Search results for: network distributed diagnosis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8310

Search results for: network distributed diagnosis

4860 Prediction of Coronary Artery Stenosis Severity Based on Machine Learning Algorithms

Authors: Yu-Jia Jian, Emily Chia-Yu Su, Hui-Ling Hsu, Jian-Jhih Chen

Abstract:

Coronary artery is the major supplier of myocardial blood flow. When fat and cholesterol are deposit in the coronary arterial wall, narrowing and stenosis of the artery occurs, which may lead to myocardial ischemia and eventually infarction. According to the World Health Organization (WHO), estimated 740 million people have died of coronary heart disease in 2015. According to Statistics from Ministry of Health and Welfare in Taiwan, heart disease (except for hypertensive diseases) ranked the second among the top 10 causes of death from 2013 to 2016, and it still shows a growing trend. According to American Heart Association (AHA), the risk factors for coronary heart disease including: age (> 65 years), sex (men to women with 2:1 ratio), obesity, diabetes, hypertension, hyperlipidemia, smoking, family history, lack of exercise and more. We have collected a dataset of 421 patients from a hospital located in northern Taiwan who received coronary computed tomography (CT) angiography. There were 300 males (71.26%) and 121 females (28.74%), with age ranging from 24 to 92 years, and a mean age of 56.3 years. Prior to coronary CT angiography, basic data of the patients, including age, gender, obesity index (BMI), diastolic blood pressure, systolic blood pressure, diabetes, hypertension, hyperlipidemia, smoking, family history of coronary heart disease and exercise habits, were collected and used as input variables. The output variable of the prediction module is the degree of coronary artery stenosis. The output variable of the prediction module is the narrow constriction of the coronary artery. In this study, the dataset was randomly divided into 80% as training set and 20% as test set. Four machine learning algorithms, including logistic regression, stepwise regression, neural network and decision tree, were incorporated to generate prediction results. We used area under curve (AUC) / accuracy (Acc.) to compare the four models, the best model is neural network, followed by stepwise logistic regression, decision tree, and logistic regression, with 0.68 / 79 %, 0.68 / 74%, 0.65 / 78%, and 0.65 / 74%, respectively. Sensitivity of neural network was 27.3%, specificity was 90.8%, stepwise Logistic regression sensitivity was 18.2%, specificity was 92.3%, decision tree sensitivity was 13.6%, specificity was 100%, logistic regression sensitivity was 27.3%, specificity 89.2%. From the result of this study, we hope to improve the accuracy by improving the module parameters or other methods in the future and we hope to solve the problem of low sensitivity by adjusting the imbalanced proportion of positive and negative data.

Keywords: decision support, computed tomography, coronary artery, machine learning

Procedia PDF Downloads 229
4859 Diagnosis on Environmental Impacts of Tourism at Caju Beach in Palmas, Tocantins, Brazil

Authors: Mary L. G. S. Senna, Veruska, C. Dutra, Jr., Keity L. F. Oliveira, Patrícia A. Santos, Alana C. M. Santana

Abstract:

Environmental impacts are the changes in the physical, chemical or biological properties of natural areas that are most often caused by human actions on the environment and which have consequences for human health, society and the elements of nature. The identification of the environmental impacts is important so that they are mitigated, and above all that the mitigating measures are applied in the area. This work aims to identify the environmental impacts generated in the Praia do Caju area in the city of Palmas/Brazil and show that the lack of structure on the beach intensifies the environmental impacts. The present work was carried out having as parameter, the typologies of exploratory and descriptive and quantitative research through a matrix of environmental impacts through direct observation and registration. The study took place during the holidays from August to December 2016 and photographic record of impacts. From the collected data it was possible to verify that Caju beach suffers constant degradation due to irregular deposition.

Keywords: leisure, tourism, environmental impacts, Brazil

Procedia PDF Downloads 337
4858 Tumor Detection of Cerebral MRI by Multifractal Analysis

Authors: S. Oudjemia, F. Alim, S. Seddiki

Abstract:

This paper shows the application of multifractal analysis for additional help in cancer diagnosis. The medical image processing is a very important discipline in which many existing methods are in search of solutions to real problems of medicine. In this work, we present results of multifractal analysis of brain MRI images. The purpose of this analysis was to separate between healthy and cancerous tissue of the brain. A nonlinear method based on multifractal detrending moving average (MFDMA) which is a generalization of the detrending fluctuations analysis (DFA) is used for the detection of abnormalities in these images. The proposed method could make separation of the two types of brain tissue with success. It is very important to note that the choice of this non-linear method is due to the complexity and irregularity of tumor tissue that linear and classical nonlinear methods seem difficult to characterize completely. In order to show the performance of this method, we compared its results with those of the conventional method box-counting.

Keywords: irregularity, nonlinearity, MRI brain images, multifractal analysis, brain tumor

Procedia PDF Downloads 443
4857 Using the GIS Technology for Erosion Risk Mapping of BEN EL WIDAN Dam Watershed in Beni Mallal, Marroco

Authors: Azzouzi Fadoua

Abstract:

This study focuses on the diagnosis of the dynamics of natural resources in a semi-arid mountainous weakened by natural vulnerability and anthropogenic action. This is evident in the forms of hydraulic erosion and degradation of agricultural land. The rate of this damaged land is 53%, with a strong presence of concentrated erosion; this shows that balanced and semi-balanced environments are less apparent to the Watershed, representing 47%. The results revealed the crucial role of the slopes and the density of the hydraulic networks to facilitate the transport of fine elements, at the level of the slopes with low vegetation intensity, to the lake of the dam. Something that endangers the siltation of the latter. After the study of natural and anthropogenic elements, it turned out that natural vulnerability is an integral part of the current dynamic, especially when it coincides with the overexploitation of natural resources, in this case, the exploitation of steep slopes for the cultivation of cereals and overgrazing. This causes the soil to pile up and increase the rate of runoff.

