Search results for: satellite applications
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7099

Search results for: satellite applications

3649 Eco-Friendly Synthesis of Carbon Quantum Dots as an Effective Adsorbent

Authors: Hebat‑Allah S. Tohamy, Mohamed El‑Sakhawy, Samir Kamel

Abstract:

Fluorescent carbon quantum dots (CQDs) were prepared by an economical, green, and single-step procedure based on microwave heating of urea with sugarcane bagasse (SCB), cellulose (C), or carboxymethyl cellulose (CMC). The prepared CQDs were characterized using a series of spectroscopic techniques, and they had small size, strong absorption in the UV, and excitation wavelength-dependent fluorescence. The prepared CQDs were used for Pb(II) adsorption from an aqueous solution. The removal efficiency percentages (R %) were 99.16, 96.36, and 98.48 for QCMC, QC, and QSCB. The findings validated the efficiency of CQDs synthesized from CMC, cellulose, and SCB as excellent materials for further utilization in the environmental fields of wastewater pollution detection, adsorption, and chemical sensing applications. The kinetics and isotherms studied found that all CQD isotherms fit well with the Langmuir model than Freundlich and Temkin models. According to R², the pseudo-second-order fits the adsorption of QCMC, while the first-order one fits with QC and QSCB.

Keywords: carbon quantum dots, graphene quantum dots, fluorescence, quantum yield, water treatment, agricultural wastes

Procedia PDF Downloads 134
3648 Multiple Plant-Based Cell Suspension as a Bio-Ink for 3D Bioprinting Applications in Food Technology

Authors: Yusuf Hesham Mohamed

Abstract:

Introduction: Three-dimensional printing technology includes multiple procedures that fabricate three-dimensional objects through consecutively layering two-dimensional cross-sections on top of each other. 3D bioprinting is a promising field of 3D printing, which fabricates tissues and organs by accurately controlling the proper arrangement of diverse biological components. 3D bioprinting uses software and prints biological materials and their supporting components layer-by-layer on a substrate or in a tissue culture plate to produce complex live tissues and organs. 3D food printing is an emerging field of 3D bioprinting in which the 3D printed products are food products that are cheap, require less effort to produce, and have more desirable traits. The Aim of the Study is the development of an affordable 3D bioprinter by altering a locally made CNC instrument with an open-source platform to suit the 3D bio-printer purposes. Later, we went through applying the prototype in several applications regarding food technology and drug testing, including the organ-On-Chip. Materials and Methods: An off-the-shelf 3D printer was modified by designing and fabricating the syringe unit, which was designed on the basis of the Milli-fluidics system. Sodium alginate and gelatin hydrogels were prepared, followed by leaf cell suspension preparation from narrow sections of Fragaria’s viable leaves. The desired 3D structure was modeled, and 3D printing preparations took place. Cell-free and cell-laden hydrogels were printed at room temperature under sterile conditions. Post printing curing process was performed. The printed structure was further studied. Results: Positive results have been achieved using the altered 3D bioprinter where a 3D hydrogel construct of two layers made of the combination of sodium alginate to gelatin (15%: 0.5%) has been printed. DLP 3D printer was used to design the syringe component with a transparent PLA-Pro resin for the creation of a microfluidics system having two channels altered to the double extruder. The hydrogel extruder’s design was based on peristaltic pumps, which utilized a stepper motor. The design and fabrication were made using DIY-3D printed parts. Hard plastic PLA was the material utilized for printing. SEM was used to carry out the porous 3D construct imaging. Multiple physical and chemical tests were performed in order to ensure that the cell line was suitable for hosting. Fragaria plant was developed by suspending Fragaria’s cells from its leaves using the 3D bioprinter. Conclusion: 3D bioprinting is considered to be an emerging scientific field that can facilitate and improve many scientific tests and studies. Thus, having a 3D bioprinter in labs is considered to be an essential requirement. 3D bioprinters are very expensive; however, the fabrication of a 3D printer into a 3D bioprinter can lower the cost of the bioprinter. The 3D bioprinter implemented made use of peristaltic pumps instead of syringe-based pumps in order to extend the ability to print multiple types of materials and cells.

Keywords: scaffold, eco on chip, 3D bioprinter, DLP printer

Procedia PDF Downloads 121
3647 The Role of Artificial Intelligence in Concrete Constructions

Authors: Ardalan Tofighi Soleimandarabi

Abstract:

Artificial intelligence has revolutionized the concrete construction industry and improved processes by increasing efficiency, accuracy, and sustainability. This article examines the applications of artificial intelligence in predicting the compressive strength of concrete, optimizing mixing plans, and improving structural health monitoring systems. Artificial intelligence-based models, such as artificial neural networks (ANN) and combined machine learning techniques, have shown better performance than traditional methods in predicting concrete properties. In addition, artificial intelligence systems have made it possible to improve quality control and real-time monitoring of structures, which helps in preventive maintenance and increases the life of infrastructure. Also, the use of artificial intelligence plays an effective role in sustainable construction by optimizing material consumption and reducing waste. Although the implementation of artificial intelligence is associated with challenges such as high initial costs and the need for specialized training, it will create a smarter, more sustainable, and more affordable future for concrete structures.

