Search results for: artificial intelligence based optimization
28146 Optimization of MAG Welding Process Parameters Using Taguchi Design Method on Dead Mild Steel
Authors: Tadele Tesfaw, Ajit Pal Singh, Abebaw Mekonnen Gezahegn
Abstract:
Welding is a basic manufacturing process for making components or assemblies. Recent welding economics research has focused on developing the reliable machinery database to ensure optimum production. Research on welding of materials like steel is still critical and ongoing. Welding input parameters play a very significant role in determining the quality of a weld joint. The metal active gas (MAG) welding parameters are the most important factors affecting the quality, productivity and cost of welding in many industrial operations. The aim of this study is to investigate the optimization process parameters for metal active gas welding for 60x60x5mm dead mild steel plate work-piece using Taguchi method to formulate the statistical experimental design using semi-automatic welding machine. An experimental study was conducted at Bishoftu Automotive Industry, Bishoftu, Ethiopia. This study presents the influence of four welding parameters (control factors) like welding voltage (volt), welding current (ampere), wire speed (m/min.), and gas (CO2) flow rate (lit./min.) with three different levels for variability in the welding hardness. The objective functions have been chosen in relation to parameters of MAG welding i.e., welding hardness in final products. Nine experimental runs based on an L9 orthogonal array Taguchi method were performed. An orthogonal array, signal-to-noise (S/N) ratio and analysis of variance (ANOVA) are employed to investigate the welding characteristics of dead mild steel plate and used in order to obtain optimum levels for every input parameter at 95% confidence level. The optimal parameters setting was found is welding voltage at 22 volts, welding current at 125 ampere, wire speed at 2.15 m/min and gas flow rate at 19 l/min by using the Taguchi experimental design method within the constraints of the production process. Finally, six conformations welding have been carried out to compare the existing values; the predicated values with the experimental values confirm its effectiveness in the analysis of welding hardness (quality) in final products. It is found that welding current has a major influence on the quality of welded joints. Experimental result for optimum setting gave a better hardness of welding condition than initial setting. This study is valuable for different material and thickness variation of welding plate for Ethiopian industries.Keywords: Weld quality, metal active gas welding, dead mild steel plate, orthogonal array, analysis of variance, Taguchi method
Procedia PDF Downloads 48628145 A Geospatial Consumer Marketing Campaign Optimization Strategy: Case of Fuzzy Approach in Nigeria Mobile Market
Authors: Adeolu O. Dairo
Abstract:
Getting the consumer marketing strategy right is a crucial and complex task for firms with a large customer base such as mobile operators in a competitive mobile market. While empirical studies have made efforts to identify key constructs, no geospatial model has been developed to comprehensively assess the viability and interdependency of ground realities regarding the customer, competition, channel and the network quality of mobile operators. With this research, a geo-analytic framework is proposed for strategy formulation and allocation for mobile operators. Firstly, a fuzzy analytic network using a self-organizing feature map clustering technique based on inputs from managers and literature, which depicts the interrelationships amongst ground realities is developed. The model is tested with a mobile operator in the Nigeria mobile market. As a result, a customer-centric geospatial and visualization solution is developed. This provides a consolidated and integrated insight that serves as a transparent, logical and practical guide for strategic, tactical and operational decision making.Keywords: geospatial, geo-analytics, self-organizing map, customer-centric
Procedia PDF Downloads 18628144 Modeling and Simulation of a Hybrid System Solar Panel and Wind Turbine in the Quingeo Heritage Center in Ecuador
Authors: Juan Portoviejo Brito, Daniel Icaza Alvarez, Christian Castro Samaniego
Abstract:
In this article, we present the modeling, simulations, and energy conversion analysis of the solar-wind system for the Quingeo Heritage Center in Ecuador. A numerical model was constructed based on the 19 equations, it was coded in MATLAB R2017a, and the results were compared with the experimental data of the site. The model is built with the purpose of using it as a computer development for the optimization of resources and designs of hybrid systems in the Parish of Quingeo and its surroundings. The model obtained a fairly similar pattern compared to the data and curves obtained in the field experimentally and detailed in manuscript. It is important to indicate that this analysis has been carried out so that in the near future one or two of these power generation systems can be exploited in a massive way according to the budget assigned by the Parish GAD of Quingeo or other national or international organizations with the purpose of preserving this unique colonial helmet in Ecuador.Keywords: hybrid system, wind turbine, modeling, simulation, Smart Grid, Quingeo Azuay Ecuador
Procedia PDF Downloads 27228143 Challenges of Blockchain Applications in the Supply Chain Industry: A Regulatory Perspective
Authors: Pardis Moslemzadeh Tehrani
Abstract:
Due to the emergence of blockchain technology and the benefits of cryptocurrencies, intelligent or smart contracts are gaining traction. Artificial intelligence (AI) is transforming our lives, and it is being embraced by a wide range of sectors. Smart contracts, which are at the heart of blockchains, incorporate AI characteristics. Such contracts are referred to as "smart" contracts because of the underlying technology that allows contracting parties to agree on terms expressed in computer code that defines machine-readable instructions for computers to follow under specific situations. The transmission happens automatically if the conditions are met. Initially utilised for financial transactions, blockchain applications have since expanded to include the financial, insurance, and medical sectors, as well as supply networks. Raw material acquisition by suppliers, design, and fabrication by manufacturers, delivery of final products to consumers, and even post-sales logistics assistance are all part of supply chains. Many issues are linked with managing supply chains from the planning and coordination stages, which can be implemented in a smart contract in a blockchain due to their complexity. Manufacturing delays and limited third-party amounts of product components have raised concerns about the integrity and accountability of supply chains for food and pharmaceutical items. Other concerns include regulatory compliance in multiple jurisdictions and transportation circumstances (for instance, many products must be kept in temperature-controlled environments to ensure their effectiveness). Products are handled by several providers before reaching customers in modern economic systems. Information is sent between suppliers, shippers, distributors, and retailers at every stage of the production and distribution process. Information travels more effectively when individuals are eliminated from the equation. The usage of blockchain technology could be a viable solution to these coordination issues. In blockchains, smart contracts allow for the rapid transmission of production data, logistical data, inventory levels, and sales data. This research investigates the legal and technical advantages and disadvantages of AI-blockchain technology in the supply chain business. It aims to uncover the applicable legal problems and barriers to the use of AI-blockchain technology to supply chains, particularly in the food industry. It also discusses the essential legal and technological issues and impediments to supply chain implementation for stakeholders, as well as methods for overcoming them before releasing the technology to clients. Because there has been little research done on this topic, it is difficult for industrial stakeholders to grasp how blockchain technology could be used in their respective operations. As a result, the focus of this research will be on building advanced and complex contractual terms in supply chain smart contracts on blockchains to cover all unforeseen supply chain challenges.Keywords: blockchain, supply chain, IoT, smart contract
Procedia PDF Downloads 13328142 Synthesis of Ce Impregnated on Functionalized Graphene Oxide Nanosheets for Transesterification of Propylene Carbonate and Ethanol to Produce Diethyl Carbonate
Authors: Kumar N., Verma S., Park J., Srivastava V. C.
