Search results for: minimum logging diameter
73 Survey for Mango Seed Weevils and Pulp Weevil Sternochetus Species (Coleoptera:Curculionidae) on Mango, Mangifera indica in Shan State-South, Myanmar
Authors: Khin Nyunt Yee, Mu Mu Thein
Abstract:
Detection survey of mango seed and Pulp weevils was undertaken at major mango production areas, Yat Sauk, Taunggyi, Nyaung Shwe and Hopong Townships, in Shan State (South) of Myanmar on two mango cultivars of Sein Ta Lone and Yinkwe from May to August 2016 to coincide with fruiting season to conduct a survey of mango seed and pulp weevils population. The total numbers of 6300 fruits of both mango cultivars were sampled. Among them, 2900 fruits from 5674 fruit bearing plants were collected for Sein Ta Lone cultivar of five well managed, one unmanaged orchards and Urban in Yatsauk Twonship, 400 fruits from only one well managed orchard in Taunggyi Township, 400 fruits from two managed orchards in Nyaung Shwe Township and 400 fruits from one managed orchard in Hopong Township from May to June. 2200 fruits were collected from 4043 fruit bearing plants for Yinkwe Cultivar of four well managed orchards, one unmanaged orchards and one wild tree only in Yat Sauk Township from July to August, 2016. Fruit sample size was 200 fruits /orchard, / wild or /volunteer trees as minimum number. The pulps of all randomly sampling fruits were longitudinal cut open into three slices on each side of fruit and seed were cut longitudinally to inspect the presence of mango weevils. The collected weevils were identified up to species level at Plant Quarantine Laboratory, Plant Protection Division, Department of Agriculture, Ministry of Agriculture, Livestock and Irrigation, Yangon, Myanmar. Mango Pulp and Seed weevils were found on Sein Ta Lone Mango Cultivar in three out of four surveyed Townships except Hopong with the level of infestation ranged from 0.0% to 3.5% of fruits per Township with 0.0% to 39.0% of fruits per orchard. The highest infestation rate per township was 3.5% of fruits (n=400 fruits) in Nyaung Shwe, then, at Yat Suak, the rate was 2.47% (n=2900 fruits). A well-managed orchard at Taung Gyi had 0.75% (n=400 fruits) whereas Hopong was free 0.0% (n=400). The weevils were also recorded on Yinkwe Mango Cultivar in Yatsauk Township where the infestation level was 12.63% of fruits (n=2200) with 0.0% to 67.0% of fruits per orchard. This high level of infestation was obtained by including an absolutely non Integrated Pest Management (non IPM) orchards in both survey with the infestation rates 63.0% of fruits (n=200) and 67.0% of fruits (n=200) respectively on Yinkwe cultivar. Two different species; mango pulp weevil, Sternochetus frigitus, and mango seed weevil Sternochetus olivieri (Faust) of family Curculionidae under the order Coleoptera were recorded. Sternochetus mangiferae was not found during these surveys. Three different developmental stages of mango seed and pulp weevils: larva, pupa and adult were first detected since the first survey in 3rd week of May and mostly were recorded as adult stages in the following surveys in June, July and August The number of Mango pulp weevil was statistically higher than that of mango seed weevils at P < 0.001%. More precise surveys should be carried out national wide to detect the mango weevils.Keywords: mango pulp weevil, Sternochetus frigitus, mango seed weevil Sternochetus olivieri, faust, Sternochetus mangiferae, fabricius, Sein Ta Lone, Yinkwe mango cultivars, Shan State (South) Myanmar
Procedia PDF Downloads 31072 EcoTeka, an Open-Source Software for Urban Ecosystem Restoration through Technology
Authors: Manon Frédout, Laëtitia Bucari, Mathias Aloui, Gaëtan Duhamel, Olivier Rovellotti, Javier Blanco
Abstract:
Ecosystems must be resilient to ensure cleaner air, better water and soil quality, and thus healthier citizens. Technology can be an excellent tool to support urban ecosystem restoration projects, especially when based on Open Source and promoting Open Data. This is the goal of the ecoTeka application: one single digital tool for tree management which allows decision-makers to improve their urban forestry practices, enabling more responsible urban planning and climate change adaptation. EcoTeka provides city councils with three main functionalities tackling three of their challenges: easier biodiversity inventories, better green space management, and more efficient planning. To answer the cities’ need for reliable tree inventories, the application has been first built with open data coming from the websites OpenStreetMap and OpenTrees, but it will also include very soon the possibility of creating new data. To achieve this, a multi-source algorithm will be elaborated, based on existing artificial intelligence Deep Forest, integrating open-source satellite images, 3D representations from LiDAR, and street views from Mapillary. This data processing will permit identifying individual trees' position, height, crown diameter, and taxonomic genus. To support urban forestry management, ecoTeka offers a dashboard for monitoring the city’s tree inventory and trigger alerts to inform about upcoming due interventions. This tool was co-constructed with the green space departments of the French cities of Alès, Marseille, and Rouen. The third functionality of the application is a decision-making tool for urban planning, promoting biodiversity and landscape connectivity metrics to drive ecosystem restoration roadmap. Based on landscape graph theory, we are currently experimenting with new methodological approaches to scale down regional ecological connectivity principles to local biodiversity conservation and urban planning policies. This methodological framework will couple graph theoretic approach and biological data, mainly biodiversity occurrences (presence/absence) data available on both international (e.g., GBIF), national (e.g., Système d’Information Nature et Paysage) and local (e.g., Atlas de la Biodiversté Communale) biodiversity data sharing platforms in order to help reasoning new decisions for ecological networks conservation and restoration in urban areas. An experiment on this subject is currently ongoing with Montpellier Mediterranee Metropole. These projects and studies have shown that only 26% of tree inventory data is currently geo-localized in France - the rest is still being done on paper or Excel sheets. It seems that technology is not yet used enough to enrich the knowledge city councils have about biodiversity in their city and that existing biodiversity open data (e.g., occurrences, telemetry, or genetic data), species distribution models, landscape graph connectivity metrics are still underexploited to make rational decisions for landscape and urban planning projects. This is the goal of ecoTeka: to support easier inventories of urban biodiversity and better management of urban spaces through rational planning and decisions relying on open databases. Future studies and projects will focus on the development of tools for reducing the artificialization of soils, selecting plant species adapted to climate change, and highlighting the need for ecosystem and biodiversity services in cities.Keywords: digital software, ecological design of urban landscapes, sustainable urban development, urban ecological corridor, urban forestry, urban planning
Procedia PDF Downloads 7771 Modeling the Present Economic and Social Alienation of Working Class in South Africa in the Musical Production ‘from Marikana to Mahagonny’ at Durban University of Technology (DUT)
Authors: Pamela Tancsik
Abstract:
The stage production in 2018, titled ‘From‘Marikana to Mahagonny’, began with a prologue in the form of the award-winning documentary ‘Miners Shot Down' by Rehad Desai, followed by Brecht/Weill’s song play or scenic cantata ‘Mahagonny’, premièred in Baden-Baden 1927. The central directorial concept of the DUT musical production ‘From Marikana to Mahagonny’ was to show a connection between the socio-political alienation of mineworkers in present-day South Africa and Brecht’s alienation effect in his scenic cantata ‘Mahagonny’. Marikana is a mining town about 50 km west of South Africa’s capital Pretoria. Mahagonny is a fantasy name for a utopian mining town in the United States. The characters, setting, and lyrics refer to America with of songs like ‘Benares’ and ‘Moon of Alabama’ and the use of typical American inventions such as dollars, saloons, and the telephone. The six singing characters in ‘Mahagonny’ all have typical American names: Charlie, Billy, Bobby, Jimmy, and the two girls they meet later are called Jessie and Bessie. The four men set off to seek Mahagonny. For them, it is the ultimate dream destination promising the fulfilment of all their desires, such as girls, alcohol, and dollars – in short, materialistic goals. Instead of finding a paradise, they experience how money and the practice of exploitive capitalism, and the lack of any moral and humanity is destroying their lives. In the end, Mahagonny gets demolished by a hurricane, an event which happened in 1926 in the United States. ‘God’ in person arrives disillusioned and bitter, complaining about violent and immoral mankind. In the end, he sends them all to hell. Charlie, Billy, Bobby, and Jimmy reply that this punishment does not mean anything to them because they have already been in hell for a long time – hell on earth is a reality, so the threat of hell after life is meaningless. Human life was also taken during the stand-off between striking mineworkers and the South African police on 16 August 2012. Miners from the Lonmin Platinum Mine went on an illegal strike, equipped with bush knives and spears. They were striking because their living conditions had never improved; they still lived in muddy shacks with no running water and electricity. Wages were as low as R4,000 (South African Rands), equivalent to just over 200 Euro per month. By August 2012, the negotiations between Lonmin management and the mineworkers’ unions, asking for a minimum wage of R12,500 per month, had failed. Police were sent in by the Government, and when the miners did not withdraw, the police shot at them. 34 were killed, some by bullets in their backs while running away and trying to hide behind rocks. In the musical play ‘From Marikana to Mahagonny’ audiences in South Africa are confronted with a documentary about Marikana, followed by Brecht/Weill’s scenic cantata, highlighting the tragic parallels between the Mahagonny story and characters from 1927 America and the Lonmin workers today in South Africa, showing that in 95 years, capitalism has not changed.Keywords: alienation, brecht/Weill, mahagonny, marikana/South Africa, musical theatre