Keywords: watershed, erosion, natural vulnerability, anthropogenic

Procedia PDF Downloads 151
4856 A Petri Net Model to Obtain the Throughput of Unreliable Production Lines in the Buffer Allocation Problem

Authors: Joselito Medina-Marin, Alexandr Karelin, Ana Tarasenko, Juan Carlos Seck-Tuoh-Mora, Norberto Hernandez-Romero, Eva Selene Hernandez-Gress

Abstract:

A production line designer faces with several challenges in manufacturing system design. One of them is the assignment of buffer slots in between every machine of the production line in order to maximize the throughput of the whole line, which is known as the Buffer Allocation Problem (BAP). The BAP is a combinatorial problem that depends on the number of machines and the total number of slots to be distributed on the production line. In this paper, we are proposing a Petri Net (PN) Model to obtain the throughput in unreliable production lines, based on PN mathematical tools and the decomposition method. The results obtained by this methodology are similar to those presented in previous works, and the number of machines is not a hard restriction.

Keywords: buffer allocation problem, Petri Nets, throughput, production lines

Procedia PDF Downloads 307
4855 Digital Platforms: Creating Value through Network Effects under Pandemic Conditions

Authors: S. Łęgowik-Świącik

Abstract:

This article is a contribution to the research into the determinants of value creation via digital platforms in variable operating conditions. The dynamics of the market environment caused by the COVID-19 pandemic have made enterprises built on digital platforms financially successful. While many classic companies are struggling with the uncertainty of conducting a business and difficulties in the process of value creation, digital platforms create value by modifying the existing business model to meet the changing needs of customers. Therefore, the objective of this publication is to understand and explain the relationship between value creation and the conversion of the business model built on digital platforms under pandemic conditions. The considerations relating to the conceptual framework and determining the research objective allowed for adopting the hypothesis, assuming that the processes of value creation are evolving, and the measurement of these processes allows for the protection of value created and enables its growth in changing circumstances. The research methods, such as critical literature analysis and case study, were applied to accomplish the objective pursued and verify the hypothesis formulated. The empirical research was carried out based on the data from enterprises listed on the Nasdaq Stock Exchange: Amazon, Alibaba, and Facebook. The research period was the years 2018-2021. The surveyed enterprises were chosen based on the targeted selection. The problem discussed is important and current since the lack of in-depth theoretical research results in few attempts to identify the determinants of value creation via digital platforms. The above arguments led to an attempt at theoretical analysis and empirical research to fill in the gap perceived by deepening the understanding of the process of value creation through network effects via digital platforms under pandemic conditions.

Keywords: business model, digital platforms, enterprise management, pandemic conditions, value creation process

Procedia PDF Downloads 128
4854 Towards a Balancing Medical Database by Using the Least Mean Square Algorithm

Authors: Kamel Belammi, Houria Fatrim

Abstract:

imbalanced data set, a problem often found in real world application, can cause seriously negative effect on classification performance of machine learning algorithms. There have been many attempts at dealing with classification of imbalanced data sets. In medical diagnosis classification, we often face the imbalanced number of data samples between the classes in which there are not enough samples in rare classes. In this paper, we proposed a learning method based on a cost sensitive extension of Least Mean Square (LMS) algorithm that penalizes errors of different samples with different weight and some rules of thumb to determine those weights. After the balancing phase, we applythe different classifiers (support vector machine (SVM), k- nearest neighbor (KNN) and multilayer neuronal networks (MNN)) for balanced data set. We have also compared the obtained results before and after balancing method.

Keywords: multilayer neural networks, k- nearest neighbor, support vector machine, imbalanced medical data, least mean square algorithm, diabetes

Procedia PDF Downloads 532
4853 A Multilayer Perceptron Neural Network Model Optimized by Genetic Algorithm for Significant Wave Height Prediction

Authors: Luis C. Parra

Abstract:

The significant wave height prediction is an issue of great interest in the field of coastal activities because of the non-linear behavior of the wave height and its complexity of prediction. This study aims to present a machine learning model to forecast the significant wave height of the oceanographic wave measuring buoys anchored at Mooloolaba of the Queensland Government Data. Modeling was performed by a multilayer perceptron neural network-genetic algorithm (GA-MLP), considering Relu(x) as the activation function of the MLPNN. The GA is in charge of optimized the MLPNN hyperparameters (learning rate, hidden layers, neurons, and activation functions) and wrapper feature selection for the window width size. Results are assessed using Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). The GAMLPNN algorithm was performed with a population size of thirty individuals for eight generations for the prediction optimization of 5 steps forward, obtaining a performance evaluation of 0.00104 MSE, 0.03222 RMSE, 0.02338 MAE, and 0.71163% of MAPE. The results of the analysis suggest that the MLPNNGA model is effective in predicting significant wave height in a one-step forecast with distant time windows, presenting 0.00014 MSE, 0.01180 RMSE, 0.00912 MAE, and 0.52500% of MAPE with 0.99940 of correlation factor. The GA-MLP algorithm was compared with the ARIMA forecasting model, presenting better performance criteria in all performance criteria, validating the potential of this algorithm.