Abstract:
Organic carbonates have the potential to be used as fuels and because of this, their production through non-phosgene routes is a thrust area of research. Di-ethyl carbonate (DEC) synthesis from propylene carbonate (PC) in the presence of alcohol is a green route. In this study, the use of reduced graphene oxide (rGO) based metal oxide catalysts [rGO-MO, where M = Ce] with different amounts of graphene oxide (0.2%, 0.5%, 1%, and 2%) has been investigated for the synthesis of DEC by using PC and ethanol as reactants. The GO sheets were synthesized by an electrochemical process and the catalysts were synthesized using an in-situ method. A theoretical study of the thermodynamics of the reaction was done, which revealed that the reaction is mildly endothermic. The theoretical value of optimum temperature was found to be 420 K. The synthesized catalysts were characterized for their morphological, structural and textural properties using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), N2 adsorption/desorption, thermogravimetric analysis (TGA), and Raman spectroscopy. Optimization studies were carried out to study the effect of different reaction conditions like temperature (140 °C to 180 °C) and catalyst dosage (0.102 g to 0.255 g) on the yield of DEC. Amongst the various synthesized catalysts, 1% rGO-CeO2 gave the maximum yield of DEC.Keywords: GO, DEC, propylene carbonate, transesterification, thermodynamics
Procedia PDF Downloads 9028141 Toward a Characteristic Optimal Power Flow Model for Temporal Constraints
Authors: Zongjie Wang, Zhizhong Guo
Abstract:
While the regular optimal power flow model focuses on a single time scan, the optimization of power systems is typically intended for a time duration with respect to a desired objective function. In this paper, a temporal optimal power flow model for a time period is proposed. To reduce the computation burden needed for calculating temporal optimal power flow, a characteristic optimal power flow model is proposed, which employs different characteristic load patterns to represent the objective function and security constraints. A numerical method based on the interior point method is also proposed for solving the characteristic optimal power flow model. Both the temporal optimal power flow model and characteristic optimal power flow model can improve the systems’ desired objective function for the entire time period. Numerical studies are conducted on the IEEE 14 and 118-bus test systems to demonstrate the effectiveness of the proposed characteristic optimal power flow model.Keywords: optimal power flow, time period, security, economy
Procedia PDF Downloads 45428140 AMBICOM: An Ambient Computing Middleware Architecture for Heterogeneous Environments
Authors: Ekrem Aksoy, Nihat Adar, Selçuk Canbek
Abstract:
Ambient Computing or Ambient Intelligence (AmI) is emerging area in computer science aiming to create intelligently connected environments and Internet of Things. In this paper, we propose communication middleware architecture for AmI. This middleware architecture addresses problems of communication, networking, and abstraction of applications, although there are other aspects (e.g. HCI and Security) within general AmI framework. Within this middleware architecture, any application developer might address HCI and Security issues with extensibility features of this platform.Keywords: AmI, ambient computing, middleware, distributed-systems, software-defined networking
Procedia PDF Downloads 29228139 System Dietadhoc® - A Fusion of Human-Centred Design and Agile Development for the Explainability of AI Techniques Based on Nutritional and Clinical Data
Authors: Michelangelo Sofo, Giuseppe Labianca
Abstract:
In recent years, the scientific community's interest in the exploratory analysis of biomedical data has increased exponentially. Considering the field of research of nutritional biologists, the curative process, based on the analysis of clinical data, is a very delicate operation due to the fact that there are multiple solutions for the management of pathologies in the food sector (for example can recall intolerances and allergies, management of cholesterol metabolism, diabetic pathologies, arterial hypertension, up to obesity and breathing and sleep problems). In this regard, in this research work a system was created capable of evaluating various dietary regimes for specific patient pathologies. The system is founded on a mathematical-numerical model and has been created tailored for the real working needs of an expert in human nutrition using the human-centered design (ISO 9241-210), therefore it is in step with continuous scientific progress in the field and evolves through the experience of managed clinical cases (machine learning process). DietAdhoc® is a decision support system nutrition specialists for patients of both sexes (from 18 years of age) developed with an agile methodology. Its task consists in drawing up the biomedical and clinical profile of the specific patient by applying two algorithmic optimization approaches on nutritional data and a symbolic solution, obtained by transforming the relational database underlying the system into a deductive database. For all three solution approaches, particular emphasis has been given to the explainability of the suggested clinical decisions through flexible and customizable user interfaces. Furthermore, the system has multiple software modules based on time series and visual analytics techniques that allow to evaluate the complete picture of the situation and the evolution of the diet assigned for specific pathologies.Keywords: medical decision support, physiological data extraction, data driven diagnosis, human centered AI, symbiotic AI paradigm
Procedia PDF Downloads 3128138 The Optimization of TICSI in the Convergence Mechanism of Urban Water Management
Authors: M. Macchiaroli, L. Dolores, V. Pellecchia
Abstract:
With the recent Resolution n. 580/2019/R/idr, the Italian Regulatory Authority for Energy, Networks, and Environment (ARERA) for the Urban Water Management has introduced, for water managements characterized by persistent critical issues regarding the planning and organization of the service and the implementation of the necessary interventions for the improvement of infrastructures and management quality, a new mechanism for determining tariffs: the regulatory scheme of Convergence. The aim of this regulatory scheme is the overcoming of the Water Service Divided in order to improve the stability of the local institutional structures, technical quality, contractual quality, as well as in order to guarantee transparency elements for Users of the Service. Convergence scheme presupposes the identification of the cost items to be considered in the tariff in parametric terms, distinguishing three possible cases according to the type of historical data available to the Manager. The study, in particular, focuses on operations that have neither data on tariff revenues nor data on operating costs. In this case, the Manager's Constraint on Revenues (VRG) is estimated on the basis of a reference benchmark and becomes the starting point for defining the structure of the tariff classes, in compliance with the TICSI provisions (Integrated Text for tariff classes, ARERA's Resolution n. 665/2017/R/idr). The proposed model implements the recent studies on optimization models for the definition of tariff classes in compliance with the constraints dictated by TICSI in the application of the Convergence mechanism, proposing itself as a support tool for the Managers and the local water regulatory Authority in the decision-making process.Keywords: decision-making process, economic evaluation of projects, optimizing tools, urban water management, water tariff
