particle-in-cell (PIC) simulations show that the onset of transverse instability will destroy the acceleration process and broaden the energy spectrum of fast ions during the RPA dominant ion acceleration processes. The evidence of the RT instability driven by radiation pressure has been observed in a laser-foil interaction experiment in a typical RPA regime, and the dominant scale of RT instability is close to the laser wavelength. The development of transverse instability in the radiation-pressure-acceleration dominant laser-foil interaction is numerically examined by two-dimensional particle-in-cell simulations. When a laser interacts with a foil with modulated surface, the internal instability is quickly incited and it develops. The linear growth and saturation of the transverse instability are observed, and the growth rate is numerically diagnosed. In order to optimize interaction parameters, a method of information entropy is put forward to describe the chaotic degree of the transverse instability. With moderate modulation, the transverse instability shows a low chaotic degree and a quasi-monoenergetic proton beam is produced.Keywords: information entropy, radiation pressure acceleration, Rayleigh-Taylor instability, transverse instability
Procedia PDF Downloads 3472147 Facing Global Competition through Participation in Global Innovation Networks: The Case of Mechatronics District in the Veneto Region
Authors: Monica Plechero
Abstract:
Many firms belonging to Italian industrial districts faced a crisis starting from 2000 and upsurging during 2008-2014. To remain competitive in the global market, these firms and their local systems need to renovate their traditional competitive advantages, strengthen their link with global flows of knowledge. This may be particularly relevant in sectors such as the mechatronics, that combine traditional knowledge domain with new knowledge domains (e.g. mechanics, electronics, and informatics). This sector is nowadays one of the key sectors within the so-called ‘smart specialization strategy’ that can lead part of the Italian traditional industry towards new economic developmental opportunities. This paper, by investigating the mechatronics district of the Veneto region, wants to shed new light on how firms of a local system can gain from the globalization of innovation and innovation networks. Methodologically, the paper relies on primary data collected through a survey targeting firms of the local system, as well as on a number of qualitative case studies. The relevant role of medium size companies in the district emerges as evident, as they have wider opportunities to be involved in different processes of globalization of innovation. Indeed, with respect to small companies, the size of medium firms allows them to exploit strategically international markets and globally distributed knowledge. Supporting medium firms’ global innovation strategies, and incentivizing their role as district gatekeepers, may strengthen the competitive capability of the local system and provide new opportunities to positively face global competition.Keywords: global innovation network, industrial district, internationalization, innovation, mechatronics, Veneto region
Procedia PDF Downloads 2322146 Portuguese City Reconstructed from Public Space: The Example of the Requalification of Cacém Central Area
Authors: Rodrigo Coelho
Abstract:
As several authors have pointed out (such as Jordi Borja, or Oriol Bohigas), the necessity to “make center” presents itself not only as a imperative response to deal with the processes of dissolution of peripheral urbanization, as it should be assumed, from the point of view its symbolic and functional meaning, as a key concept to think and act on the enlarged city. The notion of re-centralization (successfully applied in urban periphery recompositions, such as in Barcelona or Lyon), understood from the redefinition of mobility, the strengthening of core functions, and from the creation or consolidation of urban fabrics (always articulated with policies of creation and redevelopment of public spaces), seems to become one of the key strategies over the challenge of making the city on the “city periphery”. The question we want to address in this paper concerns, essentially, the importance of public space in the (re) construction of the contemporary "shapeless city” sectors (which, in general, we associate to urban peripheries). We will seek demonstrate, from the analysis of a Portuguese case study–The Cacém Central Area requalification, integrated in Polis Program (National Program for Urban Rehabilitation and Environmental Improvement of Cities, released in 1999 by the Portuguese government), the conditions under which the public space project can act, subsequently, in the urban areas of recent formation, where, in many situations, the public space did not have a structuring role in its urbanization, seeing its presence reduced to a residual character. More specifically, we intend to demonstrate with this example the methodological and urban design aspects that led to the regeneration of a disqualified and degraded urban area, by intervening consistently and profoundly in public space (with well defined objectives and criteria, and framed in a more comprehensive strategy, attentive to the various scales of urban design).Keywords: public space, urban design, urban regeneration, urban and regional studies