Keywords: significant wave height, machine learning optimization, multilayer perceptron neural networks, evolutionary algorithms

Procedia PDF Downloads 107
4852 Solar Power Generation in a Mining Town: A Case Study for Australia

Authors: Ryan Chalk, G. M. Shafiullah

Abstract:

Climate change is a pertinent issue facing governments and societies around the world. The industrial revolution has resulted in a steady increase in the average global temperature. The mining and energy production industries have been significant contributors to this change prompting government to intervene by promoting low emission technology within these sectors. This paper initially reviews the energy problem in Australia and the mining sector with a focus on the energy requirements and production methods utilised in Western Australia (WA). Renewable energy in the form of utility-scale solar photovoltaics (PV) provides a solution to these problems by providing emission-free energy which can be used to supplement the existing natural gas turbines in operation at the proposed site. This research presents a custom renewable solution for the mining site considering the specific township network, local weather conditions, and seasonal load profiles. A summary of the required PV output is presented to supply slightly over 50% of the towns power requirements during the peak (summer) period, resulting in close to full coverage in the trench (winter) period. Dig Silent Power Factory Software has been used to simulate the characteristics of the existing infrastructure and produces results of integrating PV. Large scale PV penetration in the network introduce technical challenges, that includes; voltage deviation, increased harmonic distortion, increased available fault current and power factor. Results also show that cloud cover has a dramatic and unpredictable effect on the output of a PV system. The preliminary analyses conclude that mitigation strategies are needed to overcome voltage deviations, unacceptable levels of harmonics, excessive fault current and low power factor. Mitigation strategies are proposed to control these issues predominantly through the use of high quality, made for purpose inverters. Results show that use of inverters with harmonic filtering reduces the level of harmonic injections to an acceptable level according to Australian standards. Furthermore, the configuration of inverters to supply active and reactive power assist in mitigating low power factor problems. Use of FACTS devices; SVC and STATCOM also reduces the harmonics and improve the power factor of the network, and finally, energy storage helps to smooth the power supply.

Keywords: climate change, mitigation strategies, photovoltaic (PV), power quality

Procedia PDF Downloads 166
4851 Parallel among Urinary Tract Infection in Diabetic and Non-Diabetic Patients: A Case Study

Authors: Khaled Khleifat

Abstract:

This study detects the bacterial species that responsible for UTI in both diabetic patients and non-diabetic patients, Jordan. 116 urine samples were investigated in order to determine UTI-causing bacteria. These samples distributed unequally between diabetic male (12) and diabetic female (25) and also non-diabetic male (13) and non-diabetic female (66). The results represent that E.coli is responsible for UTI in both diabetic and non-diabetic patients (15.5% and 29.3% respectively) with large proportion (44.8%). This study showed that not all bacterial species that isolated from the non-diabetic sample could be isolated from diabetic samples. E. coli (15.5%), P. aeruginosa (4.3%), K. pneumonia (1.7%), P. mirabilis (2.6%), S. marcescens (0.9%), S. aureus (1.7%), S. pyogenes (1.7%), E. faecalis (0.9%), S. epidermidis (1.7%) and S. saprophyticus (0.9%). But E. aerogenes, E. cloacae, C. freundii, A. baumannii and B. subtilis are five bacterial species that can’t isolate from all diabetic samples. This study shows that for the treatment of UTI in both diabetic and non-diabetic patients, Chloramphenicol (30 μg), Ciprofloxacin (5 μg) and Vancomycin (30 μg) are more favorable than other antibiotics. In the same time, Cephalothin (30μg) is not recommended.

Keywords: urinary tract infections, diabetes mellitus, bacterial species, infections

Procedia PDF Downloads 327
4850 A Survey on the Requirements of University Course Timetabling

Authors: Nurul Liyana Abdul Aziz, Nur Aidya Hanum Aizam

Abstract:

Course timetabling problems occur every semester in a university which includes the allocation of resources (subjects, lecturers and students) to a number of fixed rooms and timeslots. The assignment is carried out in a way such that there are no conflicts within rooms, students and lecturers, as well as fulfilling a range of constraints. The constraints consist of rules and policies set up by the universities as well as lecturers’ and students’ preferences of courses to be allocated in specific timeslots. This paper specifically focuses on the preferences of the course timetabling problem in one of the public universities in Malaysia. The demands will be considered into our existing mathematical model to make it more generalized and can be used widely. We have distributed questionnaires to a number of lecturers and students of the university to investigate their demands and preferences for their desired course timetable. We classify the preferences thus converting them to construct one mathematical model that can produce such timetable.

Keywords: university course timetabling problem, integer programming, preferences, constraints

Procedia PDF Downloads 367
4849 Monitor Vehicle Speed Using Internet of Things Based Wireless Sensor Network System

Authors: Akber Oumer Abdurezak

Abstract:

Road traffic accident is a major problem in Ethiopia, resulting in the deaths of many people and potential injuries and crash every year and loss of properties. According to the Federal Transport Authority, one of the main causes of traffic accident and crash in Ethiopia is over speeding. Implementation of different technologies is used to monitor the speed of vehicles in order to minimize accidents and crashes. This research aimed at designing a speed monitoring system to monitor the speed of travelling vehicles and movements, reporting illegal speeds or overspeeding vehicles to the concerned bodies. The implementation of the system is through a wireless sensor network. The proposed system can sense and detect the movement of vehicles, process, and analysis the data obtained from the sensor and the cloud system. The data is sent to the central controlling server. The system contains accelerometer and gyroscope sensors to sense and collect the data of the vehicle. Arduino to process the data and Global System for Mobile Communication (GSM) module for communication purposes to send the data to the concerned body. When the speed of the vehicle exceeds the allowable speed limit, the system sends a message to database as “over speeding”. Both accelerometer and gyroscope sensors are used to collect acceleration data. The acceleration data then convert to speed, and the corresponding speed is checked with the speed limit, and those above the speed limit are reported to the concerned authorities to avoid frequent accidents. The proposed system decreases the occurrence of accidents and crashes due to overspeeding and can be used as an eye opener for the implementation of other intelligent transport system technologies. This system can also integrate with other technologies like GPS and Google Maps to obtain better output.