Keywords: artificial intelligence, concrete construction, compressive strength prediction, structural health monitoring, stability

Procedia PDF Downloads 22
3646 Preparation on Sentimental Analysis on Social Media Comments with Bidirectional Long Short-Term Memory Gated Recurrent Unit and Model Glove in Portuguese

Authors: Leonardo Alfredo Mendoza, Cristian Munoz, Marco Aurelio Pacheco, Manoela Kohler, Evelyn Batista, Rodrigo Moura

Abstract:

Natural Language Processing (NLP) techniques are increasingly more powerful to be able to interpret the feelings and reactions of a person to a product or service. Sentiment analysis has become a fundamental tool for this interpretation but has few applications in languages other than English. This paper presents a classification of sentiment analysis in Portuguese with a base of comments from social networks in Portuguese. A word embedding's representation was used with a 50-Dimension GloVe pre-trained model, generated through a corpus completely in Portuguese. To generate this classification, the bidirectional long short-term memory and bidirectional Gated Recurrent Unit (GRU) models are used, reaching results of 99.1%.

Keywords: natural processing language, sentiment analysis, bidirectional long short-term memory, BI-LSTM, gated recurrent unit, GRU

Procedia PDF Downloads 161
3645 A Review of BIM Applications for Heritage and Historic Buildings: Challenges and Solutions

Authors: Reza Yadollahi, Arash Hejazi, Dante Savasta

Abstract:

Building Information Modeling (BIM) is growing so fast in construction projects around the world. Considering BIM's weaknesses in implementing existing heritage and historical buildings, it is critical to facilitate BIM application for such structures. One of the pieces of information to build a model in BIM is to import material and its characteristics. Material library is essential to speed up the entry of project information. To save time and prevent cost overrun, a BIM object material library should be provided. However, historical buildings' lack of information and documents is typically a challenge in renovation and retrofitting projects. Due to the lack of case documents for historic buildings, importing data is a time-consuming task, which can be improved by creating BIM libraries. Based on previous research, this paper reviews the complexities and challenges in BIM modeling for heritage, historic, and architectural buildings. Through identifying the strengths and weaknesses of the standard BIM systems, recommendations are provided to enhance the modeling platform.

Keywords: building Information modeling, historic, heritage buildings, material library

Procedia PDF Downloads 123
3644 A Method to Identify Areas for Hydraulic Fracturing by Using Production Logging Tools

Authors: Armin Shirbazo, Hamed Lamei Ramandi, Mohammad Vahab, Jalal Fahimpour

Abstract:

Hydraulic fracturing, especially multi-stage hydraulic fracturing, is a practical solution for wells with uneconomic production. The wide range of applications is appraised appropriately to have a stable well-production. Production logging tool, which is known as PLT in the oil and gas industry, is counted as one of the most reliable methods to evaluate the efficiency of fractures jobs. This tool has a number of benefits and can be used to prevent subsequent production failure. It also distinguishes different problems that occurred during well-production. In this study, the effectiveness of hydraulic fracturing jobs is examined by using the PLT in various cases and situations. The performance of hydraulically fractured wells is investigated. Then, the PLT is employed to gives more information about the properties of different layers. The PLT is also used to selecting an optimum fracturing design. The results show that one fracture and three-stage fractures behave differently. In general, the one-stage fracture should be created in high-quality areas of the reservoir to have better performance, and conversely, in three-stage fractures, low-quality areas are a better candidate for fracturing

Keywords: multi-stage fracturing, horizontal well, PLT, fracture length, number of stages

Procedia PDF Downloads 197
3643 Discouraged Borrowers: Evidence for Eurozone SMEs

Authors: Javier Sanchez Vidal, Ciarán Mac An Bhaird, Brian Lucey

Abstract:

This study examines the decision by firm owners not to apply for intermediated debt due to a perception that their application will be rejected. Based on a sample of SMEs in 9 European countries over the period 2009-2011, we examine potential explanatory factors for borrower discouragement, including firm, macroeconomic, regulatory and banking industry variables. Compared with firms that applied for bank loans, discouraged borrowers are smaller, younger, have declining turnover and an increasing debt/assets ratio. Perceived willingness of banks to lend rather than the company’s own credit history is more important to encourage applications. Perceptions of refusal are procyclical and may be self-perpetuating. Increased concentration in the banking sector reduces discouragement, indicating the importance of relationship banking. Transmission of macro effects through the banking system and economic environment may also lead to higher levels of discouragement. A good regulatory scheme is also advisable, either for the lenders or the borrowers (overall the good ones).

Keywords: entrepreneurial finance, discouraged borrowers, banking, financial crisis, eurozone

Procedia PDF Downloads 411
3642 Cell Surface Display of Xylanase on Escherichia coli by TibA Autotransporter

Authors: Yeng Min Yi, Rosli Md Illias, Salehhuddin Hamdan

Abstract:

Industrial biocatalysis is mainly based on the use of cell free or intracellular enzyme systems. However, the expensive cost and relatively lower operational stability of free enzymes limit practical use in industries. Cell surface display system can be used as a cost-efficient alternative to overcome the laborious purification and substrate transport limitation. In this research, TibA autotransporter from E. coli was used to display Aspergillus fumigatus xylanase (xyn). The amplified xyn was fused in between N-terminal signal peptide and C-terminal β-barrel of TibA. The cloned was transformed and expressed in E. coli BL21 (DE3). Outer membrane localization of TibA-xyn fusion protein was confirmed by SDS PAGE and western blot with expected size of 62.5 kDa. Functional display of xyn was examined by activity assay. Cell surface displayed xyn exhibited the highest activity at 37 °c, 0.3 mM IPTG. As a summary, TibA displaying system has the potential for further industrial applications. Moreover, this is the first report of the display of xylanase using TibA on the surface of E. coli.