Procedia PDF Downloads 10170 Problem-Based Learning for Hospitality Students. The Case of Madrid Luxury Hotels and the Recovery after the Covid Pandemic
Authors: Caridad Maylin-Aguilar, Beatriz Duarte-Monedero
Abstract:
Problem-based learning (PBL) is a useful tool for adult and practice oriented audiences, as University students. As a consequence of the huge disruption caused by the COVID pandemic in the hospitality industry, hotels of all categories closed down in Spain from March 2020. Since that moment, the luxury segment was blooming with optimistic prospects for new openings. Hence, Hospitality students were expecting a positive situation in terms of employment and career development. By the beginning of the 2020-21 academic year, these expectations were seriously harmed. By October 2020, only 9 of the 32 hotels in the luxury segment were opened with an occupation rate of 9%. Shortly after, the evidence of a second wave affecting especially Spain and the homelands of incoming visitors bitterly smashed all forecasts. In accordance with the situation, a team of four professors and practitioners, from four different subject areas, developed a real case, inspired in one of these hotels, the 5-stars Emperatriz by Barceló. Students in their 2nd course were provided with real information as marketing plans, profit and losses and operational accounts, employees profiles and employment costs. The challenge for them was to act as consultants, identifying potential courses of action, related to best, base and worst case. In order to do that, they were organized in teams and supported by 4th course students. Each professor deployed the problem in their subject; thus, research on the customers behavior and feelings were necessary to review, as part of the marketing plan, if the current offering of the hotel was clear enough to guarantee and to communicate a safe environment, as well as the ranking of other basic, supporting and facilitating services. Also, continuous monitoring of competitors’ activity was necessary to understand what was the behavior of the open outlets. The actions designed after the diagnose were ranked in accordance with their impact and feasibility in terms of time and resources. Also they must be actionable by the current staff of the hotel and their managers and a vision of internal marketing was appreciated. After a process of refinement, seven teams presented their conclusions to Emperatriz general manager and the rest of professors. Four main ideas were chosen, and all the teams, irrespectively of authorship, were asked to develop them to the state of a minimum viable product, with estimations of impacts and costs. As the process continues, students are nowadays accompanying the hotel and their staff in the prudent reopening of facilities, almost one year after the closure. From a professor’s point of view, key learnings were 1.- When facing a real problem, a holistic view is needed. Therefore, the vision of subjects as silos collapses, 2- When educating new professionals, providing them with the resilience and resistance necessaries to deal with a problem is always mandatory, but now seems more relevant and 3.- collaborative work and contact with real practitioners in such an uncertain and changing environment is a challenge, but it is worth when considering the learning result and its potential.Keywords: problem-based learning, hospitality recovery, collaborative learning, resilience
Procedia PDF Downloads 18769 Climate Indices: A Key Element for Climate Change Adaptation and Ecosystem Forecasting - A Case Study for Alberta, Canada
Authors: Stefan W. Kienzle
Abstract:
The increasing number of occurrences of extreme weather and climate events have significant impacts on society and are the cause of continued and increasing loss of human and animal lives, loss or damage to property (houses, cars), and associated stresses to the public in coping with a changing climate. A climate index breaks down daily climate time series into meaningful derivatives, such as the annual number of frost days. Climate indices allow for the spatially consistent analysis of a wide range of climate-dependent variables, which enables the quantification and mapping of historical and future climate change across regions. As trends of phenomena such as the length of the growing season change differently in different hydro-climatological regions, mapping needs to be carried out at a high spatial resolution, such as the 10km by 10km Canadian Climate Grid, which has interpolated daily values from 1950 to 2017 for minimum and maximum temperature and precipitation. Climate indices form the basis for the analysis and comparison of means, extremes, trends, the quantification of changes, and their respective confidence levels. A total of 39 temperature indices and 16 precipitation indices were computed for the period 1951 to 2017 for the Province of Alberta. Temperature indices include the annual number of days with temperatures above or below certain threshold temperatures (0, +-10, +-20, +25, +30ºC), frost days, and timing of frost days, freeze-thaw days, growing or degree days, and energy demands for air conditioning and heating. Precipitation indices include daily and accumulated 3- and 5-day extremes, days with precipitation, period of days without precipitation, and snow and potential evapotranspiration. The rank-based nonparametric Mann-Kendall statistical test was used to determine the existence and significant levels of all associated trends. The slope of the trends was determined using the non-parametric Sen’s slope test. The Google mapping interface was developed to create the website albertaclimaterecords.com, from which beach of the 55 climate indices can be queried for any of the 6833 grid cells that make up Alberta. In addition to the climate indices, climate normals were calculated and mapped for four historical 30-year periods and one future period (1951-1980, 1961-1990, 1971-2000, 1981-2017, 2041-2070). While winters have warmed since the 1950s by between 4 - 5°C in the South and 6 - 7°C in the North, summers are showing the weakest warming during the same period, ranging from about 0.5 - 1.5°C. New agricultural opportunities exist in central regions where the number of heat units and growing degree days are increasing, and the number of frost days is decreasing. While the number of days below -20ºC has about halved across Alberta, the growing season has expanded by between two and five weeks since the 1950s. Interestingly, both the number of days with heat waves and cold spells have doubled to four-folded during the same period. This research demonstrates the enormous potential of using climate indices at the best regional spatial resolution possible to enable society to understand historical and future climate changes of their region.Keywords: climate change, climate indices, habitat risk, regional, mapping, extremes
Procedia PDF Downloads 9568 Disseminating Positive Psychology Resources Online: Current Research and Future Directions
Authors: Warren Jared, Bekker Jeremy, Salazar Guy, Jackman Katelyn, Linford Lauren
Abstract:
Introduction: Positive Psychology research has burgeoned in the past 20 years; however, relatively few evidence-based resources to cultivate positive psychology skills are widely available to the general public. The positive psychology resources at www.mybestself101.org were developed to assist individuals in cultivating well-being using a variety of techniques, including gratitude, purpose, mindfulness, self-compassion, savoring, personal growth, and supportive relationships. These resources are empirically based and are built to be accessible to a broad audience. Key Objectives: This presentation highlights results from two recent randomized intervention studies of specific MBS101 learning modules. A key objective of this research is to empirically assess the efficacy and usability of these online resources. Another objective of this research is to encourage the broad dissemination of online positive psychology resources; thus, recommendations for further research and dissemination will be discussed. Methods: In both interventions, we recruited adult participants using social media advertisements. The participants completed several well-being and positive psychology construct-specific measures (savoring and self-compassion measures) at baseline and post-intervention. Participants in the experimental condition were also given a feedback questionnaire to gather qualitative data on how participants viewed the modules. Participants in the self-compassion study were randomly split between an experimental group, who received the treatment, and a control group, who were placed on a waitlist. There was no control group for the savoring study. Participants were instructed to read content on the module and practice savoring or self-compassion strategies listed in the module for a minimum of twenty minutes a day for 21 days. The intervention was semi-structured, as participants were free to choose which module activities they would complete from a menu of research-based strategies. Participants tracked which activities they completed and how long they spent on the modules each day. Results: In the savoring study, participants increased in savoring ability as indicated by multiple measures. In addition, participants increased in well-being from pre- to post-treatment. In the self-compassion study, repeated measures mixed model analyses revealed that compared to waitlist controls, participants who used the MBS101 self-compassion module experienced significant improvements in self-compassion, well-being, and body image with effect sizes ranging from medium to large. Attrition was 10.5% for the self-compassion study and 71% for the savoring study. Overall, participants indicated that the modules were generally helpful, and they particularly appreciated the specific strategy menus. Participants requested more structured course activities, more interactive content, and more practice activities overall. Recommendations: Mybestself101.org is an applied positive psychology research program that shows promise as a model for effectively disseminating evidence-based positive psychology resources that are both engaging and easily accessible. Considerable research is still needed, both to test the efficacy and usability of the modules currently available and to improve them based on participant feedback. Feedback received from participants in the randomized controlled trial led to the development of an expanded, 30-day online course called The Gift of Self-Compassion and an online mindfulness course currently in development called Mindfulness For Humans.Keywords: positive psychology, intervention, online resources, self-compassion, dissemination, online curriculum