Keywords: accelerometer, IOT, GSM, gyroscope

Procedia PDF Downloads 75
4848 SkyCar Rapid Transit System: An Integrated Approach of Modern Transportation Solutions in the New Queen Elizabeth Quay, Perth, Western Australia

Authors: Arfanara Najnin, Michael W. Roach, Jr., Dr. Jianhong Cecilia Xia

Abstract:

The SkyCar Rapid Transit System (SRT) is an innovative intelligent transport system for the sustainable urban transport system. This system will increase the urban area network connectivity and decrease urban area traffic congestion. The SRT system is designed as a suspended Personal Rapid Transit (PRT) system that travels under a guideway 5m above the ground. A driver-less passenger is via pod-cars that hang from slender beams supported by columns that replace existing lamp posts. The beams are setup in a series of interconnecting loops providing non-stop travel from beginning to end to assure journey time. The SRT forward movement is effected by magnetic motors built into the guideway. Passenger stops are at either at line level 5m above the ground or ground level via a spur guideway that curves off the main thoroughfare. The main objective of this paper is to propose an integrated Automated Transit Network (ATN) technology for the future intelligent transport system in the urban built environment. To fulfil the objective a 4D simulated model in the urban built environment has been proposed by using the concept of SRT-ATN system. The methodology for the design, construction and testing parameters of a Technology Demonstrator (TD) for proof of concept and a Simulator (S) has been demonstrated. The completed TD and S will provide an excellent proving ground for the next development stage, the SRT Prototype (PT) and Pilot System (PS). This paper covered by a 4D simulated model in the virtual built environment is to effectively show how the SRT-ATN system works. OpenSim software has been used to develop the model in a virtual environment, and the scenario has been simulated to understand and visualize the proposed SkyCar Rapid Transit Network model. The SkyCar system will be fabricated in a modular form which is easily transported. The system would be installed in increasingly congested city centers throughout the world, as well as in airports, tourist resorts, race tracks and other special purpose for the urban community. This paper shares the lessons learnt from the proposed innovation and provides recommendations on how to improve the future transport system in urban built environment. Safety and security of passengers are prime factors to be considered for this transit system. Design requirements to meet the safety needs to be part of the research and development phase of the project. Operational safety aspects would also be developed during this period. The vehicles, the track and beam systems and stations are the main components that need to be examined in detail for safety and security of patrons. Measures will also be required to protect columns adjoining intersections from errant vehicles in vehicular traffic collisions. The SkyCar Rapid Transit takes advantage of all current disruptive technologies; batteries, sensors and 4G/5G communication and solar energy technologies which will continue to reduce the costs and make the systems more profitable. SkyCar's energy consumption is extremely low compared to other transport systems.

Keywords: SkyCar, rapid transit, Intelligent Transport System (ITS), Automated Transit Network (ATN), urban built environment, 4D Visualization, smart city

Procedia PDF Downloads 217
4847 Breastfeeding in Childhood Asthma: A Boon or a Bane

Authors: Harish Peri, Amit Devgan

Abstract:

The aim of this study was to evaluate the impact of exclusive breastfeeding on asthma and lung function in childhood asthma. A case-control study comprising 80 cases (children with asthma) and 80 controls(children without asthma) in the age group 6-12 years were included. A diagnosis was made by the treating pediatrician. A parental questionnaire was given and data regarding the name, age, sex of the child, duration of asthma, whether breastfed or not, duration, exclusiveness of breastfeeding and maternal asthmatic status were collected. Peak Expiratory Flow Rate was measured for every child using a Peak Expiratory Flow Meter. Results showed Exclusively Breastfed children were found to better protected against asthma and have improved lung function as compared to Non-exclusively Breastfeed children, irrespective of the mother’s asthmatic status. This study demonstrated that exclusive breastfeeding has a protective action against childhood asthma.

Keywords: asthmatic mothers, childhood asthma, exclusive breastfeeding, non-asthmatic mothers

Procedia PDF Downloads 291
4846 Non-Revenue Water Management in Palestine

Authors: Samah Jawad Jabari

Abstract:

Water is the most important and valuable resource not only for human life but also for all living things on the planet. The water supply utilities should fulfill the water requirement quantitatively and qualitatively. Drinking water systems are exposed to both natural (hurricanes and flood) and manmade hazards (risks) that are common in Palestine. Non-Revenue Water (NRW) is a manmade risk which remains a major concern in Palestine, as the NRW levels are estimated to be at a high level. In this research, Hebron city water distribution network was taken as a case study to estimate and audit the NRW levels. The research also investigated the state of the existing water distribution system in the study area by investigating the water losses and obtained more information on NRW prevention and management practices. Data and information have been collected from the Palestinian Water Authority (PWA) and Hebron Municipality (HM) archive. In addition to that, a questionnaire has been designed and administered by the researcher in order to collect the necessary data for water auditing. The questionnaire also assessed the views of stakeholder in PWA and HM (staff) on the current status of the NRW in the Hebron water distribution system. The important result obtained by this research shows that NRW in Hebron city was high and in excess of 30%. The main factors that contribute to NRW were the inaccuracies in billing volumes, unauthorized consumption, and the method of estimating consumptions through faulty meters. Policy for NRW reduction is available in Palestine; however, it is clear that the number of qualified staff available to carry out the activities related to leak detection is low, and that there is a lack of appropriate technologies to reduce water losses and undertake sufficient system maintenance, which needs to be improved to enhance the performance of the network and decrease the level of NRW losses.