Keywords: biocatalysis, cell surface display, Escherichia coli, TibA autotransporter

Procedia PDF Downloads 284
3641 Biometric Identification with Latitude and Longitude Fingerprint Verification for Attendance

Authors: Muhammad Fezan Afzal, Imran Khan, Salma Imtiaz

Abstract:

The need for human verification and identification requires from centuries for authentication. Since it is being used in big institutes like financial, government and crime departments, a continued struggle is important to make this system more efficient to prevent security breaches. Therefore, multiple devices are used to authenticate the biometric for each individual. A large number of devices are required to cover a large number of users. As the number of devices increases, cost will automatically increase. Furthermore, it is time-consuming for biometrics due to the devices being insufficient and are not available at every door. In this paper, we propose the framework and algorithm where the mobile of each individual can also perform the biometric authentication of attendance and security. Every mobile has a biometric authentication system that is used in different mobile applications for security purposes. Therefore, each individual can use the biometric system mobile without moving from one place to another. Moreover, by using the biometrics mobile, the cost of biometric systems can be removed that are mostly deployed in different organizations for the attendance of students, employees and for other security purposes.

Keywords: fingerprint, fingerprint authentication, mobile verification, mobile biometric verification, mobile fingerprint sensor

Procedia PDF Downloads 72
3640 Silicon Nanoparticles and Irradiated Chitosan: Sustainable Elicitors for PS II Activity and Antioxidant Mediated Plant Immunity

Authors: Mohammad Mukarram, M. Masroor A. Khan, Daniel Kurjak, Marek Fabrika

Abstract:

Lemongrass (Cymbopogon flexuosus (Steud.) Wats) is an aromatic grass with great industrial potential. It is cultivated for its essential oil (EO), which has great economic value due to its numerous medicinal, cosmetic, and culinary applications. The present study had the goal to evaluate whether the combined application of silicon nanoparticles (SiNPs) 150 mg L⁻¹ and irradiated chitosan (ICH) 120 mg L⁻¹ can upgrade lemongrass crop and render enhanced growth and productivity. The analyses of growth and photosynthetic parameters, leaf-nitrogen, and reactive oxygen species metabolism, as well as the content of total essential oil, indicated that combined foliar sprays of SiNPs and ICH can significantly (p≤0.05) trigger a general activation of lemongrass metabolism. Overall, the data indicate that concomitant SiNPs and ICH application elicit lemongrass physiology and defence system, and opens new possibilities for their biotechnological application on other related plant species with agronomic potential.

Keywords: photosynthesis, Cymbopogon, antioxidant metabolism, essential oil, ROS, nanoparticles, polysaccharides

Procedia PDF Downloads 84
3639 Low Trigger Voltage Silicon Controlled Rectifier Stacking Structure with High Holding Voltage for High Voltage Applications

Authors: Kyoung-Il Do, Jun-Geol Park, Hee-Guk Chae, Jeong-Yun Seo, Yong-Seo Koo

Abstract:

A SCR stacking structure is proposed to have improved Latch-up immunity. In comparison with conventional SCR (Silicon Controlled Rectifier), the proposed Electrostatic Discharge (ESD) protection circuit has a lower trigger characteristic by using the LVTSCR (Low Voltage Trigger) structure. Also the proposed ESD protection circuit has improved Holding Voltage Characteristic by using N-stack technique. These characteristics enable to have latch-up immunity in operating conditions. The simulations are accomplished by using the Synopsys TCAD. It has a trigger voltage of 8.9V and a holding voltage of 1.8V in a single structure. And when applying the stack technique, 2-stack has the holding voltage of 3.8V and 3-stack has the holding voltage of 5.1 V.

Keywords: electrostatic discharge (ESD), low voltage trigger silicon controlled rectifier (LVTSCR), MVTSCR, power clamp, silicon controlled rectifier (SCR), latch-up

Procedia PDF Downloads 462
3638 Tracing Back the Bot Master

Authors: Sneha Leslie

Abstract:

The current situation in the cyber world is that crimes performed by Botnets are increasing and the masterminds (botmaster) are not detectable easily. The botmaster in the botnet compromises the legitimate host machines in the network and make them bots or zombies to initiate the cyber-attacks. This paper will focus on the live detection of the botmaster in the network by using the strong framework 'metasploit', when distributed denial of service (DDOS) attack is performed by the botnet. The affected victim machine will be continuously monitoring its incoming packets. Once the victim machine gets to know about the excessive count of packets from any IP, that particular IP is noted and details of the noted systems are gathered. Using the vulnerabilities present in the zombie machines (already compromised by botmaster), the victim machine will compromise them. By gaining access to the compromised systems, applications are run remotely. By analyzing the incoming packets of the zombies, the victim comes to know the address of the botmaster. This is an effective and a simple system where no specific features of communication protocol are considered.