Procedia PDF Downloads 5802145 ILearn, a Pathway to Progress
Authors: Reni Francis
Abstract:
Learning has transcended the classroom boundaries to create a learner centric, interactive, and integrative teaching learning environment. This study analysed the impact of iLearn on the teaching, learning, and evaluation among 100 teacher trainees. The objectives were to cater to the different learning styles of the teacher trainees, to incorporate innovative teaching learning activities, to assist in peer tutoring, to implement different evaluation processes. i: Identifying the learning styles among the teacher trainees through VARK Learning style checklist was followed by planning the teaching-learning process to meet the learning styles of the teacher trainees. L: Leveraging innovations in teaching- learning by planning and creating modules incorporating innovative teaching learning and hence the concept based year plan was prepared. E: Engage learning through constructivism using different teaching methodology to engage the teacher trainees in the learning process through Workshop, Round Robin, Gallery walk, Co-Operative learning, Think-Pair-Share, EDMODO, Course Networking, Concept Map, Brainstorming Sessions, Video Clippings. A: Assessing the learning through an Open Book assignment, Closed book assignment, and Multiple Choice Questions and Seminar presentation. R: Remediation through peer tutoring through Mentor-mentee approach in the tutorial groups, Group work, Library Hours. N: Norming new standards. This was done in the form of extended remediation and tutorials to understand the need of the teacher trainee and support them for further achievements in learning through Face to face interaction, Supervised Study Circle, Mobile (Device) learning. The findings of the study revealed the positive impact of iLearn towards student achievement and enhanced social skills.Keywords: academic achievement, innovative strategy, learning styles, social skills
Procedia PDF Downloads 3562144 Sustainable Energy Supply through the Microgrid Concept: A Case Study of University of Nigeria, Nsukka
Authors: Christian Ndubisi Madu, Benjamin C. Ozumba, Ifeanyi E. Madu, Valentine E. Nnadi, Ikenna C. Ezeasor
Abstract:
The ability to generate power and achieve energy security is one of the driving forces behind the emerging ‘microgrid’ concept. Traditional power supply often operates with centralized infrastructure for generating, transmitting and distributing electricity. The inefficiency and the incessant power outages associated with the centralized power supply system in Nigeria has alienated many users who frequently turn to electric power generator sets to power their homes and offices. Such acts are unsustainable and lead to increase in the use of fossil fuels, generation of carbon dioxide emissions and other gases, and noise pollution. They also pose significant risks as they entail random purchases and storage of gasolines which are fire hazards. It is therefore important that organizations rethink their relationships to centralized power suppliers in other to improve energy accessibility and security. This study explores the energy planning processes and learning taking place at the University of Nigeria Enugu Campus as the school lead microgrid feasibility studies in its community. There is need to develop community partners to deal with the issue of energy efficiency and also to create a strategic alliance to confront political, regulatory and economic barriers to locally-based energy planning. Community-based microgrid can help to reduce the cost of adoption and diversify risks. This study offers insights into the ways in which microgrids can further democratize energy planning, procurement, and access, while simultaneously promoting efficiency and sustainability.Keywords: microgrid, energy efficiency, sustainability, energy security
Procedia PDF Downloads 3772143 Light and Electron Study of Acrylamide–Induced Hypothalamic Changes
Authors: Keivan Jamshidi
Abstract:
Distal swelling and eventual degeneration of axon in the CNS and PNS have been considered to be the characteristic neuropathological effects of acrylamide (ACR) neuropathy. This study was conducted to determine the neurotoxic effects of different doses of ACR (0.5, 5, 50, 100, and 500 mg/kg per day × 11days i. p.) on hypothalamus of rat using the de Olmos amino cupric-silver stain and electron microscopy. For this purpose 60 adult male rats (Wistar, approximately 250 g) were randomly assigned in 5 treatment groups as A, B, C, D, E) exposed to 0.5, 5, 50, 100, and 500 mg/kg per dayx11days i. p. and one control group as F received daily i. p. injections of 0.9% saline (3ml/kg). As indices of developing neurotoxicity, weight gain, gait scores and landing hindlimb foot splay were determined. After 11 days, two rats for silver stain, and two rats for EM were randomly selected; dissected and proper samples were collected from hypothalamus. Results did show no neurological behavior in groups A, B and F were observed in group C. Rats in groups D and E died within 1-2 hours due to sever toxemia. In histopathological studies based on de Olmos technique no argyrophilic neurons or processes were observed in stained sections obtained from hypothalamus of rats belong to groups A, B, and F while moderate to severe argyrophilic changes were observed in different nuclei and regions of stained sections obtained from hypothalamus of rats belong to group C. In ultra-structural studies some variations in the myelin sheet of injured axons including decompactation, interlaminar space formation, disruption of the laminar sheet, accumulation of neurofilaments, vacculation, and clumping inside the axolem, and finally complete disappearance of laminar sheet were observed.Keywords: acrylamide, hypothalamus, rat, de Olmos amino cupric, silver stain, electron microscopy
Procedia PDF Downloads 5302142 Indoleamines (Serotonin & Melatonin) in Edible Plants: Its Influence on Human Health
Authors: G. A. Ravishankar, A. Ramakrishna
Abstract:
Melatonin (MEL) and Serotonin (SER), also known as [5-Hydroxytryptamine (5-HT)] are reported to be in a range of plant types which are edible. Their occurrence in plants species appears to be ubiquitous. Their presence in high quantities in plants assumes significance owing to their physiological effects upon consumption by human beings. MEL is a well known animal hormone mainly released by the pineal gland known to influence circadian rhythm, sleep, apart from immune enhancement. Similarly, SER is a neurotransmitter that regulates mood, sleep and anxiety in mammals. It is implicated in memory, behavioral changes, scavenging reactive oxygen species, antipsychotic, etc. Similarly Role of SER and MEL in plant morphogenesis, and various physiological processes through intense research is beginning to unfold. These molecules are in common foods viz banana, pineapple, plum, nuts, milk, grape wine. N- Feruloyl serotonin and p-coumaroyl serotonin found in certain seeds are found to possess antioxidant, anti-inflammatory, antitumor, antibacterial, and anti-stress potential apart from reducing depression and anxiety. MEL is found in Mediterranean diets, nuts, cherries, tomato berries, and olive products. Consumption of foods rich in MEL is known to increase blood MEL levels which have been implicated in protective effect against cardiovascular damage, cancer initiation and growth. MEL is also found in wines, green tea, beer, olive oil etc. Moreover, presence of SER and MEL in Coffee beans (green and roasted beans) and decoction has been reported us. In this communication we report the occurrence of indole amines in edible plants and their implications in human health.Keywords: serotonin, melatonin, edible plants, neurotransmitters, physiological effects
Procedia PDF Downloads 2812141 Sun-Driven Evaporation Enhanced Forward Osmosis Process for Application in Wastewater Treatment and Pure Water Regeneration
Authors: Dina Magdy Abdo, Ayat N. El-Shazly, E. A. Abdel-Aal
Abstract:
Forward osmosis (FO) is one of the important processes during the wastewater treatment system for environmental remediation and fresh water regeneration. Both Egypt and China are troubled by over millions of tons of wastewater every year, including domestic and industrial wastewater. However, the traditional FO process in wastewater treatment usually suffers low efficiency and high energy consumption because of the continuously diluted draw solution. An additional concentration process is necessary to keep running of FO separation, causing energy waste. Based on the previous study on photothermal membrane, a sun-driven evaporation process is integrated into the draw solution side of FO system. During the sun-driven evaporation, not only the draw solution can be concentrated to maintain a stable and sustainable FO system, but fresh water can be directly separated for regeneration. Solar energy is the ultimate energy source of everything we have on Earth and is, without any doubt, the most renewable and sustainable energy source available to us. Additionally, the FO membrane process is rationally designed to limit the concentration polarization and fouling. The FO membrane’s structure and surface property will be further optimized by the adjustment of doping ratio of controllable nano-materials, membrane formation conditions, and selection of functional groups. A novel kind of nano-composite functional separation membrane with bi-interception layers and high hydrophilicity will be developed for the application in wastewater treatment. So, herein we aim to design a new wastewater treatment system include forward osmosis with high-efficiency energy recovery via the integration of photothermal membrane.Keywords: forward osmosis, membrane, solar, water treatement
Procedia PDF Downloads 92