Keywords: non-revenue water, water auditing, leak detection, water meters

Procedia PDF Downloads 298
4845 Development and State in Brazil: How Do Some Institutions Think and Influence These Issues

Authors: Alessandro Andre Leme

Abstract:

To analyze three Brazilian think tanks: a) Fernando Henrique Foundation; b) Celso Furtado International Center; c) Millennium Institute and how they dispute interpretations about the type of development and State that should be adopted in Brazil. We will make use of Network and content analysis of the sites. The analyzes show a dispute that goes from a defense of ultraliberalism to developmentalism, going through a hybrid between State and Market voiced in each of the Think Tanks.

Keywords: sociopolitical and economic thinking, development, strategies, intellectuals, state

Procedia PDF Downloads 150
4844 Prevalence of Dens Evaginatus in Adolescent Population of Melaka: A Retrospective Study

Authors: Preethy Mary Donald, Renjith George Pallivathukal

Abstract:

Dens evaginatus (DE) is a rare developmental anomaly characterized by a slender enamel-covered tubercle which projects from the occlusal surface of an otherwise normal premolar. DE can often interfere normal occlusion and can lead to complications like sensitivity, pulpal exposure and temporo mandibular joint problems. The orthopantomographs (OPGs) and dental records of patients under the age of 20 who attended the faculty of dentistry, Melaka-Manipal Medical College were examined for DE. Results: The prevalence of DE was 23% among the study group. Males presented with a higher prevalence of 67% and females with 33%. The prevalence of Dens evaginatus was distributed as 28% in maxillary central incisor, 52% in maxillary lateral incisors, 12% in mandibular second premolars. Prevalence in permanent dentitions appeared to be higher than deciduous dentition. The bilateral occurrence of Dens evaginatus is an interesting phenomenon. 57% of the cases of the DE were bilateral.

Keywords: deciduous dentition, dens evaginatus, permanent dentition, prevalence

Procedia PDF Downloads 306
4843 Control Scheme for Single-Stage Boost Inverter for Grid-Connected Photovoltaic

Authors: Mohammad Reza Ebrahimi, Behnaz Mahdaviani

Abstract:

Increasing renewable sources such photovoltaic are the reason of environmental pollution. Because photovoltaic generates power in low voltage, first, generated power should increase. Usually, distributed generation injects their power to AC-Grid, hence after voltage increasing an inverter is needed to convert DC power to AC power. This results in utilization two series converter that grows cost, complexity, and low efficiency. In this paper a single stage inverter is utilized to boost and invert in one stage. Control of this scheme is easier, and its initial cost decreases comparing to conventional double stage inverters. A simple control scheme is used to control active power as well as minimum total harmonic distortion (THD) in injected current. Simulations in MATLAB demonstrate better outputs comparing with conventional approaches.

Keywords: maximum power point tracking, boost inverter, control strategy, three phase inverter

Procedia PDF Downloads 372
4842 Potential Impact of Climate Change on Suspended Sediment Changes in Mekong River Basin

Authors: Zuliziana Suif, Nordila Ahmad, Sengheng Hul

Abstract:

This paper evaluates the impact of climate change on suspended sediment changes in the Mekong River Basin. In this study, the distributed process-based sediment transport model is used to examine the potential impact of future climate on suspended sediment dynamic changes in the Mekong River Basin. To this end, climate scenarios from two General Circulation Model (GCMs) were considered in the scenario analysis. The simulation results show that the sediment load and concentration shows 0.64% to 69% increase in the near future (2041-2050) and 2.5% to 95% in the far future (2090- 2099). As the projected climate change impact on sediment varies remarkably between the different climate models, the uncertainty should be taken into account in sediment management. Overall, the changes in sediment load and concentration can have a great implication for related sediment management.

Keywords: climate change, suspended sediment, Mekong River Basin, GCMs

Procedia PDF Downloads 443
4841 Medical Advances in Diagnosing Neurological and Genetic Disorders

Authors: Simon B. N. Thompson

Abstract:

Retinoblastoma is a rare type of childhood genetic cancer that affects children worldwide. The diagnosis is often missed due to lack of education and difficulty in presentation of the tumor. Frequently, the tumor on the retina is noticed by photography when the red-eye flash, commonly seen in normal eyes, is not produced. Instead, a yellow or white colored patch is seen or the child has a noticeable strabismus. Early detection can be life-saving though often results in removal of the affected eye. Remaining functioning in the healthy eye when the child is young has resulted in super-vision and high or above-average intelligence. Technological advancement of cameras has helped in early detection. Brain imaging has also made possible early detection of neurological diseases and, together with the monitoring of cortisol levels and yawning frequency, promises to be the next new early diagnostic tool for the detection of neurological diseases where cortisol insufficiency is particularly salient, such as multiple sclerosis and Cushing’s disease.