Keywords: bonet, DDoS attack, network security, detection system, metasploit framework

Procedia PDF Downloads 255
3637 Software-Defined Networks in Utility Power Networks

Authors: Ava Salmanpour, Hanieh Saeedi, Payam Rouhi, Elahe Hamzeil, Shima Alimohammadi, Siamak Hossein Khalaj, Mohammad Asadian

Abstract:

Software-defined network (SDN) is a network architecture designed to control network using software application in a central manner. This ability enables remote control of the whole network regardless of the network technology. In fact, in this architecture network intelligence is separated from physical infrastructure, it means that required network components can be implemented virtually using software applications. Today, power networks are characterized by a high range of complexity with a large number of intelligent devices, processing both huge amounts of data and important information. Therefore, reliable and secure communication networks are required. SDNs are the best choice to meet this issue. In this paper, SDN networks capabilities and characteristics will be reviewed and different basic controllers will be compared. The importance of using SDNs to escalate efficiency and reliability in utility power networks is going to be discussed and the comparison between the SDN-based power networks and traditional networks will be explained.

Keywords: software-defined network, SDNs, utility network, open flow, communication, gas and electricity, controller

Procedia PDF Downloads 116
3636 Natural Ventilation around and through Building: A Numerical Study

Authors: A. Kaddour, S. M. A. Bekkouche

Abstract:

Limiting heat losses during ventilation of indoor building spaces has become a basic aim for architects. Much experience has been gained in terms of ventilation of indoor spaces. Nevertheless, due to the complex applications, attempts to create a theoretical base for solving the problems related to the issue are limited, especially determining the minimum ventilation period required within a designated space. In this paper we have approached this matter, both theoretically and computationally. The conclusion we reached was that controlled ventilation of spaces through vent holes that successively open and close at regular time intervals can limit the excessive circulation of air masses, which in turn limits heat losses. Air change rates through open and tilted windows in rooms of residential buildings driven by atmospheric motions are investigated to evaluate natural ventilation concepts. Model of thermal building simulations is used. A separated sample storey and a sample single room in larger scales were used to measure air transport through window openings under the influence of the external pressure distribution.

Keywords: natural ventilation, temperature factor, air change rates, air circulation

Procedia PDF Downloads 443
3635 Empirical Modeling and Spatial Analysis of Heat-Related Morbidity in Maricopa County, Arizona

Authors: Chuyuan Wang, Nayan Khare, Lily Villa, Patricia Solis, Elizabeth A. Wentz

Abstract:

Maricopa County, Arizona, has a semi-arid hot desert climate that is one of the hottest regions in the United States. The exacerbated urban heat island (UHI) effect caused by rapid urbanization has made the urban area even hotter than the rural surroundings. The Phoenix metropolitan area experiences extremely high temperatures in the summer from June to September that can reach the daily highest of 120 °F (48.9 °C). Morbidity and mortality due to the environmental heat is, therefore, a significant public health issue in Maricopa County, especially because it is largely preventable. Public records from the Maricopa County Department of Public Health (MCDPH) revealed that between 2012 and 2016, there were 10,825 incidents of heat-related morbidity incidents, 267 outdoor environmental heat deaths, and 173 indoor heat-related deaths. A lot of research has examined heat-related death and its contributing factors around the world, but little has been done regarding heat-related morbidity issues, especially for regions that are naturally hot in the summer. The objective of this study is to examine the demographic, socio-economic, housing, and environmental factors that contribute to heat-related morbidity in Maricopa County. We obtained heat-related morbidity data between 2012 and 2016 at census tract level from MCDPH. Demographic, socio-economic, and housing variables were derived using 2012-2016 American Community Survey 5-year estimate from the U.S. Census. Remotely sensed Landsat 7 ETM+ and Landsat 8 OLI satellite images and Level-1 products were acquired for all the summer months (June to September) from 2012 and 2016. The National Land Cover Database (NLCD) 2016 percent tree canopy and percent developed imperviousness data were obtained from the U.S. Geological Survey (USGS). We used ordinary least squares (OLS) regression analysis to examine the empirical relationship between all the independent variables and heat-related morbidity rate. Results showed that higher morbidity rates are found in census tracts with higher values in population aged 65 and older, population under poverty, disability, no vehicle ownership, white non-Hispanic, population with less than high school degree, land surface temperature, and surface reflectance, but lower values in normalized difference vegetation index (NDVI) and housing occupancy. The regression model can be used to explain up to 59.4% of total variation of heat-related morbidity in Maricopa County. The multiscale geographically weighted regression (MGWR) technique was then used to examine the spatially varying relationships between heat-related morbidity rate and all the significant independent variables. The R-squared value of the MGWR model increased to 0.691, that shows a significant improvement in goodness-of-fit than the global OLS model, which means that spatial heterogeneity of some independent variables is another important factor that influences the relationship with heat-related morbidity in Maricopa County. Among these variables, population aged 65 and older, the Hispanic population, disability, vehicle ownership, and housing occupancy have much stronger local effects than other variables.

Keywords: census, empirical modeling, heat-related morbidity, spatial analysis

Procedia PDF Downloads 130
3634 Estimating the Effect of Fluid in Pressing Process

Authors: A. Movaghar, R. A. Mahdavinejad

Abstract:

To analyze the effect of various parameters of fluid on the material properties such as surface and depth defects and/or cracks, it is possible to determine the affection of pressure field on these specifications. Stress tensor analysis is also able to determine the points in which the probability of defection creation is more. Besides, from pressure field, it is possible to analyze the affection of various fluid specifications such as viscosity and density on defect created in the material. In this research, the concerned boundary conditions are analyzed first. Then the solution network and stencil used are mentioned. With the determination of relevant equation on the fluid flow between notch and matrix and their discretion according to the governed boundary conditions, these equations can be solved. Finally, with the variation creations on fluid parameters such as density and viscosity, the affection of these variations can be determined on pressure field. In this direction, the flowchart and solution algorithm with their results as vortex and current function contours for two conditions with most applications in pressing process are introduced and discussed.