Procedia PDF Downloads 12428137 Use Cloud-Based Watson Deep Learning Platform to Train Models Faster and More Accurate
Authors: Susan Diamond
Abstract:
Machine Learning workloads have traditionally been run in high-performance computing (HPC) environments, where users log in to dedicated machines and utilize the attached GPUs to run training jobs on huge datasets. Training of large neural network models is very resource intensive, and even after exploiting parallelism and accelerators such as GPUs, a single training job can still take days. Consequently, the cost of hardware is a barrier to entry. Even when upfront cost is not a concern, the lead time to set up such an HPC environment takes months from acquiring hardware to set up the hardware with the right set of firmware, software installed and configured. Furthermore, scalability is hard to achieve in a rigid traditional lab environment. Therefore, it is slow to react to the dynamic change in the artificial intelligent industry. Watson Deep Learning as a service, a cloud-based deep learning platform that mitigates the long lead time and high upfront investment in hardware. It enables robust and scalable sharing of resources among the teams in an organization. It is designed for on-demand cloud environments. Providing a similar user experience in a multi-tenant cloud environment comes with its own unique challenges regarding fault tolerance, performance, and security. Watson Deep Learning as a service tackles these challenges and present a deep learning stack for the cloud environments in a secure, scalable and fault-tolerant manner. It supports a wide range of deep-learning frameworks such as Tensorflow, PyTorch, Caffe, Torch, Theano, and MXNet etc. These frameworks reduce the effort and skillset required to design, train, and use deep learning models. Deep Learning as a service is used at IBM by AI researchers in areas including machine translation, computer vision, and healthcare.Keywords: deep learning, machine learning, cognitive computing, model training
Procedia PDF Downloads 21428136 Data Augmentation for Automatic Graphical User Interface Generation Based on Generative Adversarial Network
Authors: Xulu Yao, Moi Hoon Yap, Yanlong Zhang
Abstract:
As a branch of artificial neural network, deep learning is widely used in the field of image recognition, but the lack of its dataset leads to imperfect model learning. By analysing the data scale requirements of deep learning and aiming at the application in GUI generation, it is found that the collection of GUI dataset is a time-consuming and labor-consuming project, which is difficult to meet the needs of current deep learning network. To solve this problem, this paper proposes a semi-supervised deep learning model that relies on the original small-scale datasets to produce a large number of reliable data sets. By combining the cyclic neural network with the generated countermeasure network, the cyclic neural network can learn the sequence relationship and characteristics of data, make the generated countermeasure network generate reasonable data, and then expand the Rico dataset. Relying on the network structure, the characteristics of collected data can be well analysed, and a large number of reasonable data can be generated according to these characteristics. After data processing, a reliable dataset for model training can be formed, which alleviates the problem of dataset shortage in deep learning.Keywords: GUI, deep learning, GAN, data augmentation
Procedia PDF Downloads 18828135 Application of Alumina-Aerogel in Post-Combustion CO₂ Capture: Optimization by Response Surface Methodology
Authors: S. Toufigh Bararpour, Davood Karami, Nader Mahinpey
Abstract:
Dependence of global economics on fossil fuels has led to a large growth in the emission of greenhouse gases (GHGs). Among the various GHGs, carbon dioxide is the main contributor to the greenhouse effect due to its huge emission amount. To mitigate the threatening effect of CO₂, carbon capture and sequestration (CCS) technologies have been studied widely in recent years. For the combustion processes, three main CO₂ capture techniques have been proposed such as post-combustion, pre-combustion and oxyfuel combustion. Post-combustion is the most commonly used CO₂ capture process as it can be readily retrofit into the existing power plants. Multiple advantages have been reported for the post-combustion by solid sorbents such as high CO₂ selectivity, high adsorption capacity, and low required regeneration energy. Chemical adsorption of CO₂ over alkali-metal-based solid sorbents such as K₂CO₃ is a promising method for the selective capture of diluted CO₂ from the huge amount of nitrogen existing in the flue gas. To improve the CO₂ capture performance, K₂CO₃ is supported by a stable and porous material. Al₂O₃ has been employed commonly as the support and enhanced the cyclic CO₂ capture efficiency of K₂CO₃. Different phases of alumina can be obtained by setting the calcination temperature of boehmite at 300, 600 (γ-alumina), 950 (δ-alumina) and 1200 °C (α-alumina). By increasing the calcination temperature, the regeneration capacity of alumina increases, while the surface area reduces. However, sorbents with lower surface areas have lower CO₂ capture capacity as well (except for the sorbents prepared by hydrophilic support materials). To resolve this issue, a highly efficient alumina-aerogel support was synthesized with a BET surface area of over 2000 m²/g and then calcined at a high temperature. The synthesized alumina-aerogel was impregnated on K₂CO₃ based on 50 wt% support/K₂CO₃, which resulted in the preparation of a sorbent with remarkable CO₂ capture performance. The effect of synthesis conditions such as types of alcohols, solvent-to-co-solvent ratios, and aging times was investigated on the performance of the support. The best support was synthesized using methanol as the solvent, after five days of aging time, and at a solvent-to-co-solvent (methanol-to-toluene) ratio (v/v) of 1/5. Response surface methodology was used to investigate the effect of operating parameters such as carbonation temperature and H₂O-to-CO₂ flowrate ratio on the CO₂ capture capacity. The maximum CO₂ capture capacity, at the optimum amounts of operating parameters, was 7.2 mmol CO₂ per gram K₂CO₃. Cyclic behavior of the sorbent was examined over 20 carbonation and regenerations cycles. The alumina-aerogel-supported K₂CO₃ showed a great performance compared to unsupported K₂CO₃ and γ-alumina-supported K₂CO₃. Fundamental performance analyses and long-term thermal and chemical stability test will be performed on the sorbent in the future. The applicability of the sorbent for a bench-scale process will be evaluated, and a corresponding process model will be established. The fundamental material knowledge and respective process development will be delivered to industrial partners for the design of a pilot-scale testing unit, thereby facilitating the industrial application of alumina-aerogel.Keywords: alumina-aerogel, CO₂ capture, K₂CO₃, optimization
Procedia PDF Downloads 11828134 Adopting Flocks of Birds Approach to Predator for Anomalies Detection on Industrial Control Systems
Abstract:
Industrial Control Systems (ICS) such as Supervisory Control And Data Acquisition (SCADA) can be seen in many different critical infrastructures, from nuclear management to utility, medical equipment, power, waste and engine management on ships and planes. The role SCADA plays in critical infrastructure has resulted in a call to secure them. Many lives depend on it for daily activities and the attack vectors are becoming more sophisticated. Hence, the security of ICS is vital as malfunction of it might result in huge risk. This paper describes how the application of Prey Predator (PP) approach in flocks of birds could enhance the detection of malicious activities on ICS. The PP approach explains how these animals in groups or flocks detect predators by following some simple rules. They are not necessarily very intelligent animals but their approach in solving complex issues such as detection through corporation, coordination and communication worth emulating. This paper will emulate flocking behavior seen in birds in detecting predators. The PP approach will adopt six nearest bird approach in detecting any predator. Their local and global bests are based on the individual detection as well as group detection. The PP algorithm was designed following MapReduce methodology that follows a Split Detection Convergence (SDC) approach.Keywords: artificial life, industrial control system (ICS), IDS, prey predator (PP), SCADA, SDC
Procedia PDF Downloads 30728133 Mobile Crowdsensing Scheme by Predicting Vehicle Mobility Using Deep Learning Algorithm
Authors: Monojit Manna, Arpan Adhikary
Abstract:
In Mobile cloud sensing across the globe, an emerging paradigm is selected by the user to compute sensing tasks. In urban cities current days, Mobile vehicles are adapted to perform the task of data sensing and data collection for universality and mobility. In this work, we focused on the optimality and mobile nodes that can be selected in order to collect the maximum amount of data from urban areas and fulfill the required data in the future period within a couple of minutes. We map out the requirement of the vehicle to configure the maximum data optimization problem and budget. The Application implementation is basically set up to generalize a realistic online platform in which real-time vehicles are moving apparently in a continuous manner. The data center has the authority to select a set of vehicles immediately. A deep learning-based scheme with the help of mobile vehicles (DLMV) will be proposed to collect sensing data from the urban environment. From the future time perspective, this work proposed a deep learning-based offline algorithm to predict mobility. Therefore, we proposed a greedy approach applying an online algorithm step into a subset of vehicles for an NP-complete problem with a limited budget. Real dataset experimental extensive evaluations are conducted for the real mobility dataset in Rome. The result of the experiment not only fulfills the efficiency of our proposed solution but also proves the validity of DLMV and improves the quantity of collecting the sensing data compared with other algorithms.Keywords: mobile crowdsensing, deep learning, vehicle recruitment, sensing coverage, data collection
Procedia PDF Downloads 8128132 Green Supply Chain Network Optimization with Internet of Things
Authors: Sema Kayapinar, Ismail Karaoglan, Turan Paksoy, Hadi Gokcen
Abstract:
Green Supply Chain Management is gaining growing interest among researchers and supply chain management. The concept of Green Supply Chain Management is to integrate environmental thinking into the Supply Chain Management. It is the systematic concept emphasis on environmental problems such as reduction of greenhouse gas emissions, energy efficiency, recycling end of life products, generation of solid and hazardous waste. This study is to present a green supply chain network model integrated Internet of Things applications. Internet of Things provides to get precise and accurate information of end-of-life product with sensors and systems devices. The forward direction consists of suppliers, plants, distributions centres and sales and collect centres while, the reverse flow includes the sales and collects centres, disassembled centre, recycling and disposal centre. The sales and collection centre sells the new products are transhipped from factory via distribution centre and also receive the end-of life product according their value level. We describe green logistics activities by presenting specific examples including “recycling of the returned products and “reduction of CO2 gas emissions”. The different transportation choices are illustrated between echelons according to their CO2 gas emissions. This problem is formulated as a mixed integer linear programming model to solve the green supply chain problems which are emerged from the environmental awareness and responsibilities. This model is solved by using Gams package program. Numerical examples are suggested to illustrate the efficiency of the proposed model.Keywords: green supply chain optimization, internet of things, greenhouse gas emission, recycling
Procedia PDF Downloads 33328131 Optimizing the Capacity of a Convolutional Neural Network for Image Segmentation and Pattern Recognition
Authors: Yalong Jiang, Zheru Chi
Abstract:
In this paper, we study the factors which determine the capacity of a Convolutional Neural Network (CNN) model and propose the ways to evaluate and adjust the capacity of a CNN model for best matching to a specific pattern recognition task. Firstly, a scheme is proposed to adjust the number of independent functional units within a CNN model to make it be better fitted to a task. Secondly, the number of independent functional units in the capsule network is adjusted to fit it to the training dataset. Thirdly, a method based on Bayesian GAN is proposed to enrich the variances in the current dataset to increase its complexity. Experimental results on the PASCAL VOC 2010 Person Part dataset and the MNIST dataset show that, in both conventional CNN models and capsule networks, the number of independent functional units is an important factor that determines the capacity of a network model. By adjusting the number of functional units, the capacity of a model can better match the complexity of a dataset.Keywords: CNN, convolutional neural network, capsule network, capacity optimization, character recognition, data augmentation, semantic segmentation
Procedia PDF Downloads 15828130 Optimization of Solar Tracking Systems
Authors: A. Zaher, A. Traore, F. Thiéry, T. Talbert, B. Shaer
Abstract:
In this paper, an intelligent approach is proposed to optimize the orientation of continuous solar tracking systems on cloudy days. Considering the weather case, the direct sunlight is more important than the diffuse radiation in case of clear sky. Thus, the panel is always pointed towards the sun. In case of an overcast sky, the solar beam is close to zero, and the panel is placed horizontally to receive the maximum of diffuse radiation. Under partly covered conditions, the panel must be pointed towards the source that emits the maximum of solar energy and it may be anywhere in the sky dome. Thus, the idea of our approach is to analyze the images, captured by ground-based sky camera system, in order to detect the zone in the sky dome which is considered as the optimal source of energy under cloudy conditions. The proposed approach is implemented using experimental setup developed at PROMES-CNRS laboratory in Perpignan city (France). Under overcast conditions, the results were very satisfactory, and the intelligent approach has provided efficiency gains of up to 9% relative to conventional continuous sun tracking systems.Keywords: clouds detection, fuzzy inference systems, images processing, sun trackers
Procedia PDF Downloads 19828129 Chemical and Electrochemical Syntheses of Two Organic Components of Ginger
Authors: Adrienn Kiss, Karoly Zauer, Gyorgy Keglevich, Rita Molnarne Bernath
Abstract:
Ginger (Zingiber officinale) is a perennial plant from Southeast Asia, widely used as a spice, herb, and medicine for many illnesses since its beneficial health effects were observed thousands of years ago. Among the compounds found in ginger, zingerone [4-hydroxy-3- methoxyphenyl-2-butanone] deserves special attention: it has an anti-inflammatory and antispasmodic effect, it can be used in case of diarrheal disease, helps to prevent the formation of blood clots, has antimicrobial properties, and can also play a role in preventing the Alzheimer's disease. Ferulic acid [(E)-3-(4-hydroxy-3-methoxyphenyl)-prop-2-enoic acid] is another cinnamic acid derivative in ginger, which has promising properties. Like many phenolic compounds, ferulic acid is also an antioxidant. Based on the results of animal experiments, it is assumed to have a direct antitumoral effect in lung and liver cancer. It also deactivates free radicals that can damage the cell membrane and the DNA and helps to protect the skin against UV radiation. The aim of this work was to synthesize these two compounds by new methods. A few of the reactions were based on the hydrogenation of dehydrozingerone [4-(4-Hydroxy-3-methoxyphenyl)-3-buten-2-one] to zingerone. Dehydrozingerone can be synthesized by a relatively simple method from acetone and vanillin with good yield (80%, melting point: 41 °C). Hydrogenation can be carried out chemically, for example by the reaction of zinc and acetic acid, or Grignard magnesium and ethyl alcohol. Another way to complete the reduction is the electrochemical pathway. The electrolysis of dehydrozingerone without diaphragm in aqueous media was attempted to produce ferulic acid in the presence of sodium carbonate and potassium iodide using platinum electrodes. The electrolysis of dehydrozingerone in the presence of potassium carbonate and acetic acid to prepare zingerone was carried out similarly. Ferulic acid was expected to be converted to dihydroferulic acid [3-(4-Hydroxy-3-methoxyphenyl)propanoic acid] in potassium hydroxide solution using iron electrodes, separating the anode and cathode space with a Soxhlet paper sheath impregnated with saturated magnesium chloride solution. For this reaction, ferulic acid was synthesized from vanillin and malonic acid in the presence of pyridine and piperidine (yield: 88.7%, melting point: 173°C). Unfortunately, in many cases, the expected transformations did not happen or took place in low conversions, although gas evolution occurred. Thus, a deeper understanding of these experiments and optimization are needed. Since both compounds are found in different plants, they can also be obtained by alkaline extraction or steam distillation from distinct plant parts (ferulic acid from ground bamboo shoots, zingerone from grated ginger root). The products of these reactions are rich in several other organic compounds as well; therefore, their separation must be solved to get the desired pure material. The products of the reactions described above were characterized by infrared spectral data and melting points. The use of these two simple methods may be informative for the formation of the products. In the future, we would like to study the ferulic acid and zingerone content of other plants and extract them efficiently. The optimization of electrochemical reactions and the use of other test methods are also among our plans.Keywords: ferulic acid, ginger, synthesis, zingerone
Procedia PDF Downloads 17828128 Optimization of the Culture Medium, Incubation Period, pH and Temperatures for Maximal Dye Bioremoval Using A. Fumigates
Authors: Wafaa M. Abd El-Rahim, Magda A. El-Meleigy, Eman Refaat
Abstract:
This study dealing with optimization the conditions affecting the formation of extracellular lignin- degrading enzymes to achieve maximal decolorization activity of Direct Violet dye by one fungal strain. In this study Aspergillus fumigates fungal strain used for production extracellular ligninolytic enzymes for removing Direct Violet dye under different conditions: culture medium, incubation period, pH and temperatures. The results indicted that the removal efficiency of A. fumigatus was enhanced by addition glucose and peptone to the culture medium. The addition of peptone and glucose was found to increase the decolorization activity of the fungal isolate from 51.38% to 93.74% after 4 days of incubation. The highest production of extracellular lignin degrading enzymes also recorded in Direct Violet dye medium supplemented with peptone and glucose. It was also found the decolorization activity of A. fumigatus was decreased gradually by increasing the incubation period up to 4 days. Also it was found that the fungal strain can grow and produce extracellular ligninolytic enzymes which accompanied by efficient removal of Direct Violet dye in a wide pH range of 4-8. The results also found that the maximal biosynthesis of ligninolytic enzymes which accompanied with maximal removal of Direct Violet dye was obtained at a temperature of 28C. This indicates that the different conditions of culture medium, incubation period, pH and temperatures are effective on dye decolorization on the fungal biomass and played a role in Direct Violet dye removal along with enzymatic activity of A. fumigatus.Keywords: A. fumigates, extracellular lignin- degrading enzymes, textile dye, dye removing