Keywords: cortisol, neurological disease, retinoblastoma, Thompson cortisol hypothesis, yawning

Procedia PDF Downloads 386
4840 Symptom Burden and Quality of Life in Advanced Lung Cancer Patients

Authors: Ammar Asma, Bouafia Nabiha, Dhahri Meriem, Ben Cheikh Asma, Ezzi Olfa, Chafai Rim, Njah Mansour

Abstract:

Despite recent advances in treatment of the lung cancer patients, the prognosis remains poor. Information is limited regarding health related quality of life (QOL) status of advanced lung cancer patients. The purposes of this study were: to assess patient reported symptom burden, to measure their QOL, and to identify determinant factors associated with QOL. Materials/Methods: A cross sectional study of 60 patients was carried out from over the period of 03 months from February 1st to 30 April 2016. Patients were recruited in two department of health care: Pneumology department in a university hospital in Sousse and an oncology unit in a University Hospital in Kairouan. Patients with advanced stage (III and IV) of lung cancer who were hospitalized or admitted in the day hospital were recruited by convenience sampling. We used a questionnaire administrated and completed by a trained interviewer. This questionnaire is composed of three parts: demographic, clinical and therapeutic information’s, QOL measurements: based on the SF-36 questionnaire, Symptom’s burden measurement using the Lung Cancer Symptom Scale (LCSS). To assess Correlation between symptoms burden and QOL, we compared the scores of two scales two by two using the Pearson correlation. To identify factors influencing QOL in Lung cancer, a univariate statistical analysis then, a stepwise backward approach, wherein the variables with p< 0.2, were carried out to determine the association between SF-36 scores and different variables. Results: During the study period, 60 patients consented to complete symptom and quality of life questionnaires at a single point time (72% were recruited from day hospital). The majority of patients were male (88%), age ranged from 21 to 79 years with a mean of 60.5 years. Among patients, 48 (80%) were diagnosed as having non-small cell lung carcinoma (NSCLC). Approximately, 60 % (n=36) of patients were in stage IV, 25 % in stage IIIa and 15 % in stage IIIb. For symptom burden, the symptom burden index was 43.07 (Standard Deviation, 21.45). Loss of appetite and fatigue were rated as the most severe symptoms with mean scores (SD): 49.6 (25.7) and 58.2 (15.5). The average overall score of SF36 was 39.3 (SD, 15.4). The physical and emotional limitations had the lowest scores. Univariate analysis showed that factors which influence negatively QOL were: married status (p<0.03), smoking cessation after diagnosis (p<0.024), LCSS total score (p<0.001), LCSS symptom burden index (p<0.001), fatigue (p<0.001), loss of appetite (p<0.001), dyspnea (p<0.001), pain (p<0.002), and metastatic stage (p<0.01). In multivariate analysis, unemployment (p<0.014), smoking cessation after diagnosis (p<0.013), consumption of analgesic (p<0.002) and the indication of an analgesic radiotherapy (p<0.001) are revealed as independent determinants of QOL. The result of the correlation analyses between total LCSS scores and the total and individual domain SF36 scores was significant (p<0.001); the higher total LCSS score is, the poorer QOL is. Conclusion: A built in support of lung cancer patients would better control the symptoms and promote the QOL of these patients.

Keywords: quality of life, lung cancer, metastasis, symptoms burden

Procedia PDF Downloads 381
4839 A Multi-Stage Learning Framework for Reliable and Cost-Effective Estimation of Vehicle Yaw Angle

Authors: Zhiyong Zheng, Xu Li, Liang Huang, Zhengliang Sun, Jianhua Xu

Abstract:

Yaw angle plays a significant role in many vehicle safety applications, such as collision avoidance and lane-keeping system. Although the estimation of the yaw angle has been extensively studied in existing literature, it is still the main challenge to simultaneously achieve a reliable and cost-effective solution in complex urban environments. This paper proposes a multi-stage learning framework to estimate the yaw angle with a monocular camera, which can deal with the challenge in a more reliable manner. In the first stage, an efficient road detection network is designed to extract the road region, providing a highly reliable reference for the estimation. In the second stage, a variational auto-encoder (VAE) is proposed to learn the distribution patterns of road regions, which is particularly suitable for modeling the changing patterns of yaw angle under different driving maneuvers, and it can inherently enhance the generalization ability. In the last stage, a gated recurrent unit (GRU) network is used to capture the temporal correlations of the learned patterns, which is capable to further improve the estimation accuracy due to the fact that the changes of deflection angle are relatively easier to recognize among continuous frames. Afterward, the yaw angle can be obtained by combining the estimated deflection angle and the road direction stored in a roadway map. Through effective multi-stage learning, the proposed framework presents high reliability while it maintains better accuracy. Road-test experiments with different driving maneuvers were performed in complex urban environments, and the results validate the effectiveness of the proposed framework.