Keywords: pressing, notch, matrix, flow function, vortex

Procedia PDF Downloads 291
3633 Synthesis and Characterization of Carboxymethyl Cellulose from Rice Stubble Cellulose

Authors: Rungsinee Sothornvit, Pattrathip Rodsamran

Abstract:

Rice stubble consists of a high content of cellulose and can be synthesized as a cellulose derivative such as carboxymethyl cellulose (CMC) to value added products from agricultural waste. Therefore, the synthesis conditions and characterization the properties of CMC from rice stubble (CMCr) were investigated. Hemicellulose and lignin were first removed from the rice stubble using 10% NaOH at 55 C for 3 h and 5% NaOCl at 75 C for 15 min, respectively. Rice stubble cellulose was swollen in 30% NaOH and isopropanol as a solvent. The content of chloroacetic acid (5–7 g in 5 g of alkali cellulose), reaction temperature (50 and 70 C) and time (180, 270 and 360 min) were explored to obtain CMC. It was found that synthesis conditions did not affect significantly on moisture content and pH of CMCr. The best quality of CMCr was synthesized by using 7 g of chloroacetic acid and reacted at 50 C for 180 min based on 5 g of rice stubble cellulose. Degree of substitution (DS), viscosity and purity of CMCr were 0.64, 36.03 cP and 90.18 %, respectively. Furthermore, Fourier transform infrared (FT–IR) spectroscopy confirmed the presence of carboxymethyl substituents. CMCr was categorized in commercial scale as a low viscosity material and it can be used as film forming packaging materials for food and pharmaceutical product applications.

Keywords: rice stubble, cellulose, carboxymethyl cellulose, degree of substitution, purity

Procedia PDF Downloads 396
3632 Securing Health Monitoring in Internet of Things with Blockchain-Based Proxy Re-Encryption

Authors: Jerlin George, R. Chitra

Abstract:

The devices with sensors that can monitor your temperature, heart rate, and other vital signs and link to the internet, known as the Internet of Things (IoT), have completely transformed the way we control health. Providing real-time health data, these sensors improve diagnostics and treatment outcomes. Security and privacy matters when IoT comes into play in healthcare. Cyberattacks on centralized database systems are also a problem. To solve these challenges, the study uses blockchain technology coupled with proxy re-encryption to secure health data. ThingSpeak IoT cloud analyzes the collected data and turns them into blockchain transactions which are safely kept on the DriveHQ cloud. Transparency and data integrity are ensured by blockchain, and secure data sharing among authorized users is made possible by proxy re-encryption. This results in a health monitoring system that preserves the accuracy and confidentiality of data while reducing the safety risks of IoT-driven healthcare applications.

Keywords: internet of things, healthcare, sensors, electronic health records, blockchain, proxy re-encryption, data privacy, data security

Procedia PDF Downloads 21
3631 Wavelet Based Signal Processing for Fault Location in Airplane Cable

Authors: Reza Rezaeipour Honarmandzad

Abstract:

Wavelet analysis is an exciting method for solving difficult problems in mathematics, physics, and engineering, with modern applications as diverse as wave propagation, data compression, signal processing, image processing, pattern recognition, etc. Wavelets allow complex information such as signals, images and patterns to be decomposed into elementary forms at different positions and scales and subsequently reconstructed with high precision. In this paper a wavelet-based signal processing algorithm for airplane cable fault location is proposed. An orthogonal discrete wavelet decomposition and reconstruction algorithm is used to eliminate the noise in the aircraft cable fault signal. The experiment result has shown that the character of emission pulse and reflect pulse used to test the aircraft cable fault point are reserved and the high-frequency noise are eliminated by means of the proposed algorithm in this paper.

Keywords: wavelet analysis, signal processing, orthogonal discrete wavelet, noise, aircraft cable fault signal

Procedia PDF Downloads 528
3630 Synthesis of Green Fuel Additive from Waste Bio-Glycerol

Authors: Ala’a H. Al-Muhtaseb, Farrukh Jamil, Lamya Al-Haj, Mohab Al-Hinai

Abstract:

Bio-glycerol is considered as high boiling polar triol and immiscible with fossil fuel fractions due to which it is transformed into its respective ketals and acetals which help to improve the quality of diesel emitting less amount of aldehydes and carbon monoxide. Solketal visual appearance is transparent and it is odorless organic liquid used as fuel additive for diesel to improve its cold flow properties. Condensation of bio-glycerol with bio-acetone in presence of beta zeolite has been done for synthesizing solketal. It was observed that glycerol conversion and selectivity of solketal was largely effected by temperature, as it increases from 40 ºC to 60 ºC the conversion of glycerol rises from 80.04 % to 94.26 % and selectivity of solketal from 80.0 % to 94.21 % but further increase in temperature to 100 ºC glycerol conversion reduced to 93.06 % and solketal selectivity to 92.08 %. At the optimum conditions, the bio-glycerol conversion and solketal yield were about 94.26% and 94.21wt% respectively. This process offers an attractive route for converting bio-glycerol, the main by-product of biodiesel to solketal with bio-acetone; a value-added green product with potential industrial applications as a valuable green fuel additive or combustion promoter for gasoline/diesel engines.