Procedia PDF Downloads 28028127 Optimization of the Measure of Compromise as a Version of Sorites Paradox
Authors: Aleksandar Hatzivelkos
Abstract:
The term ”compromise” is mostly used casually within the social choice theory. It is usually used as a mere result of the social choice function, and this omits its deeper meaning and ramifications. This paper is based on a mathematical model for the description of a compromise as a version of the Sorites paradox. It introduces a formal definition of d-measure of divergence from a compromise and models a notion of compromise that is often used only colloquially. Such a model for vagueness phenomenon, which lies at the core of the notion of compromise enables the introduction of new mathematical structures. In order to maximize compromise, different methods can be used. In this paper, we explore properties of a social welfare function TdM (from Total d-Measure), which is defined as a function which minimizes the total sum of d-measures of divergence over all possible linear orderings. We prove that TdM satisfy strict Pareto principle and behaves well asymptotically. Furthermore, we show that for certain domain restrictions, TdM satisfy positive responsiveness and IIIA (intense independence of irrelevant alternatives) thus being equivalent to Borda count on such domain restriction. This result gives new opportunities in social choice, especially when there is an emphasis on compromise in the decision-making process.Keywords: borda count, compromise, measure of divergence, minimization
Procedia PDF Downloads 13928126 Auditing of Building Information Modeling Application in Decoration Engineering Projects in China
Authors: Lan Luo
Abstract:
In China’s construction industry, it is a normal practice to separately subcontract the decoration engineering part from construction engineering, and Building Information Modeling (BIM) is also done separately. Application of BIM in decoration engineering should be integrated with other disciplines, but Chinese current practice makes this very difficult and complicated. Currently, there are three barriers in the auditing of BIM application in decoration engineering in China: heavy workload; scarcity of qualified professionals; and lack of literature concerning audit contents, standards, and methods. Therefore, it is significant to perform research on what (contents) should be evaluated, in which phase, and by whom (professional qualifications) in BIM application in decoration construction so that the application of BIM can be promoted in a better manner. Based on this consideration, four principles of BIM auditing are proposed: Comprehensiveness of information, accuracy of data, aesthetic attractiveness of appearance, and scheme optimization. In the model audit, three methods should be used: Collision, observation, and contrast. In addition, BIM auditing at six stages is discussed and a checklist for work items and results to be submitted is proposed. This checklist can be used for reference by decoration project participants.Keywords: audit, evaluation, dimensions, methods, standards, BIM application in decoration engineering projects
Procedia PDF Downloads 34528125 Durability of Light-Weight Concrete
Authors: Rudolf Hela, Michala Hubertova
Abstract:
The paper focuses on research of durability and lifetime of dense light-weight concrete with artificial light-weight aggregate Liapor exposed to various types of aggressive environment. Experimental part describes testing of designed concrete of various strength classes and volume weights exposed to cyclical freezing, frost and chemical de-icers and various types of chemically aggressive environment.Keywords: aggressive environment, durability, physical-mechanical properties, light-weight concrete
Procedia PDF Downloads 27228124 Calculating Asphaltenes Precipitation Onset Pressure by Using Cardanol as Precipitation Inhibitor: A Strategy to Increment the Oil Well Production
Authors: Camilo A. Guerrero-Martin, Erik Montes Paez, Marcia C. K. Oliveira, Jonathan Campos, Elizabete F. Lucas
Abstract:
Asphaltenes precipitation is considered as a formation damage problem, which can reduce the oil recovery factor. It fouls piping and surface installations, as well as cause serious flow assurance complications and decline oil well production. Therefore, researchers have shown an interest in chemical treatments to control this phenomenon. The aim of this paper is to assess the asphaltenes precipitation onset of crude oils in the presence of cardanol, by titrating the crude with n-heptane. Moreover, based on this results obtained at atmosphere pressure, the asphaltenes precipitation onset pressure were calculated to predict asphaltenes precipitation in the reservoir, by using differential liberation and refractive index data of the oils. The influence of cardanol concentrations in the asphaltenes stabilization of three Brazilian crude oils samples (with similar API densities) was studied. Therefore, four formulations of cardanol in toluene were prepared: 0, 3, 5, 10 and 15 m/m%. The formulations were added to the crude at 2:98 ratio. The petroleum samples were characterized by API density, elemental analysis and differential liberation test. The asphaltenes precipitation onset (APO) was determined by titrating with n-heptane and monitoring with near-infrared (NIR). UV-Vis spectroscopy experiments were also done to assess the precipitate asphaltenes content. The asphaltenes precipitation envelopes (APE) were also determined by numerical simulation (Multiflash). In addition, the adequate artificial lift systems (ALS) for the oils were selected. It was based on the downhole well profile and a screening methodology. Finally, the oil flowrates were modelling by NODAL analysis production system in the PIPESIM software. The results of this study show that the asphaltenes precipitation onset of the crude oils were 2.2, 2.3 and 6.0 mL of n-heptane/g of oil. The cardanol was an effective inhibitor of asphaltenes precipitation for the crude oils used in this study, since it displaces the precipitation pressure of the oil to lower values. This indicates that cardanol can increase the oil wells productivity.Keywords: asphaltenes, NODAL analysis production system, precipitation pressure onset, inhibitory molecule