Keywords: gated recurrent unit, multi-stage learning, reliable estimation, variational auto-encoder, yaw angle

Procedia PDF Downloads 143
4838 Credit Card Fraud Detection with Ensemble Model: A Meta-Heuristic Approach

Authors: Gong Zhilin, Jing Yang, Jian Yin

Abstract:

The purpose of this paper is to develop a novel system for credit card fraud detection based on sequential modeling of data using hybrid deep learning models. The projected model encapsulates five major phases are pre-processing, imbalance-data handling, feature extraction, optimal feature selection, and fraud detection with an ensemble classifier. The collected raw data (input) is pre-processed to enhance the quality of the data through alleviation of the missing data, noisy data as well as null values. The pre-processed data are class imbalanced in nature, and therefore they are handled effectively with the K-means clustering-based SMOTE model. From the balanced class data, the most relevant features like improved Principal Component Analysis (PCA), statistical features (mean, median, standard deviation) and higher-order statistical features (skewness and kurtosis). Among the extracted features, the most optimal features are selected with the Self-improved Arithmetic Optimization Algorithm (SI-AOA). This SI-AOA model is the conceptual improvement of the standard Arithmetic Optimization Algorithm. The deep learning models like Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), and optimized Quantum Deep Neural Network (QDNN). The LSTM and CNN are trained with the extracted optimal features. The outcomes from LSTM and CNN will enter as input to optimized QDNN that provides the final detection outcome. Since the QDNN is the ultimate detector, its weight function is fine-tuned with the Self-improved Arithmetic Optimization Algorithm (SI-AOA).

Keywords: credit card, data mining, fraud detection, money transactions

Procedia PDF Downloads 131
4837 Public Awareness of Aphasia in Taiwan: A Pilot Study

Authors: Ching-Yu Lin

Abstract:

The number of patients with aphasia has been gradually increasing; however, public awareness of aphasia is still limited. Moreover, surveys about public awareness of aphasia have been conducted in several countries, but there is no research about public awareness of aphasia in Taiwan so far. Therefore, this study aims at the investigation of public awareness of aphasia in Taiwan. In this pilot study, the original English-version questionnaire will be translated into Mandarin Chinese by a speech therapist (the author), and 100 Taiwanese over 18 years old will be recruited to finish the questionnaire. People with an occupation about health or medical will be excluded. In order to reach more people, the questionnaire will be an Internet survey by Google Forms, and the URL of the survey will be distributed by messaging, i.e. e-mail, Facebook Messenger, Instagram DM, or Line. Data will be analyzed via PASW Statistic 18. Descriptive statistics will be used to summarize what proportion of the public have heard of aphasia and what proportion of the public have basic knowledge of aphasia in Taiwan. The sources of information about aphasia will also be investigated. Further, differences in awareness of aphasia due to age, gender, and education level will be discussed.

Keywords: aphasia, public awareness, public knowledge, taiwan

Procedia PDF Downloads 105
4836 Naïve Bayes: A Classical Approach for the Epileptic Seizures Recognition

Authors: Bhaveek Maini, Sanjay Dhanka, Surita Maini

Abstract:

Electroencephalography (EEG) is used to classify several epileptic seizures worldwide. It is a very crucial task for the neurologist to identify the epileptic seizure with manual EEG analysis, as it takes lots of effort and time. Human error is always at high risk in EEG, as acquiring signals needs manual intervention. Disease diagnosis using machine learning (ML) has continuously been explored since its inception. Moreover, where a large number of datasets have to be analyzed, ML is acting as a boon for doctors. In this research paper, authors proposed two different ML models, i.e., logistic regression (LR) and Naïve Bayes (NB), to predict epileptic seizures based on general parameters. These two techniques are applied to the epileptic seizures recognition dataset, available on the UCI ML repository. The algorithms are implemented on an 80:20 train test ratio (80% for training and 20% for testing), and the performance of the model was validated by 10-fold cross-validation. The proposed study has claimed accuracy of 81.87% and 95.49% for LR and NB, respectively.

Keywords: epileptic seizure recognition, logistic regression, Naïve Bayes, machine learning

Procedia PDF Downloads 61
4835 Robust Diagnosis of an Electro-Mechanical Actuators, Bond Graph LFT Approach

Authors: A. Boulanoir, B. Ould Bouamama, A. Debiane, N. Achour

Abstract:

The paper deals with robust Fault Detection and isolation with respect to parameter uncertainties based on linear fractional transformation form (LFT) Bond graph. The innovative interest of the proposed methodology is the use only one representation for systematic generation of robust analytical redundancy relations and adaptive residual thresholds for sensibility analysis. Furthermore, the parameter uncertainties are introduced graphically in the bond graph model. The methodology applied to the nonlinear industrial Electro-Mechanical Actuators (EMA) used in avionic systems, has determined first the structural monitorability analysis (which component can be monitored) with given instrumentation architecture with any need of complex calculation and secondly robust fault indicators for online supervision.

Keywords: bond graph (BG), electro mechanical actuators (EMA), fault detection and isolation (FDI), linear fractional transformation (LFT), mechatronic systems, parameter uncertainties, avionic system

Procedia PDF Downloads 350
4834 Temperature Effect on Sound Propagation in an Elastic Pipe with Viscoelastic Liquid

Authors: S. Levitsky, R. Bergman

Abstract:

Fluid rheology may have essential impact on sound propagation in a liquid-filled pipe, especially, in a low frequency range. Rheological parameters of liquid are temperature-sensitive, which ultimately results in a temperature dependence of the wave speed and attenuation in the waveguide. The study is devoted to modeling of this effect at sound propagation in an elastic pipe with polymeric liquid, described by generalized Maxwell model with non-zero high-frequency viscosity. It is assumed that relaxation spectrum is distributed according to the Spriggs law; temperature impact on the liquid rheology is described on the basis of the temperature-superposition principle and activation theory. The dispersion equation for the waveguide, considered as a thin-walled tube with polymeric solution, is obtained within a quasi-one-dimensional formulation. Results of the study illustrate the influence of temperature on sound propagation in the system.