Keywords: bio-acetone, bio-glycerol, acetylation, solketal

Procedia PDF Downloads 265
3629 Nano-Enabling Technical Carbon Fabrics to Achieve Improved Through Thickness Electrical Conductivity in Carbon Fiber Reinforced Composites

Authors: Angelos Evangelou, Katerina Loizou, Loukas Koutsokeras, Orestes Marangos, Giorgos Constantinides, Stylianos Yiatros, Katerina Sofocleous, Vasileios Drakonakis

Abstract:

Owing to their outstanding strength to weight properties, carbon fiber reinforced polymer (CFRPs) composites have attracted significant attention finding use in various fields (sports, automotive, transportation, etc.). The current momentum indicates that there is an increasing demand for their employment in high value bespoke applications such as avionics and electronic casings, damage sensing structures, EMI (electromagnetic interference) structures that dictate the use of materials with increased electrical conductivity both in-plane and through the thickness. Several efforts by research groups have focused on enhancing the through-thickness electrical conductivity of FRPs, in an attempt to combine the intrinsically high relative strengths exhibited with improved z-axis electrical response as well. However, only a limited number of studies deal with printing of nano-enhanced polymer inks to produce a pattern on dry fabric level that could be used to fabricate CFRPs with improved through thickness electrical conductivity. The present study investigates the employment of screen-printing process on technical dry fabrics using nano-reinforced polymer-based inks to achieve the required through thickness conductivity, opening new pathways for the application of fiber reinforced composites in niche products. Commercially available inks and in-house prepared inks reinforced with electrically conductive nanoparticles are employed, printed in different patterns. The aim of the present study is to investigate both the effect of the nanoparticle concentration as well as the droplet patterns (diameter, inter-droplet distance and coverage) to optimize printing for the desired level of conductivity enhancement in the lamina level. The electrical conductivity is measured initially at ink level to pinpoint the optimum concentrations to be employed using a “four-probe” configuration. Upon printing of the different patterns, the coverage of the dry fabric area is assessed along with the permeability of the resulting dry fabrics, in alignment with the fabrication of CFRPs that requires adequate wetting by the epoxy matrix. Results demonstrated increased electrical conductivities of the printed droplets, with increase of the conductivity from the benchmark value of 0.1 S/M to between 8 and 10 S/m. Printability of dense and dispersed patterns has exhibited promising results in terms of increasing the z-axis conductivity without inhibiting the penetration of the epoxy matrix at the processing stage of fiber reinforced composites. The high value and niche prospect of the resulting applications that can stem from CFRPs with increased through thickness electrical conductivities highlights the potential of the presented endeavor, signifying screen printing as the process to to nano-enable z-axis electrical conductivity in composite laminas. This work was co-funded by the European Regional Development Fund and the Republic of Cyprus through the Research and Innovation Foundation (Project: ENTERPRISES/0618/0013).

Keywords: CFRPs, conductivity, nano-reinforcement, screen-printing

Procedia PDF Downloads 153
3628 Assessment of Biofilm Production Capacity of Industrially Important Bacteria under Electroinductive Conditions

Authors: Omolola Ojetayo, Emmanuel Garuba, Obinna Ajunwa, Abiodun A. Onilude

Abstract:

Introduction: Biofilm is a functional community of microorganisms that are associated with a surface or an interface. These adherent cells become embedded within an extracellular matrix composed of polymeric substances, i.e., biofilms refer to biological deposits consisting of both microbes and their extracellular products on biotic and abiotic surfaces. Despite their detrimental effects in medicine, biofilms as natural cell immobilization have found several applications in biotechnology, such as in the treatment of wastewater, bioremediation and biodegradation, desulfurization of gas, and conversion of agro-derived materials into alcohols and organic acids. The means of enhancing immobilized cells have been chemical-inductive, and this affects the medium composition and final product. Physical factors including electrical, magnetic, and electromagnetic flux have shown potential for enhancing biofilms depending on the bacterial species, nature, and intensity of emitted signals, the duration of exposure, and substratum used. However, the concept of cell immobilisation by electrical and magnetic induction is still underexplored. Methods: To assess the effects of physical factors on biofilm formation, six American typed culture collection (Acetobacter aceti ATCC15973, Pseudomonas aeruginosa ATCC9027, Serratia marcescens ATCC14756, Gluconobacter oxydans ATCC19357, Rhodobacter sphaeroides ATCC17023, and Bacillus subtilis ATCC6633) were used. Standard culture techniques for bacterial cells were adopted. Natural autoimmobilisation potentials of test bacteria were carried out by simple biofilms ring formation on tubes, while crystal violet binding assay techniques were adopted in the characterisation of biofilm quantity. Electroinduction of bacterial cells by direct current (DC) application in cell broth, static magnetic field exposure, and electromagnetic flux were carried out, and autoimmobilisation of cells in a biofilm pattern was determined on various substrata tested, including wood, glass, steel, polyvinylchloride (PVC) and polyethylene terephthalate. Biot Savart law was used in quantifying magnetic field intensity, and statistical analyses of data obtained were carried out using the analyses of variance (ANOVA) as well as other statistical tools. Results: Biofilm formation by the selected test bacteria was enhanced by the physical factors applied. Electromagnetic induction had the greatest effect on biofilm formation, with magnetic induction producing the least effect across all substrata used. Microbial cell-cell communication could be a possible means via which physical signals affected the cells in a polarisable manner. Conclusion: The enhancement of biofilm formation by bacteria using physical factors has shown that their inherent capability as a cell immobilization method can be further optimised for industrial applications. A possible relationship between the presence of voltage-dependent channels, mechanosensitive channels, and bacterial biofilms could shed more light on this phenomenon.