Procedia PDF Downloads 17828123 A Convolution Neural Network PM-10 Prediction System Based on a Dense Measurement Sensor Network in Poland
Authors: Piotr A. Kowalski, Kasper Sapala, Wiktor Warchalowski
Abstract:
PM10 is a suspended dust that primarily has a negative effect on the respiratory system. PM10 is responsible for attacks of coughing and wheezing, asthma or acute, violent bronchitis. Indirectly, PM10 also negatively affects the rest of the body, including increasing the risk of heart attack and stroke. Unfortunately, Poland is a country that cannot boast of good air quality, in particular, due to large PM concentration levels. Therefore, based on the dense network of Airly sensors, it was decided to deal with the problem of prediction of suspended particulate matter concentration. Due to the very complicated nature of this issue, the Machine Learning approach was used. For this purpose, Convolution Neural Network (CNN) neural networks have been adopted, these currently being the leading information processing methods in the field of computational intelligence. The aim of this research is to show the influence of particular CNN network parameters on the quality of the obtained forecast. The forecast itself is made on the basis of parameters measured by Airly sensors and is carried out for the subsequent day, hour after hour. The evaluation of learning process for the investigated models was mostly based upon the mean square error criterion; however, during the model validation, a number of other methods of quantitative evaluation were taken into account. The presented model of pollution prediction has been verified by way of real weather and air pollution data taken from the Airly sensor network. The dense and distributed network of Airly measurement devices enables access to current and archival data on air pollution, temperature, suspended particulate matter PM1.0, PM2.5, and PM10, CAQI levels, as well as atmospheric pressure and air humidity. In this investigation, PM2.5, and PM10, temperature and wind information, as well as external forecasts of temperature and wind for next 24h served as inputted data. Due to the specificity of the CNN type network, this data is transformed into tensors and then processed. This network consists of an input layer, an output layer, and many hidden layers. In the hidden layers, convolutional and pooling operations are performed. The output of this system is a vector containing 24 elements that contain prediction of PM10 concentration for the upcoming 24 hour period. Over 1000 models based on CNN methodology were tested during the study. During the research, several were selected out that give the best results, and then a comparison was made with the other models based on linear regression. The numerical tests carried out fully confirmed the positive properties of the presented method. These were carried out using real ‘big’ data. Models based on the CNN technique allow prediction of PM10 dust concentration with a much smaller mean square error than currently used methods based on linear regression. What's more, the use of neural networks increased Pearson's correlation coefficient (R²) by about 5 percent compared to the linear model. During the simulation, the R² coefficient was 0.92, 0.76, 0.75, 0.73, and 0.73 for 1st, 6th, 12th, 18th, and 24th hour of prediction respectively.Keywords: air pollution prediction (forecasting), machine learning, regression task, convolution neural networks
Procedia PDF Downloads 15328122 Experimental and Numerical Studies of Droplet Formation
Authors: Khaled Al-Badani, James Ren, Lisa Li, David Allanson
Abstract:
Droplet formation is an important process in many engineering systems and manufacturing procedures, which includes welding, biotechnologies, 3D printing, biochemical, biomedical fields and many more. The volume and the characteristics of droplet formation are generally depended on various material properties, microfluidics and fluid mechanics considerations. Hence, a detailed investigation of this process, with the aid of numerical computational tools, are essential for future design optimization and process controls of many engineering systems. This will also improve the understanding of changes in the properties and the structures of materials, during the formation of the droplet, which is important for new material developments to achieve different functions, pending the requirements of the application. For example, the shape of the formed droplet is critical for the function of some final products, such as the welding nugget during Capacitor Discharge Welding process, or PLA 3D printing, etc. Although, most academic journals on droplet formation, focused on issued with material transfer rate, surface tension and residual stresses, the general emphasis on the characteristics of droplet shape has been overlooked. The proposed work for this project will examine theoretical methodologies, experimental techniques, and numerical modelling, using ANSYS FLUENT, to critically analyse and highlight optimization methods regarding the formation of pendant droplet. The project will also compare results from published data with experimental and numerical work, concerning the effects of key material parameters on the droplet shape. These effects include changes in heating/cooling rates, solidification/melting progression and separation/break-up times. From these tests, a set of objectives is prepared, with an intention of improving quality, stability and productivity in modelling metal welding and 3D printing.Keywords: computer modelling, droplet formation, material distortion, materials forming, welding
Procedia PDF Downloads 28928121 Design and Analysis of Universal Multifunctional Leaf Spring Main Landing Gear for Light Aircraft
Authors: Meiyuan Zheng, Jingwu He, Yuexi Xiong
Abstract:
A universal multi-function leaf spring main landing gear was designed for light aircraft. The main landing gear combined with the leaf spring, skidding, and wheels enables it to have a good takeoff and landing performance on various grounds such as the hard, snow, grass and sand grounds. Firstly, the characteristics of different landing sites were studied in this paper in order to analyze the load of the main landing gear on different types of grounds. Based on this analysis, the structural design optimization along with the strength and stiffness characteristics of the main landing gear has been done, which enables it to have good takeoff and landing performance on different types of grounds given the relevant regulations and standards. Additionally, the impact of the skidding on the aircraft during the flight was also taken into consideration. Finally, a universal multi-function leaf spring type of the main landing gear suitable for light aircraft has been developed.Keywords: landing gear, multi-function, leaf spring, skidding