Keywords: elastic tube, sound propagation, temperature effect, viscoelastic liquid

Procedia PDF Downloads 420
4833 Guidelines for Sustainable Urban Mobility in Historic Districts from International Experiences

Authors: Tamer ElSerafi

Abstract:

In recent approaches to heritage conservation, the whole context of historic areas becomes as important as the single historic building. This makes the provision of infrastructure and network of mobility an effective element in the urban conservation. Sustainable urban conservation projects consider the high density of activities, the need for a good quality access system to the transit system, and the importance of the configuration of the mobility network by identifying the best way to connect the different districts of the urban area through a complex unique system that helps the synergic development to achieve a sustainable mobility system. A sustainable urban mobility is a key factor in maintaining the integrity between socio-cultural aspects and functional aspects. This paper illustrates the mobility aspects, mobility problems in historic districts, and the needs of the mobility systems in the first part. The second part is a practical analysis for different mobility plans. It is challenging to find innovative and creative conservation solutions fitting modern uses and needs without risking the loss of inherited built resources. Urban mobility management is becoming an essential and challenging issue in the urban conservation projects. Depending on literature review and practical analysis, this paper tries to define and clarify the guidelines for mobility management in historic districts as a key element in sustainability of urban conservation and development projects. Such rules and principles could control the conflict between the socio–cultural and economic activities, and the different needs for mobility in these districts in a sustainable way. The practical analysis includes a comparison between mobility plans which have been implemented in four different cities; Freiburg in Germany, Zurich in Switzerland and Bray Town in Ireland. This paper concludes with a matrix of guidelines that considers both principles of sustainability and livability factors in urban historic districts.

Keywords: sustainable mobility, urban mobility, mobility management, historic districts

Procedia PDF Downloads 158
4832 Performance Comparison of Deep Convolutional Neural Networks for Binary Classification of Fine-Grained Leaf Images

Authors: Kamal KC, Zhendong Yin, Dasen Li, Zhilu Wu

Abstract:

Intra-plant disease classification based on leaf images is a challenging computer vision task due to similarities in texture, color, and shape of leaves with a slight variation of leaf spot; and external environmental changes such as lighting and background noises. Deep convolutional neural network (DCNN) has proven to be an effective tool for binary classification. In this paper, two methods for binary classification of diseased plant leaves using DCNN are presented; model created from scratch and transfer learning. Our main contribution is a thorough evaluation of 4 networks created from scratch and transfer learning of 5 pre-trained models. Training and testing of these models were performed on a plant leaf images dataset belonging to 16 distinct classes, containing a total of 22,265 images from 8 different plants, consisting of a pair of healthy and diseased leaves. We introduce a deep CNN model, Optimized MobileNet. This model with depthwise separable CNN as a building block attained an average test accuracy of 99.77%. We also present a fine-tuning method by introducing the concept of a convolutional block, which is a collection of different deep neural layers. Fine-tuned models proved to be efficient in terms of accuracy and computational cost. Fine-tuned MobileNet achieved an average test accuracy of 99.89% on 8 pairs of [healthy, diseased] leaf ImageSet.

Keywords: deep convolution neural network, depthwise separable convolution, fine-grained classification, MobileNet, plant disease, transfer learning

Procedia PDF Downloads 186
4831 Analysis of Non-Conventional Roundabout Performance in Mixed Traffic Conditions

Authors: Guneet Saini, Shahrukh, Sunil Sharma

Abstract:

Traffic congestion is the most critical issue faced by those in the transportation profession today. Over the past few years, roundabouts have been recognized as a measure to promote efficiency at intersections globally. In developing countries like India, this type of intersection still faces a lot of issues, such as bottleneck situations, long queues and increased waiting times, due to increasing traffic which in turn affect the performance of the entire urban network. This research is a case study of a non-conventional roundabout, in terms of geometric design, in a small town in India. These types of roundabouts should be analyzed for their functionality in mixed traffic conditions, prevalent in many developing countries. Microscopic traffic simulation is an effective tool to analyze traffic conditions and estimate various measures of operational performance of intersections such as capacity, vehicle delay, queue length and Level of Service (LOS) of urban roadway network. This study involves analyzation of an unsymmetrical non-circular 6-legged roundabout known as “Kala Aam Chauraha” in a small town Bulandshahr in Uttar Pradesh, India using VISSIM simulation package which is the most widely used software for microscopic traffic simulation. For coding in VISSIM, data are collected from the site during morning and evening peak hours of a weekday and then analyzed for base model building. The model is calibrated on driving behavior and vehicle parameters and an optimal set of calibrated parameters is obtained followed by validation of the model to obtain the base model which can replicate the real field conditions. This calibrated and validated model is then used to analyze the prevailing operational traffic performance of the roundabout which is then compared with a proposed alternative to improve efficiency of roundabout network and to accommodate pedestrians in the geometry. The study results show that the alternative proposed is an advantage over the present roundabout as it considerably reduces congestion, vehicle delay and queue length and hence, successfully improves roundabout performance without compromising on pedestrian safety. The study proposes similar designs for modification of existing non-conventional roundabouts experiencing excessive delays and queues in order to improve their efficiency especially in the case of developing countries. From this study, it can be concluded that there is a need to improve the current geometry of such roundabouts to ensure better traffic performance and safety of drivers and pedestrians negotiating the intersection and hence this proposal may be considered as a best fit.

Keywords: operational performance, roundabout, simulation, VISSIM

Procedia PDF Downloads 139