Keywords: bacteria, biofilm, cell immobilization, electromagnetic induction, substrata

Procedia PDF Downloads 191
3627 Influence of Coenzyme as a Corrosion Barrier for Biodegradable Magnesium

Authors: Minjung Park, Jimin Park, Youngwoon Kim, Hyungseop Han, Myoungryul Ok, Hojeong Jeon, Hyunkwang Seok, Yuchan Kim

Abstract:

Magnesium is an essential element in human body and has unique characteristics such as bioabsorbable and biodegradable properties. Therefore, there has been much attention on studies on the implants based on magnesium to avoid subsequent surgery. However, high amount of hydrogen gas is generated by relatively severe corrosion of magnesium especially in aqueous condition with chloride ions. And it contributes to the causes of swelling of skin and causes consequent inflammation of soft tissue where is directly in contact with implants. Therefore, there is still concern about the safety of the using biodegradable magnesium alloys, which is limited to various applications. In this study, we analyzed the influence of coenzyme on corrosion behavior of magnesium. The analysis of corrosion rate was held by using Hanks’ balanced salt solution (HBSS) as a body stimulated fluid and in condition of 37°C. Thus, with deferring the concentration of the coenzyme used in this study, corrosion rates from 0.0654ml/ cm² to 0.0438ml/cm² were observed in immersion tests. Also, comparable results were obtained in electrochemical tests. Results showed that hydrogen gas produced from corrosion of magnesium can be controlled.

Keywords: biodegradable magnesium, biomaterials, coenzyme, corrosion

Procedia PDF Downloads 427
3626 On Supporting a Meta-Design Approach in Socio-Technical Ontology Engineering

Authors: Mesnan Silalahi, Dana Indra Sensuse, Indra Budi

Abstract:

Many research have revealed the fact of the complexity of ontology building process that there is a need to have a new approach which addresses the socio-technical aspects in the collaboration to reach a consensus. Meta-design approach is considered applicable as a method in the methodological model in a socio-technical ontology engineering. Principles in the meta-design framework is applied in the construction phases on the ontology. A portal is developed to support the meta-design principles requirements. To validate the methodological model semantic web applications were developed and integrated in the portal and also used as a way to show the usefulness of the ontology. The knowledge based system will be filled with data of Indonesian medicinal plants. By showing the usefulness of the developed ontology in a web semantic application, we motivate all stakeholders to participate in the development of knowledge based system of medicinal plants in Indonesia.

Keywords: socio-technical, metadesign, ontology engineering methodology, semantic web application

Procedia PDF Downloads 440
3625 Augmenting History: Case Study Measuring Motivation of Students Using Augmented Reality Apps in History Classes

Authors: Kevin. S. Badni

Abstract:

Due to the rapid advances in the use of information technology and students’ familiarity with technology, learning styles in higher education are being reshaped. One of the technology developments that has gained considerable attention in recent years is Augmented Reality (AR), where technology is used to combine overlays of digital data on physical real-world settings. While AR is being heavily promoted for entertainment by mobile phone manufacturers, it has had little adoption in higher education due to the required upfront investment that an instructor needs to undertake in creating relevant AR applications. This paper discusses a case study that uses a low upfront development approach and examines the impact on generation-Z students’ motivation whilst studying design history over a four-semester period. Even though the upfront investment in creating the AR support was minimal, the results showed a noticeable increase in student motivation. The approach used in this paper can be easily transferred to other disciplines and other areas of design education.

Keywords: augmented reality, history, motivation, technology

Procedia PDF Downloads 168
3624 Growth Mechanism and Sensing Behaviour of Sn Doped ZnO Nanoprisms Prepared by Thermal Evaporation Technique

Authors: Sudip Kumar Sinha, Saptarshi Ghosh

Abstract:

While there’s a perpetual buzz around zinc oxide (ZnO) superstructures for their unique optical features, the versatile material has been constantly utilized to manifest tailored electronic properties through rendition of distinct morphologies. And yet, the unorthodox approach of implementing the novel 1D nanostructures of ZnO (pristine or doped) for volatile sensing applications has ample scope to accommodate new unconventional morphologies. In the last two decades, solid-state sensors have attracted much curiosity for their relevance in identifying pollutant, toxic and other industrial gases. In particular gas sensors based on metal oxide semiconducting (wide Eg) nanomaterials have recently attracted intensive attention owing to their high sensitivity and fast response and recovery time. These materials when exposed to air, the atmospheric O2 dissociates and get absorb on the surface of the sensors by trapping the outermost shell electrons. Finally a depleted zone on the surface of the sensors is formed, that enhances the potential barrier height at grain boundary . Once a target gas is exposed to the sensor, the chemical interaction between the chemisorbed oxygen and the specific gas liberates the trapped electrons. Therefore altering the amount of adsorbate is a considerable approach to improve the sensitivity of any target gas/vapour molecule. Likewise, this study presents a spontaneous but self catalytic creation of Sn-doped ZnO hexagonal nanoprisms on Si (100) substrates through thermal evaporation-condensation method, and their subsequent deployment for volatile sensing. In particular, the sensors were utilized to detect molecules of ethanol, acetone and ammonia below their permissible exposure limits which returned sensitivities of around 85%, 80% and 50% respectively. The influence of Sn concentration on the growth, microstructural and optical properties of the nanoprisms along with its role in augmenting the sensing parameters has been detailed. The single-crystalline nanostructures have a typical diameter ranging from 300 to 500 nm and a length that extends up to few micrometers. HRTEM images confirmed the hexagonal crystallography for the nanoprisms, while SAED pattern asserted the single crystalline nature. The growth habit is along the low index <0001>directions. It has been seen that the growth mechanism of the as-deposited nanostructures are directly influenced by varying supersaturation ratio, fairly high substrate temperatures, and specified surface defects in certain crystallographic planes, all acting cooperatively decide the final product morphology. Room temperature photoluminescence (PL) spectra of this rod like structures exhibits a weak ultraviolet (UV) emission peak at around 380 nm and a broad green emission peak in the 505 nm regime. An estimate of the sensing parameters against dispensed target molecules highlighted the potential for the nanoprisms as an effective volatile sensing material. The Sn-doped ZnO nanostructures with unique prismatic morphology may find important applications in various chemical sensors as well as other potential nanodevices.