Procedia PDF Downloads 20767 Enhanced Multi-Scale Feature Extraction Using a DCNN by Proposing Dynamic Soft Margin SoftMax for Face Emotion Detection
Authors: Armin Nabaei, M. Omair Ahmad, M. N. S. Swamy
Abstract:
Many facial expression and emotion recognition methods in the traditional approaches of using LDA, PCA, and EBGM have been proposed. In recent years deep learning models have provided a unique platform addressing by automatically extracting the features for the detection of facial expression and emotions. However, deep networks require large training datasets to extract automatic features effectively. In this work, we propose an efficient emotion detection algorithm using face images when only small datasets are available for training. We design a deep network whose feature extraction capability is enhanced by utilizing several parallel modules between the input and output of the network, each focusing on the extraction of different types of coarse features with fined grained details to break the symmetry of produced information. In fact, we leverage long range dependencies, which is one of the main drawback of CNNs. We develop this work by introducing a Dynamic Soft-Margin SoftMax.The conventional SoftMax suffers from reaching to gold labels very soon, which take the model to over-fitting. Because it’s not able to determine adequately discriminant feature vectors for some variant class labels. We reduced the risk of over-fitting by using a dynamic shape of input tensor instead of static in SoftMax layer with specifying a desired Soft- Margin. In fact, it acts as a controller to how hard the model should work to push dissimilar embedding vectors apart. For the proposed Categorical Loss, by the objective of compacting the same class labels and separating different class labels in the normalized log domain.We select penalty for those predictions with high divergence from ground-truth labels.So, we shorten correct feature vectors and enlarge false prediction tensors, it means we assign more weights for those classes with conjunction to each other (namely, “hard labels to learn”). By doing this work, we constrain the model to generate more discriminate feature vectors for variant class labels. Finally, for the proposed optimizer, our focus is on solving weak convergence of Adam optimizer for a non-convex problem. Our noteworthy optimizer is working by an alternative updating gradient procedure with an exponential weighted moving average function for faster convergence and exploiting a weight decay method to help drastically reducing the learning rate near optima to reach the dominant local minimum. We demonstrate the superiority of our proposed work by surpassing the first rank of three widely used Facial Expression Recognition datasets with 93.30% on FER-2013, and 16% improvement compare to the first rank after 10 years, reaching to 90.73% on RAF-DB, and 100% k-fold average accuracy for CK+ dataset, and shown to provide a top performance to that provided by other networks, which require much larger training datasets.Keywords: computer vision, facial expression recognition, machine learning, algorithms, depp learning, neural networks
Procedia PDF Downloads 7666 Perception of Health Care Providers on the Use of Modern Contraception by Adolescents in Rwanda
Authors: Jocelyne Uwibambe, Ange Thaina Ndizeye, Dinah Ishimwe, Emmanuel Mugabo Byakagaba
Abstract:
Background: In low- and middle-income countries (LMICs), the use of modern contraceptive methods among women, including adolescents, is still low despite the desire to avoid pregnancy. In addition, countries have set a minimum age for marriage, which is 21 years for most countries, including Rwanda. The Rwandan culture, to a certain extent, and religion, to a greater extent, however, limit the freedom of young women to use contraceptive services because it is wrongly perceived as an encouragement for premarital sexual intercourse. In the end, what doesn’t change is that denying access to contraceptives to either male or female adolescents does not translate into preventing them from sexual activities, hence leading to an ever-increasing number of unwanted pregnancies, possible STIs, HIV, Human Papilloma Virus, and subsequent unsafe abortion followed by avoidable expensive complications. The purpose of this study is to evaluate the perception of healthcare providers regarding contraceptive use among adolescents. Methodology: This was a qualitative study. Interviews were done with different healthcare providers, including doctors, nurses, midwives, and pharmacists, through focused group discussions and in-depth interviews, then the audio was transcribed, translated and thematic coding was done. Results: This study explored the perceptions of healthcare workers regarding the provision of modern contraception to adolescents in Rwanda. The findings revealed that while healthcare providers had a good understanding of family planning and contraception, they were hesitant to provide contraception to adolescents. Sociocultural beliefs played a significant role in shaping their attitudes, as many healthcare workers believed that providing contraception to adolescents would encourage promiscuous behavior and go against cultural norms. Religious beliefs also influenced their reluctance, with some healthcare providers considering premarital sex and contraception as sinful. Lack of knowledge among parents and adolescents themselves was identified as a contributing factor to unwanted pregnancies, as inaccurate information from peers and social media influenced risky sexual behavior. Conditional policies, such as the requirement for parental consent, further hindered adolescents' access to contraception. The study suggested several solutions, including comprehensive sexual and reproductive health education, involving multiple stakeholders, ensuring easy access to contraception, and involving adolescents in policymaking. Overall, this research highlights the need for addressing sociocultural beliefs, improving healthcare providers' knowledge, and revisiting policies to ensure adolescents' reproductive health rights are met in Rwanda. Conclusion: The study highlights the importance of enhancing healthcare provider training, expanding access to modern contraception, implementing community-based interventions, and strengthening policy and programmatic support for adolescent contraception. Addressing these challenges is crucial for improving the provision of family planning services to adolescents in Rwanda and achieving the Sustainable Development Goals related to sexual and reproductive health. Collaborative efforts involving various stakeholders and organizations can contribute to overcoming these barriers and promoting the well-being of adolescents in Rwanda.Keywords: adolescent, health care providers, contraception, reproductive health
Procedia PDF Downloads 5465 The Implantable MEMS Blood Pressure Sensor Model With Wireless Powering And Data Transmission
Authors: Vitaliy Petrov, Natalia Shusharina, Vitaliy Kasymov, Maksim Patrushev, Evgeny Bogdanov
Abstract:
The leading worldwide death reasons are ischemic heart disease and other cardiovascular illnesses. Generally, the common symptom is high blood pressure. Long-time blood pressure control is very important for the prophylaxis, correct diagnosis and timely therapy. Non-invasive methods which are based on Korotkoff sounds are impossible to apply often and for a long time. Implantable devices can combine longtime monitoring with high accuracy of measurements. The main purpose of this work is to create a real-time monitoring system for decreasing the death rate from cardiovascular diseases. These days implantable electronic devices began to play an important role in medicine. Usually implantable devices consist of a transmitter, powering which could be wireless with a special made battery and measurement circuit. Common problems in making implantable devices are short lifetime of the battery, big size and biocompatibility. In these work, blood pressure measure will be the focus because it’s one of the main symptoms of cardiovascular diseases. Our device will consist of three parts: the implantable pressure sensor, external transmitter and automated workstation in a hospital. The Implantable part of pressure sensors could be based on piezoresistive or capacitive technologies. Both sensors have some advantages and some limitations. The Developed circuit is based on a small capacitive sensor which is made of the technology of microelectromechanical systems (MEMS). The Capacitive sensor can provide high sensitivity, low power consumption and minimum hysteresis compared to the piezoresistive sensor. For this device, it was selected the oscillator-based circuit where frequency depends from the capacitance of sensor hence from capacitance one can calculate pressure. The external device (transmitter) used for wireless charging and signal transmission. Some implant devices for these applications are passive, the external device sends radio wave signal on internal LC circuit device. The external device gets reflected the signal from the implant and from a change of frequency is possible to calculate changing of capacitance and then blood pressure. However, this method has some disadvantages, such as the patient position dependence and static using. Developed implantable device doesn’t have these disadvantages and sends blood pressure data to the external part in real-time. The external device continuously sends information about blood pressure to hospital cloud service for analysis by a physician. Doctor’s automated workstation at the hospital also acts as a dashboard, which displays actual medical data of patients (which require attention) and stores it in cloud service. Usually, critical heart conditions occur few hours before heart attack but the device is able to send an alarm signal to the hospital for an early action of medical service. The system was tested with wireless charging and data transmission. These results can be used for ASIC design for MEMS pressure sensor.Keywords: MEMS sensor, RF power, wireless data, oscillator-based circuit
Procedia PDF Downloads 59464 Regional Hydrological Extremes Frequency Analysis Based on Statistical and Hydrological Models
Authors: Hadush Kidane Meresa
Abstract:
The hydrological extremes frequency analysis is the foundation for the hydraulic engineering design, flood protection, drought management and water resources management and planning to utilize the available water resource to meet the desired objectives of different organizations and sectors in a country. This spatial variation of the statistical characteristics of the extreme flood and drought events are key practice for regional flood and drought analysis and mitigation management. For different hydro-climate of the regions, where the data set is short, scarcity, poor quality and insufficient, the regionalization methods are applied to transfer at-site data to a region. This study aims in regional high and low flow frequency analysis for Poland River Basins. Due to high frequent occurring of hydrological extremes in the region and rapid water resources development in this basin have caused serious concerns over the flood and drought magnitude and frequencies of the river in Poland. The magnitude and frequency result of high and low flows in the basin is needed for flood and drought planning, management and protection at present and future. Hydrological homogeneous high and low flow regions are formed by the cluster analysis of site characteristics, using the hierarchical and C- mean clustering and PCA method. Statistical tests for regional homogeneity are utilized, by Discordancy and Heterogeneity measure tests. In compliance with results of the tests, the region river basin has been divided into ten homogeneous regions. In this study, frequency analysis of high and low flows using AM for high flow and 7-day minimum low flow series is conducted using six statistical distributions. The use of L-moment and LL-moment method showed a homogeneous region over entire province with Generalized logistic (GLOG), Generalized extreme value (GEV), Pearson type III (P-III), Generalized Pareto (GPAR), Weibull (WEI) and Power (PR) distributions as the regional drought and flood frequency distributions. The 95% percentile and Flow duration curves of 1, 7, 10, 30 days have been plotted for 10 stations. However, the cluster analysis performed two regions in west and east of the province where L-moment and LL-moment method demonstrated the homogeneity of the regions and GLOG and Pearson Type III (PIII) distributions as regional frequency distributions for each region, respectively. The spatial variation and regional frequency distribution of flood and drought characteristics for 10 best catchment from the whole region was selected and beside the main variable (streamflow: high and low) we used variables which are more related to physiographic and drainage characteristics for identify and delineate homogeneous pools and to derive best regression models for ungauged sites. Those are mean annual rainfall, seasonal flow, average slope, NDVI, aspect, flow length, flow direction, maximum soil moisture, elevation, and drainage order. The regional high-flow or low-flow relationship among one streamflow characteristics with (AM or 7-day mean annual low flows) some basin characteristics is developed using Generalized Linear Mixed Model (GLMM) and Generalized Least Square (GLS) regression model, providing a simple and effective method for estimation of flood and drought of desired return periods for ungauged catchments.Keywords: flood , drought, frequency, magnitude, regionalization, stochastic, ungauged, Poland
Procedia PDF Downloads 60563 Analyzing the Heat Transfer Mechanism in a Tube Bundle Air-PCM Heat Exchanger: An Empirical Study
Authors: Maria De Los Angeles Ortega, Denis Bruneau, Patrick Sebastian, Jean-Pierre Nadeau, Alain Sommier, Saed Raji
Abstract:
Phase change materials (PCM) present attractive features that made them a passive solution for thermal comfort assessment in buildings during summer time. They show a large storage capacity per volume unit in comparison with other structural materials like bricks or concrete. If their use is matched with the peak load periods, they can contribute to the reduction of the primary energy consumption related to cooling applications. Despite these promising characteristics, they present some drawbacks. Commercial PCMs, as paraffines, offer a low thermal conductivity affecting the overall performance of the system. In some cases, the material can be enhanced, adding other elements that improve the conductivity, but in general, a design of the unit that optimizes the thermal performance is sought. The material selection is the departing point during the designing stage, and it does not leave plenty of room for optimization. The PCM melting point depends highly on the atmospheric characteristics of the building location. The selection must relay within the maximum, and the minimum temperature reached during the day. The geometry of the PCM container and the geometrical distribution of these containers are designing parameters, as well. They significantly affect the heat transfer, and therefore its phenomena must be studied exhaustively. During its lifetime, an air-PCM unit in a building must cool down the place during daytime, while the melting of the PCM occurs. At night, the PCM must be regenerated to be ready for next uses. When the system is not in service, a minimal amount of thermal exchanges is desired. The aforementioned functions result in the presence of sensible and latent heat storage and release. Hence different types of mechanisms drive the heat transfer phenomena. An experimental test was designed to study the heat transfer phenomena occurring in a circular tube bundle air-PCM exchanger. An in-line arrangement was selected as the geometrical distribution of the containers. With the aim of visual identification, the containers material and a section of the test bench were transparent. Some instruments were placed on the bench for measuring temperature and velocity. The PCM properties were also available through differential scanning calorimeter (DSC) tests. An evolution of the temperature during both cycles, melting and solidification were obtained. The results showed some phenomena at a local level (tubes) and on an overall level (exchanger). Conduction and convection appeared as the main heat transfer mechanisms. From these results, two approaches to analyze the heat transfer were followed. The first approach described the phenomena in a single tube as a series of thermal resistances, where a pure conduction controlled heat transfer was assumed in the PCM. For the second approach, the temperature measurements were used to find some significant dimensionless numbers and parameters as Stefan, Fourier and Rayleigh numbers, and the melting fraction. These approaches allowed us to identify the heat transfer phenomena during both cycles. The presence of natural convection during melting might have been stated from the influence of the Rayleigh number on the correlations obtained.Keywords: phase change materials, air-PCM exchangers, convection, conduction
Procedia PDF Downloads 18262 DSF Elements in High-Rise Timber Buildings
Authors: Miroslav Premrov, Andrej Štrukelj, Erika Kozem Šilih
Abstract:
The utilization of prefabricated timber-wall elements with double glazing, called as double-skin façade element (DSF), represents an innovative structural approach in the context of new high-rise timber construction, simultaneously combining sustainable solutions with improved energy efficiency and living quality. In addition to the minimum energy needs of buildings, the design of modern buildings is also increasingly focused on the optimal indoor comfort, in particular on sufficient natural light indoors. An optimally energy-designed building with an optimal layout of glazed areas around the building envelope represents a great potential in modern timber construction. Usually, all these transparent façade elements, because of energy benefits, are primary asymmetrical oriented and if they are considered as non-resisting against a horizontal load impact, a strong torsion effects in the building can appear. The problem of structural stability against a strong horizontal load impact of such modern timber buildings especially increase in a case of high-rise structures where additional bracing elements have to be used. In such a case, special diagonal bracing systems or other bracing solutions with common timber wall elements have to be incorporated into the structure of the building to satisfy all prescribed resisting requirements given by the standards. However, all such structural solutions are usually not environmentally friendly and also not contribute to an improved living comfort, or they are not accepted by the architects at all. Consequently, it is a special need to develop innovative load-bearing timber-glass wall elements which are in the same time environmentally friendly, can increase internal comfort in the building, but are also load-bearing. The new developed load-bearing DSF elements can be a good answer on all these requirements. Timber-glass façade elements DSF wall elements consist of two transparent layers, thermal-insulated three-layered glass pane on the internal side and an additional single-layered glass pane on the external side of the wall. The both panes are separated by an air channel which can be of any dimensions and can have a significant influence on the thermal insulation or acoustic response of such a wall element. Most already published studies on DSF elements primarily deal only with energy and LCA solutions and do not address any structural problems. In previous studies according to experimental analysis and mathematical modeling it was already presented a possible benefit of such load-bearing DSF elements, especially comparing with previously developed load-bearing single-skin timber wall elements, but they were not applicate yet in any high-rise timber structure. Therefore, in the presented study specially selected 10-storey prefabricated timber building constructed in a cross-laminated timber (CLT) structural wall system is analyzed using the developed DSF elements in a sense to increase a structural lateral stability of the whole building. The results evidently highlight the importance the load-bearing DSF elements, as their incorporation can have a significant impact on the overall behavior of the structure through their influence on the stiffness properties. Taking these considerations into account is crucial to ensure compliance with seismic design codes and to improve the structural resilience of high-rise timber buildings.Keywords: glass, high-rise buildings, numerical analysis, timber
Procedia PDF Downloads 4861 Wind Resource Classification and Feasibility of Distributed Generation for Rural Community Utilization in North Central Nigeria