Procedia PDF Downloads 27028120 Enhanced Production of Endo-β-1,4-Xylanase from a Newly Isolated Thermophile Geobacillus stearothermophilus KIBGE-IB29 for Prospective Industrial Applications
Authors: Zainab Bibi, Afsheen Aman, Shah Ali Ul Qader
Abstract:
Endo-β-1,4-xylanases [EC 3.2.1.8] are one of the major groups of enzymes that are involved in degradation process of xylan and have several applications in food, textile and paper processing industries. Due to broad utility of endo-β-1,4-xylanase, researchers are focusing to increase the productivity of this hydrolase from various microbial species. Harsh industrial condition, faster reaction rate and efficient hydrolysis of xylan with low risk of contamination are critical requirements of industry that can be fulfilled by synthesizing the enzyme with efficient properties. In the current study, a newly isolated thermophile Geobacillus stearothermophilus KIBGE-IB29 was used in order to attain the maximum production of endo-1,4-β-xylanase. Bacterial culture was isolated from soil, collected around the blast furnace site of a steel processing mill, Karachi. Optimization of various nutritional and physical factors resulted the maximum synthesis of endo-1,4-β-xylanase from a thermophile. High production yield was achieved at 60°C and pH-6.0 after 24 hours of incubation period. Various nitrogen sources viz. peptone, yeast extract and meat extract improved the enzyme synthesis with 0.5%, 0.2% and 0.1% optimum concentrations. Dipotassium hydrogen phosphate (0.25%), potassium dihydrogen phosphate (0.05%), ammonium sulfate (0.05%) and calcium chloride (0.01%) were noticed as valuable salts to improve the production of enzyme. The thermophilic nature of isolate, with its broad pH stability profile and reduced fermentation time indicates its importance for effective xylan saccharification and for large scale production of endo-1,4-β-xylanase.Keywords: geobacillus, optimization, production, xylanase
Procedia PDF Downloads 31328119 Improving Patient-Care Services at an Oncology Center with a Flexible Adaptive Scheduling Procedure
Authors: P. Hooshangitabrizi, I. Contreras, N. Bhuiyan
Abstract:
This work presents an online scheduling problem which accommodates multiple requests of patients for chemotherapy treatments in a cancer center of a major metropolitan hospital in Canada. To solve the problem, an adaptive flexible approach is proposed which systematically combines two optimization models. The first model is intended to dynamically schedule arriving requests in the form of waiting lists whereas the second model is used to reschedule the already booked patients with the goal of finding better resource allocations when new information becomes available. Both models are created as mixed integer programming formulations. Various controllable and flexible parameters such as deviating the prescribed target dates by a pre-determined threshold, changing the start time of already booked appointments and the maximum number of appointments to move in the schedule are included in the proposed approach to have sufficient degrees of flexibility in handling arrival requests and unexpected changes. Several computational experiments are conducted to evaluate the performance of the proposed approach using historical data provided by the oncology clinic. Our approach achieves outstandingly better results as compared to those of the scheduling system being used in practice. Moreover, several analyses are conducted to evaluate the effect of considering different levels of flexibility on the obtained results and to assess the performance of the proposed approach in dealing with last-minute changes. We strongly believe that the proposed flexible adaptive approach is very well-suited for implementation at the clinic to provide better patient-care services and to utilize available resource more efficiently.Keywords: chemotherapy scheduling, multi-appointment modeling, optimization of resources, satisfaction of patients, mixed integer programming
Procedia PDF Downloads 17528118 Micro-Transformation Strategy Of Residential Transportation Space Based On The Demand Of Residents: Taking A Residential District In Wuhan, China As An Example
Abstract:
With the acceleration of urbanization and motorization in China, the scale of cities and the travel distance of residents are constantly expanding, and the number of cars is continuously increasing, so the urban traffic problem is more and more serious. Traffic congestion, environmental pollution, energy consumption, travel safety and direct interference between traffic and other urban activities are increasingly prominent problems brought about by motorized development. This not only has a serious impact on the lives of the residents but also has a major impact on the healthy development of the city. The paper found that, in order to solve the development of motorization, a number of problems will arise; urban planning and traffic planning and design in residential planning often take into account the development of motorized traffic but neglects the demand for street life. This kind of planning has resulted in the destruction of the traditional communication space of the residential area, the pollution of noise and exhaust gas, and the potential safety risks of the residential area, which has disturbed the previously quiet and comfortable life of the residential area, resulting in the inconvenience of residents' life and the loss of street vitality. Based on these facts, this paper takes a residential area in Wuhan as the research object, through the actual investigation and research, from the perspective of micro-transformation analysis, combined with the concept of traffic micro-reconstruction governance. And research puts forward the residential traffic optimization strategies such as strengthening the interaction and connection between the residential area and the urban street system, street traffic classification and organization.Keywords: micro-transformation, residential traffic, residents demand, traffic microcirculation
Procedia PDF Downloads 11928117 Regret-Regression for Multi-Armed Bandit Problem
Authors: Deyadeen Ali Alshibani
Abstract:
In the literature, the multi-armed bandit problem as a statistical decision model of an agent trying to optimize his decisions while improving his information at the same time. There are several different algorithms models and their applications on this problem. In this paper, we evaluate the Regret-regression through comparing with Q-learning method. A simulation on determination of optimal treatment regime is presented in detail.Keywords: optimal, bandit problem, optimization, dynamic programming
Procedia PDF Downloads 456