Keywords: gas sensor, HRTEM, photoluminescence, ultraviolet, zinc oxide

Procedia PDF Downloads 241
3623 Overview of Development of a Digital Platform for Building Critical Infrastructure Protection Systems in Smart Industries

Authors: Bruno Vilić Belina, Ivan Župan

Abstract:

Smart industry concepts and digital transformation are very popular in many industries. They develop their own digital platforms, which have an important role in innovations and transactions. The main idea of smart industry digital platforms is central data collection, industrial data integration, and data usage for smart applications and services. This paper presents the development of a digital platform for building critical infrastructure protection systems in smart industries. Different service contraction modalities in service level agreements (SLAs), customer relationship management (CRM) relations, trends, and changes in business architectures (especially process business architecture) for the purpose of developing infrastructural production and distribution networks, information infrastructure meta-models and generic processes by critical infrastructure owner demanded by critical infrastructure law, satisfying cybersecurity requirements and taking into account hybrid threats are researched.

Keywords: cybersecurity, critical infrastructure, smart industries, digital platform

Procedia PDF Downloads 110
3622 Functional Specifications of Diesel Electric Locomotives

Authors: Rohan Sarker, Cory Smith

Abstract:

ROMIC Group UK is a leading provider of diesel electric locomotives, specializing in innovative and efficient solutions for rail transportation. With a strong focus on sustainability and performance, ROMIC's diesel electric locomotives are engineered to reduce fuel consumption while maximizing operational efficiency. The company's locomotives incorporate advanced technologies such as regenerative braking systems and precision control software, which enhance fuel economy and minimize environmental impact. ROMIC's extensive experience in the rail sector enables it to deliver reliable and powerful locomotives that meet the demands of both freight and passenger services. These locomotives are designed for heavy-duty applications, offering superior traction and load-carrying capacity across various terrains. The company's commitment to cutting-edge engineering and customer satisfaction ensures that its locomotives are a trusted choice for rail operators looking for high performance and low operational costs. ROMIC Group UK continues to drive innovation in the rail industry with its sustainable locomotive solutions.

Keywords: diesel, electric, engines, locomotives

Procedia PDF Downloads 23
3621 Experimentation and Analysis of Reinforced Basalt and Carbon Fibres Composite Laminate Mechanical Properties

Authors: Vara Prasad Vemu

Abstract:

The aim of the present work is to investigate the mechanical properties and water absorption capacity of carbon and basalt fibers mixed with matrix epoxy. At present, there is demand for nature friendly products. Basalt reinforced composites developed recently, and these mineral amorphous fibres are a valid alternative to carbon fibres for their lower cost and to glass fibres for their strength. The present paper describes briefly on basalt and carbon fibres (uni-directional) which are used as reinforcement materials for composites. The matrix epoxy (LY 556-HY 951) is taken into account to assess its influence on the evaluated parameters. In order to use reinforced composites for structural applications, it is necessary to perform a mechanical characterization. With this aim experiments like tensile strength, flexural strength, hardness and water absorption are performed. Later the mechanical properties obtained from experiments are compared with ANSYS software results.

Keywords: carbon fibre, basalt fibre, uni-directional, reinforcement, mechanical tests, water absorption test, ANSYS

Procedia PDF Downloads 200
3620 Cellular Architecture of Future Wireless Communication Networks

Authors: Mohammad Yahaghifar

Abstract:

Nowadays Wireless system designers have been facing the continuously increasing demand for high data rates and mobility required by new wireless applications. Evolving future communication network generation cellular wireless networks are envisioned to overcome the fundamental challenges of existing cellular networks, for example, higher data rates, excellent end-to-end performance, and user coverage in hot-spots and crowded areas with lower latency,energy consumption and cost per information transfer. In this paper we propose a potential cellular architecture that separates indoor and outdoor scenarios and discuss various promising technologies for future wireless communication systemssystems, such as massive MIMO, energy-efficient communications,cognitive radio networks, and visible light communications and we disscuse about 5G that is next generation of wireless networks.

Keywords: future challenges in networks, cellur architecture, visible light communication, 5G wireless technologies, spatial modulation, massiva mimo, cognitive radio network, green communications

Procedia PDF Downloads 490