Authors: O. D. Ohijeagbon, Oluseyi O. Ajayi, M. Ogbonnaya, Ahmeh Attabo
Abstract:
This study analyzed the electricity generation potential from wind at seven sites spread across seven states of the North-Central region of Nigeria. Twenty-one years (1987 to 2007) wind speed data at a height of 10m were assessed from the Nigeria Meteorological Department, Oshodi. The data were subjected to different statistical tests and also compared with the two-parameter Weibull probability density function. The outcome shows that the monthly average wind speeds ranged between 2.2 m/s in November for Bida and 10.1 m/s in December for Jos. The yearly average ranged between 2.1m/s in 1987 for Bida and 11.8 m/s in 2002 for Jos. Also, the power density for each site was determined to range between 29.66 W/m2 for Bida and 864.96 W/m2 for Jos, Two parameters (k and c) of the Weibull distribution were found to range between 2.3 in Lokoja and 6.5 in Jos for k, while c ranged between 2.9 in Bida and 9.9m/s in Jos. These outcomes points to the fact that wind speeds at Jos, Minna, Ilorin, Makurdi and Abuja are compatible with the cut-in speeds of modern wind turbines and hence, may be economically feasible for wind-to-electricity at and above the height of 10 m. The study further assessed the potential and economic viability of standalone wind generation systems for off-grid rural communities located in each of the studied sites. A specific electric load profile was developed to suite hypothetic communities, each consisting of 200 homes, a school and a community health center. Assessment of the design that will optimally meet the daily load demand with a loss of load probability (LOLP) of 0.01 was performed, considering 2 stand-alone applications of wind and diesel. The diesel standalone system (DSS) was taken as the basis of comparison since the experimental locations have no connection to a distribution network. The HOMER® software optimizing tool was utilized to determine the optimal combination of system components that will yield the lowest life cycle cost. Sequel to the analysis for rural community utilization, a Distributed Generation (DG) analysis that considered the possibility of generating wind power in the MW range in order to take advantage of Nigeria’s tariff regime for embedded generation was carried out for each site. The DG design incorporated each community of 200 homes, freely catered for and offset from the excess electrical energy generated above the minimum requirement for sales to a nearby distribution grid. Wind DG systems were found suitable and viable in producing environmentally friendly energy in terms of life cycle cost and levelised value of producing energy at Jos ($0.14/kWh), Minna ($0.12/kWh), Ilorin ($0.09/kWh), Makurdi ($0.09/kWh), and Abuja ($0.04/kWh) at a particluar turbine hub height. These outputs reveal the value retrievable from the project after breakeven point as a function of energy consumed Based on the results, the study demonstrated that including renewable energy in the rural development plan will enhance fast upgrade of the rural communities.Keywords: wind speed, wind power, distributed generation, cost per kilowatt-hour, clean energy, North-Central Nigeria
Procedia PDF Downloads 51660 Horizontal Stress Magnitudes Using Poroelastic Model in Upper Assam Basin, India
Authors: Jenifer Alam, Rima Chatterjee
Abstract:
Upper Assam sedimentary basin is one of the oldest commercially producing basins of India. Being in a tectonically active zone, estimation of tectonic strain and stress magnitudes has vast application in hydrocarbon exploration and exploitation. This East North East –West South West trending shelf-slope basin encompasses the Bramhaputra valley extending from Mikir Hills in the southwest to the Naga foothills in the northeast. Assam Shelf lying between the Main Boundary Thrust (MBT) and Naga Thrust area is comparatively free from thrust tectonics and depicts normal faulting mechanism. The study area is bounded by the MBT and Main Central Thrust in the northwest. The Belt of Schuppen in the southeast, is bordered by Naga and Disang thrust marking the lower limit of the study area. The entire Assam basin shows low-level seismicity compared to other regions of northeast India. Pore pressure (PP), vertical stress magnitude (SV) and horizontal stress magnitudes have been estimated from two wells - N1 and T1 located in Upper Assam. N1 is located in the Assam gap below the Bramhaputra river while T1, lies in the Belt of Schuppen. N1 penetrates geological formations from top Alluvial through Dhekiajuli, Girujan, Tipam, Barail, Kopili, Sylhet and Langpur to the granitic basement while T1 in trusted zone crosses through Girujan Suprathrust, Tipam Suprathrust, Barail Suprathrust to reach Naga Thrust. Normal compaction trend is drawn through shale points through both wells for estimation of PP using the conventional Eaton sonic equation with an exponent of 1.0 which is validated with Modular Dynamic Tester and mud weight. Observed pore pressure gradient ranges from 10.3 MPa/km to 11.1 MPa/km. The SV has a gradient from 22.20 to 23.80 MPa/km. Minimum and maximum horizontal principal stress (Sh and SH) magnitudes under isotropic conditions are determined using poroelastic model. This approach determines biaxial tectonic strain utilizing static Young’s Modulus, Poisson’s Ratio, SV, PP, leak off test (LOT) and SH derived from breakouts using prior information on unconfined compressive strength. Breakout derived SH information is used for obtaining tectonic strain due to lack of measured SH data from minifrac or hydrofracturing. Tectonic strain varies from 0.00055 to 0.00096 along x direction and from -0.0010 to 0.00042 along y direction. After obtaining tectonic strains at each well, the principal horizontal stress magnitudes are calculated from linear poroelastic model. The magnitude of Sh and SH gradient in normal faulting region are 12.5 and 16.0 MPa/km while in thrust faulted region the gradients are 17.4 and 20.2 MPa/km respectively. Model predicted Sh and SH matches well with the LOT data and breakout derived SH data in both wells. It is observed from this study that the stresses SV>SH>Sh prevailing in the shelf region while near the Naga foothills the regime changes to SH≈SV>Sh area corresponds to normal faulting regime. Hence this model is a reliable tool for predicting stress magnitudes from well logs under active tectonic regime in Upper Assam Basin.Keywords: Eaton, strain, stress, poroelastic model
Procedia PDF Downloads 22059 Partnering With Key Stakeholders for Successful Implementation of Inhaled Analgesia for Specific Emergency Department Presentations
Authors: Sarah Hazelwood, Janice Hay
Abstract:
Methoxyflurane is an inhaled analgesic administered via a disposable inhaler, which has been used in Australia for 40 years for the management of pain in children & adults. However, there is a lack of data for methoxyflurane as a frontline analgesic medication within the emergency department (ED). This study will investigate the usefulness of methoxyflurane in a private inner-city ED. The study concluded that the inclusion of all key stakeholders in the prescribing, administering & use of this new process led to comprehensive uptake & vastly positive outcomes for consumer & health professionals. Method: A 12-week prospective pilot study was completed utilizing patients presenting to the ED in pain (numeric pain rating score > 4) that fit the requirement of methoxyflurane use (as outlined in the Australian Prescriber information package). Nurses completed a formatted spreadsheet for each interaction where methoxyflurane was used. Patient demographics, day, time, initial numeric pain score, analgesic response time, the reason for use, staff concern (free text), & patient feedback (free text), & discharge time was documented. When clinical concern was raised, the researcher retrieved & reviewed patient notes. Results: 140 methoxyflurane inhalers were used. 60% of patients were 31 years of age & over (n=82) with 16% aged 70+. The gender split; 51% male: 49% female. Trauma-related pain (57%) saw the highest use of administration, with the evening hours (1500-2259) seeing the greatest numbers used (39%). Tuesday, Thursday & Sunday shared the highest daily use throughout the study. A minimum numerical pain score of 4/10 (n=13, 9%), with the ranges of 5 - 7/10 (moderate pain) being given by almost 50% of patients. Only 3 instances of pain scores increased post use of methoxyflurane (all other entries showed pain score < initial rating). Patients & staff noted obvious analgesic response within 3 minutes (n= 96, 81%, of administration). Nurses documented a change in patient vital signs for 4 of the 15 patient-related concerns; the remaining concerns were due to “gagging” on the taste, or “having a coughing episode”; one patient tried to leave the department before the procedure was attended (very euphoric state). Upon review of the staff concerns – no adverse events occurred & return to therapeutic vitals occurred within 10 minutes. Length of stay for patients was compared with similar presentations (such as dislocated shoulder or ankle fracture) & saw an average 40-minute decrease in time to discharge. Methoxyflurane treatment was rated “positively” by > 80% of patients – with remaining feedback related to mild & transient concerns. Staff similarly noted a positive response to methoxyflurane as an analgesic & as an added tool for frontline analgesic purposes. Conclusion: Methoxyflurane should be used on suitable patient presentations requiring immediate, short term pain relief. As a highly portable, non-narcotic avenue to treat pain this study showed obvious therapeutic benefit, positive feedback, & a shorter length of stay in the ED. By partnering with key stake holders, this study determined methoxyflurane use decreased work load, decreased wait time to analgesia, and increased patient satisfaction.Keywords: analgesia, benefits, emergency, methoxyflurane
Procedia PDF Downloads 12658 Modification of Hyrax Expansion Screw to Be Used as an Intro-Oral Distractor for Anterior Maxillary Distraction in a Patient with Cleft Lip and Palate: A Case Report
Authors: Ananya Hazare, Ranjit Kamble
Abstract:
Introduction: Patients with Cleft lip and palate (CL/P) can present with a maxillary retrution after cleft repair. Anterior Maxillary distraction osteogenesis (AMD) is a technique that provides simultaneous skeletal advancement and expansion of the soft tissues related to an anterior segment of the maxilla. This case presented is a case of AMD. The advantage of this technique is that the occlusion in the posterior segment can be maintained, and only the segment in cross bite is advanced for correction of the midfacial deficiency. The other alternative treatment is anterior movement by a Lefort 1 osteotomy. When a Lefort 1 osteotomy is compared with the Distraction osteogenesis or AMD, the disadvantages of the Le Fort 1 include a higher risk of morbidity, requirement of fixation, relapse tendency and unexpected changes in the nasal form. These complications were eliminated by AMD technique. This was followed by placement of the implant in the bone formed after AMD. Hence complete surgical, orthodontic and prosthodontics rehabilitation of the patient was done by an interdisciplinary approach. Methods: Patient presented with repaired UCL/P of the right side with midfacial retrusion. Intro-oral examination revealed a good occlusion in the posterior arch and anterior Crossbite from canine to canine. Patient's both maxillary lateral incisors were missing. The lower arch was well aligned with all teeth present. The study models when scored according to GOSLON yardstick received a score of 4. After pre-surgical orthodontic phase was completed an intraoral distractor was fabricated by modification of HYRAX expansion screw. After surgery, low subapical osteotomy cuts were placed and the distractor was fixed. The latency period of 5 days was observed after which the distraction was started. Distraction was done at a rate of 1 mm/day with a rhythm of 0.5mm in morning and 0.5mm in the evening. The total distraction of 12 mm was done. After a consolidation period, the distractor was removed, and retention by a removable partial denture was given. Radiographic examination confirmed mature bone formation in the distracted segment. Implants were placed and allowed to osseointegrate for approximately 4 months and were then loaded with abutments. Results: Total distraction done was 12mm and after relapse it was 8mm. After consolidation phase the radiographic examination revealed a B2 quality of bone according to the Misch's classification and sufficient height from the maxillary sinus. These findings were indicative for placement of implants in the distracted bone formed in premolar region. Implants were placed and after radiographic evidence of osseointegration was seen they were loaded with abutments. Thus resulting in a complete rehabilitation of a cleft patient by an interdisciplinary approach. Conclusion: Anterior maxillary distraction can be used as an alternative method instead of complete distraction osteogenesis or Lefort 1 advancement of maxilla in cases where the advancement needed is minimum. Use of HYRAX expansion screw modified as intra-oral distractor can be used in such cases, which significantly reduces the cost of treatment, as expensive distractors are not used. This technique is very useful and efficient in countries like India where the patient cannot afford expensive treatment options.Keywords: cleft lip and palate, distraction osteogenesis, anterior maxillary distraction, orthodontics and dentofacial orthopaedics, hyrax expansion screw modification
Procedia PDF Downloads 26157 Efficient Utilization of Negative Half Wave of Regulator Rectifier Output to Drive Class D LED Headlamp
Authors: Lalit Ahuja, Nancy Das, Yashas Shetty
Abstract:
LED lighting has been increasingly adopted for vehicles in both domestic and foreign automotive markets. Although this miniaturized technology gives the best light output, low energy consumption, and cost-efficient solutions for driving, the same is the need of the hour. In this paper, we present a methodology for driving the highest class two-wheeler headlamp with regulator and rectifier (RR) output. Unlike usual LED headlamps, which are driven by a battery, regulator, and rectifier (RR) driven, a low-cost and highly efficient LED Driver Module (LDM) is proposed. The positive half of magneto output is regulated and used to charge batteries used for various peripherals. While conventionally, the negative half was used for operating bulb-based exterior lamps. But with advancements in LED-based headlamps, which are driven by a battery, this negative half pulse remained unused in most of the vehicles. Our system uses negative half-wave rectified DC output from RR to provide constant light output at all RPMs of the vehicle. With the negative rectified DC output of RR, we have the advantage of pulsating DC input which periodically goes to zero, thus helping us to generate a constant DC output equivalent to the required LED load, and with a change in RPM, additional active thermal bypass circuit help us to maintain the efficiency and thermal rise. The methodology uses the negative half wave output of the RR along with a linear constant current driver with significantly higher efficiency. Although RR output has varied frequency and duty cycles at different engine RPMs, the driver is designed such that it provides constant current to LEDs with minimal ripple. In LED Headlamps, a DC-DC switching regulator is usually used, which is usually bulky. But with linear regulators, we’re eliminating bulky components and improving the form factor. Hence, this is both cost-efficient and compact. Presently, output ripple-free amplitude drivers with fewer components and less complexity are limited to lower-power LED Lamps. The focus of current high-efficiency research is often on high LED power applications. This paper presents a method of driving LED load at both High Beam and Low Beam using the negative half wave rectified pulsating DC from RR with minimum components, maintaining high efficiency within the thermal limitations. Linear regulators are significantly inefficient, with efficiencies typically about 40% and reaching as low as 14%. This leads to poor thermal performance. Although they don’t require complex and bulky circuitry, powering high-power devices is difficult to realise with the same. But with the input being negative half wave rectified pulsating DC, this efficiency can be improved as this helps us to generate constant DC output equivalent to LED load minimising the voltage drop on the linear regulator. Hence, losses are significantly reduced, and efficiency as high as 75% is achieved. With a change in RPM, DC voltage increases, which can be managed by active thermal bypass circuitry, thus resulting in better thermal performance. Hence, the use of bulky and expensive heat sinks can be avoided. Hence, the methodology to utilize the unused negative pulsating DC output of RR to optimize the utilization of RR output power and provide a cost-efficient solution as compared to costly DC-DC drivers.Keywords: class D LED headlamp, regulator and rectifier, pulsating DC, low cost and highly efficient, LED driver module
Procedia PDF Downloads 7056 Dynamic Simulation of IC Engine Bearings for Fault Detection and Wear Prediction
Authors: M. D. Haneef, R. B. Randall, Z. Peng
Abstract:
Journal bearings used in IC engines are prone to premature failures and are likely to fail earlier than the rated life due to highly impulsive and unstable operating conditions and frequent starts/stops. Vibration signature extraction and wear debris analysis techniques are prevalent in the industry for condition monitoring of rotary machinery. However, both techniques involve a great deal of technical expertise, time and cost. Limited literature is available on the application of these techniques for fault detection in reciprocating machinery, due to the complex nature of impact forces that confounds the extraction of fault signals for vibration based analysis and wear prediction. This work is an extension of a previous study, in which an engine simulation model was developed using a MATLAB/SIMULINK program, whereby the engine parameters used in the simulation were obtained experimentally from a Toyota 3SFE 2.0 litre petrol engines. Simulated hydrodynamic bearing forces were used to estimate vibrations signals and envelope analysis was carried out to analyze the effect of speed, load and clearance on the vibration response. Three different loads 50/80/110 N-m, three different speeds 1500/2000/3000 rpm, and three different clearances, i.e., normal, 2 times and 4 times the normal clearance were simulated to examine the effect of wear on bearing forces. The magnitude of the squared envelope of the generated vibration signals though not affected by load, but was observed to rise significantly with increasing speed and clearance indicating the likelihood of augmented wear. In the present study, the simulation model was extended further to investigate the bearing wear behavior, resulting as a consequence of different operating conditions, to complement the vibration analysis. In the current simulation, the dynamics of the engine was established first, based on which the hydrodynamic journal bearing forces were evaluated by numerical solution of the Reynold’s equation. Also, the essential outputs of interest in this study, critical to determine wear rates are the tangential velocity and oil film thickness between the journal and bearing sleeve, which if not maintained appropriately, have a detrimental effect on the bearing performance. Archard’s wear prediction model was used in the simulation to calculate the wear rate of bearings with specific location information as all determinative parameters were obtained with reference to crank rotation. Oil film thickness obtained from the model was used as a criterion to determine if the lubrication is sufficient to prevent contact between the journal and bearing thus causing accelerated wear. A limiting value of 1 µm was used as the minimum oil film thickness needed to prevent contact. The increased wear rate with growing severity of operating conditions is analogous and comparable to the rise in amplitude of the squared envelope of the referenced vibration signals. Thus on one hand, the developed model demonstrated its capability to explain wear behavior and on the other hand it also helps to establish a correlation between wear based and vibration based analysis. Therefore, the model provides a cost-effective and quick approach to predict the impending wear in IC engine bearings under various operating conditions.Keywords: condition monitoring, IC engine, journal bearings, vibration analysis, wear prediction
Procedia PDF Downloads 31355 Intelligent Cooperative Integrated System for Road Safety and Road Infrastructure Maintenance
Authors: Panagiotis Gkekas, Christos Sougles, Dionysios Kehagias, Dimitrios Tzovaras
Abstract:
This paper presents the architecture of the “Intelligent cooperative integrated system for road safety and road infrastructure maintenance towards 2020” (ODOS2020) advanced infrastructure, which implements a number of cooperative ITS applications based on Internet of Things and Infrastructure-to-Vehicle (V2I) technologies with the purpose to enhance the active road safety level of vehicles through the provision of a fully automated V2I environment. The primary objective of the ODOS2020 project is to contribute to increased road safety but also to the optimization of time for maintenance of road infrastructure. The integrated technological solution presented in this paper addresses all types of vehicles and requires minimum vehicle equipment. Thus, the ODOS2020 comprises a low-cost solution, which is one of its main benefits. The system architecture includes an integrated notification system to transmit personalized information on road, traffic, and environmental conditions, in order for the drivers to receive real-time and reliable alerts concerning upcoming critical situations. The latter include potential dangers on the road, such as obstacles or road works ahead, extreme environmental conditions, etc., but also informative messages, such as information on upcoming tolls and their charging policies. At the core of the system architecture lies an integrated sensorial network embedded in special road infrastructures (strips) that constantly collect and transmit wirelessly information about passing vehicles’ identification, type, speed, moving direction and other traffic information in combination with environmental conditions and road wear monitoring and predictive maintenance data. Data collected from sensors is transmitted by roadside infrastructure, which supports a variety of communication technologies such as ITS-G5 (IEEE-802.11p) wireless network and Internet connectivity through cellular networks (3G, LTE). All information could be forwarded to both vehicles and Traffic Management Centers (TMC) operators, either directly through the ITS-G5 network, or to smart devices with Internet connectivity, through cloud-based services. Therefore, through its functionality, the system could send personalized notifications/information/warnings and recommendations for upcoming events to both road users and TMC operators. In the course of the ODOS2020 project pilot operation has been conducted to allow drivers of both C-ITS equipped and non-equipped vehicles to experience the provided added value services. For non-equipped vehicles, the provided information is transmitted to a smartphone application. Finally, the ODOS2020 system and infrastructure is appropriate for installation on both urban, rural, and highway environments. The paper presents the various parts of the system architecture and concludes by outlining the various challenges that had to be overcome during its design, development, and deployment in a real operational environment. Acknowledgments: Work presented in this paper was co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation (call RESEARCH–CREATE–INNOVATE) under contract no. Τ1EDK-03081 (project ODOS2020).Keywords: infrastructure to vehicle, intelligent transportation systems, internet of things, road safety
Procedia PDF Downloads 12754 Development of Knowledge Discovery Based Interactive Decision Support System on Web Platform for Maternal and Child Health System Strengthening
Authors: Partha Saha, Uttam Kumar Banerjee
Abstract:
Maternal and Child Healthcare (MCH) has always been regarded as one of the important issues globally. Reduction of maternal and child mortality rates and increase of healthcare service coverage were declared as one of the targets in Millennium Development Goals till 2015 and thereafter as an important component of the Sustainable Development Goals. Over the last decade, worldwide MCH indicators have improved but could not match the expected levels. Progress of both maternal and child mortality rates have been monitored by several researchers. Each of the studies has stated that only less than 26% of low-income and middle income countries (LMICs) were on track to achieve targets as prescribed by MDG4. Average worldwide annual rate of reduction of under-five mortality rate and maternal mortality rate were 2.2% and 1.9% as on 2011 respectively whereas rates should be minimum 4.4% and 5.5% annually to achieve targets. In spite of having proven healthcare interventions for both mothers and children, those could not be scaled up to the required volume due to fragmented health systems, especially in the developing and under-developed countries. In this research, a knowledge discovery based interactive Decision Support System (DSS) has been developed on web platform which would assist healthcare policy makers to develop evidence-based policies. To achieve desirable results in MCH, efficient resource planning is very much required. In maximum LMICs, resources are big constraint. Knowledge, generated through this system, would help healthcare managers to develop strategic resource planning for combatting with issues like huge inequity and less coverage in MCH. This system would help healthcare managers to accomplish following four tasks. Those are a) comprehending region wise conditions of variables related with MCH, b) identifying relationships within variables, c) segmenting regions based on variables status, and d) finding out segment wise key influential variables which have major impact on healthcare indicators. Whole system development process has been divided into three phases. Those were i) identifying contemporary issues related with MCH services and policy making; ii) development of the system; and iii) verification and validation of the system. More than 90 variables under three categories, such as a) educational, social, and economic parameters; b) MCH interventions; and c) health system building blocks have been included into this web-based DSS and five separate modules have been developed under the system. First module has been designed for analysing current healthcare scenario. Second module would help healthcare managers to understand correlations among variables. Third module would reveal frequently-occurring incidents along with different MCH interventions. Fourth module would segment regions based on previously mentioned three categories and in fifth module, segment-wise key influential interventions will be identified. India has been considered as case study area in this research. Data of 601 districts of India has been used for inspecting effectiveness of those developed modules. This system has been developed by importing different statistical and data mining techniques on Web platform. Policy makers would be able to generate different scenarios from the system before drawing any inference, aided by its interactive capability.Keywords: maternal and child heathcare, decision support systems, data mining techniques, low and middle income countries
Procedia PDF Downloads 26053 Solid Polymer Electrolyte Membranes Based on Siloxane Matrix
Authors: Natia Jalagonia, Tinatin Kuchukhidze
Abstract:
Polymer electrolytes (PE) play an important part in electrochemical devices such as batteries and fuel cells. To achieve optimal performance, the PE must maintain a high ionic conductivity and mechanical stability at both high and low relative humidity. The polymer electrolyte also needs to have excellent chemical stability for long and robustness. According to the prevailing theory, ionic conduction in polymer electrolytes is facilitated by the large-scale segmental motion of the polymer backbone, and primarily occurs in the amorphous regions of the polymer electrolyte. Crystallinity restricts polymer backbone segmental motion and significantly reduces conductivity. Consequently, polymer electrolytes with high conductivity at room temperature have been sought through polymers which have highly flexible backbones and have largely amorphous morphology. The interest in polymer electrolytes was increased also by potential applications of solid polymer electrolytes in high energy density solid state batteries, gas sensors and electrochromic windows. Conductivity of 10-3 S/cm is commonly regarded as a necessary minimum value for practical applications in batteries. At present, polyethylene oxide (PEO)-based systems are most thoroughly investigated, reaching room temperature conductivities of 10-7 S/cm in some cross-linked salt in polymer systems based on amorphous PEO-polypropylene oxide copolymers.. It is widely accepted that amorphous polymers with low glass transition temperatures Tg and a high segmental mobility are important prerequisites for high ionic conductivities. Another necessary condition for high ionic conductivity is a high salt solubility in the polymer, which is most often achieved by donors such as ether oxygen or imide groups on the main chain or on the side groups of the PE. It is well established also that lithium ion coordination takes place predominantly in the amorphous domain, and that the segmental mobility of the polymer is an important factor in determining the ionic mobility. Great attention was pointed to PEO-based amorphous electrolyte obtained by synthesis of comb-like polymers, by attaching short ethylene oxide unit sequences to an existing amorphous polymer backbone. The aim of presented work is to obtain of solid polymer electrolyte membranes using PMHS as a matrix. For this purpose the hydrosilylation reactions of α,ω-bis(trimethylsiloxy)methyl¬hydrosiloxane with allyl triethylene-glycol mo¬nomethyl ether and vinyltriethoxysilane at 1:28:7 ratio of initial com¬pounds in the presence of Karstedt’s catalyst, platinum hydrochloric acid (0.1 M solution in THF) and platinum on the carbon catalyst in 50% solution of anhydrous toluene have been studied. The synthesized olygomers are vitreous liquid products, which are well soluble in organic solvents with specific viscosity ηsp ≈ 0.05 - 0.06. The synthesized olygomers were analysed with FTIR, 1H, 13C, 29Si NMR spectroscopy. Synthesized polysiloxanes were investigated with wide-angle X-ray, gel-permeation chromatography, and DSC analyses. Via sol-gel processes of doped with lithium trifluoromethylsulfonate (triflate) or lithium bis¬(trifluoromethylsulfonyl)¬imide polymer systems solid polymer electrolyte membranes have been obtained. The dependence of ionic conductivity as a function of temperature and salt concentration was investigated and the activation energies of conductivity for all obtained compounds are calculatedKeywords: synthesis, PMHS, membrane, electrolyte
Procedia PDF Downloads 26252 Simple Finite-Element Procedure for Modeling Crack Propagation in Reinforced Concrete Bridge Deck under Repetitive Moving Truck Wheel Loads
Authors: Rajwanlop Kumpoopong, Sukit Yindeesuk, Pornchai Silarom
Abstract:
Modeling cracks in concrete is complicated by its strain-softening behavior which requires the use of sophisticated energy criteria of fracture mechanics to assure stable and convergent solutions in the finite-element (FE) analysis particularly for relatively large structures. However, for small-scale structures such as beams and slabs, a simpler approach relies on retaining some shear stiffness in the cracking plane has been adopted in literature to model the strain-softening behavior of concrete under monotonically increased loading. According to the shear retaining approach, each element is assumed to be an isotropic material prior to cracking of concrete. Once an element is cracked, the isotropic element is replaced with an orthotropic element in which the new orthotropic stiffness matrix is formulated with respect to the crack orientation. The shear transfer factor of 0.5 is used in parallel to the crack plane. The shear retaining approach is adopted in this research to model cracks in RC bridge deck with some modifications to take into account the effect of repetitive moving truck wheel loads as they cause fatigue cracking of concrete. First modification is the introduction of fatigue tests of concrete and reinforcing steel and the Palmgren-Miner linear criterion of cumulative damage in the conventional FE analysis. For a certain loading, the number of cycles to failure of each concrete or RC element can be calculated from the fatigue or S-N curves of concrete and reinforcing steel. The elements with the minimum number of cycles to failure are the failed elements. For the elements that do not fail, the damage is accumulated according to Palmgren-Miner linear criterion of cumulative damage. The stiffness of the failed element is modified and the procedure is repeated until the deck slab fails. The total number of load cycles to failure of the deck slab can then be obtained from which the S-N curve of the deck slab can be simulated. Second modification is the modification in shear transfer factor. Moving loading causes continuous rubbing of crack interfaces which greatly reduces shear transfer mechanism. It is therefore conservatively assumed in this study that the analysis is conducted with shear transfer factor of zero for the case of moving loading. A customized FE program has been developed using the MATLAB software to accomodate such modifications. The developed procedure has been validated with the fatigue test of the 1/6.6-scale AASHTO bridge deck under the applications of both fixed-point repetitive loading and moving loading presented in the literature. Results are in good agreement both experimental vs. simulated S-N curves and observed vs. simulated crack patterns. Significant contribution of the developed procedure is a series of S-N relations which can now be simulated at any desired levels of cracking in addition to the experimentally derived S-N relation at the failure of the deck slab. This permits the systematic investigation of crack propagation or deterioration of RC bridge deck which is appeared to be useful information for highway agencies to prolong the life of their bridge decks.Keywords: bridge deck, cracking, deterioration, fatigue, finite-element, moving truck, reinforced concrete
Procedia PDF Downloads 25951 Synthesis of Chitosan/Silver Nanocomposites: Antibacterial Properties and Tissue Regeneration for Thermal Burn Injury
Authors: B.L. España-Sánchez, E. Luna-Hernández, R.A. Mauricio-Sánchez, M.E. Cruz-Soto, F. Padilla-Vaca, R. Muñoz, L. Granados-López, L.R. Ovalle-Flores, J.L. Menchaca-Arredondo, G. Luna-Bárcenas
Abstract:
Treatment of burn injured has been considered an important clinical problem due to the fluid control and the presence of microorganisms during the healing process. Conventional treatment includes antiseptic techniques, topical medication and surgical removal of damaged skin, to avoid bacterial growth. In order to accelerate this process, different alternatives for tissue regeneration have been explored, including artificial skin, polymers, hydrogels and hybrid materials. Some requirements consider a nonreactive organic polymer with high biocompatibility and skin adherence, avoiding bacterial infections. Chitin-derivative biopolymer such as chitosan (CS) has been used in skin regeneration following third-degree burns. The biological interest of CS is associated with the improvement of tissue cell stimulation, biocompatibility and antibacterial properties. In particular, antimicrobial properties of CS can be significantly increased when is blended with nanostructured materials. Silver-based nanocomposites have gained attention in medicine due to their high antibacterial properties against pathogens, related to their high surface area/volume ratio at nanomolar concentrations. Silver nanocomposites can be blended or synthesized with chitin-derivative biopolymers in order to obtain a biodegradable/antimicrobial hybrid with improved physic-mechanical properties. In this study, nanocomposites based on chitosan/silver nanoparticles (CS/nAg) were synthesized by the in situ chemical reduction method, improving their antibacterial properties against pathogenic bacteria and enhancing the healing process in thermal burn injuries produced in an animal model. CS/nAg was prepared in solution by the chemical reduction method, using AgNO₃ as precursor. CS was dissolved in acetic acid and mixed with different molar concentrations of AgNO₃: 0.01, 0.025, 0.05 and 0.1 M. Solutions were stirred at 95°C during 20 hours, in order to promote the nAg formation. CS/nAg solutions were placed in Petri dishes and dried, to obtain films. Structural analyses confirm the synthesis of silver nanoparticles (nAg) by means of UV-Vis and TEM, with an average size of 7.5 nm and spherical morphology. FTIR analyses showed the complex formation by the interaction of hydroxyl and amine groups with metallic nanoparticles, and surface chemical analysis (XPS) shows low concentration of Ag⁰/Ag⁺ species. Topography surface analyses by means of AFM shown that hydrated CS form a mesh with an average diameter of 10 µm. Antibacterial activity against S. aureus and P. aeruginosa was improved in all evaluated conditions, such as nAg loading and interaction time. CS/nAg nanocomposites films did not show Ag⁰/Ag⁺ release in saline buffer and rat serum after exposition during 7 days. Healing process was significantly enhanced by the presence of CS/nAg nanocomposites, inducing the production of myofibloblasts, collagen remodelation, blood vessels neoformation and epidermis regeneration after 7 days of injury treatment, by means of histological and immunohistochemistry assays. The present work suggests that hydrated CS/nAg nanocomposites can be formed a mesh, improving the bacterial penetration and the contact with embedded nAg, producing complete growth inhibition after 1.5 hours. Furthermore, CS/nAg nanocomposites improve the cell tissue regeneration in thermal burn injuries induced in rats. Synthesis of antibacterial, non-toxic, and biocompatible nanocomposites can be an important issue in tissue engineering and health care applications.Keywords: antibacterial, chitosan, healing process, nanocomposites, silver
Procedia PDF Downloads 29150 Accurate Energy Assessment Technique for Mine-Water District Heat Network
Authors: B. Philip, J. Littlewood, R. Radford, N. Evans, T. Whyman, D. P. Jones
Abstract:
UK buildings and energy infrastructures are heavily dependent on natural gas, a large proportion of which is used for domestic space heating. However, approximately half of the gas consumed in the UK is imported. Improving energy security and reducing carbon emissions are major government drivers for reducing gas dependency. In order to do so there needs to be a wholesale shift in the energy provision to householders without impacting on thermal comfort levels, convenience or cost of supply to the end user. Heat pumps are seen as a potential alternative in modern well insulated homes, however, can the same be said of older homes? A large proportion of housing stock in Britain was built prior to 1919. The age of the buildings bears testimony to the quality of construction; however, their thermal performance falls far below the minimum currently set by UK building standards. In recent years significant sums of money have been invested to improve energy efficiency and combat fuel poverty in some of the most deprived areas of Wales. Increasing energy efficiency of older properties remains a significant challenge, which cannot be achieved through insulation and air-tightness interventions alone, particularly when alterations to historically important architectural features of the building are not permitted. This paper investigates the energy demand of pre-1919 dwellings in a former Welsh mining village, the feasibility of meeting that demand using water from the disused mine workings to supply a district heat network and potential barriers to success of the scheme. The use of renewable solar energy generation and storage technologies, both thermal and electrical, to reduce the load and offset increased electricity demand, are considered. A wholistic surveying approach to provide a more accurate assessment of total household heat demand is proposed. Several surveying techniques, including condition surveys, air permeability, heat loss calculations, and thermography were employed to provide a clear picture of energy demand. Additional insulation can bring unforeseen consequences which are detrimental to the fabric of the building, potentially leading to accelerated dilapidation of the asset being ‘protected’. Increasing ventilation should be considered in parallel, to compensate for the associated reduction in uncontrolled infiltration. The effectiveness of thermal performance improvements are demonstrated and the detrimental effects of incorrect material choice and poor installation are highlighted. The findings show estimated heat demand to be in close correlation to household energy bills. Major areas of heat loss were identified such that improvements to building thermal performance could be targeted. The findings demonstrate that the use of heat pumps in older buildings is viable, provided sufficient improvement to thermal performance is possible. Addition of passive solar thermal and photovoltaic generation can help reduce the load and running cost for the householder. The results were used to predict future heat demand following energy efficiency improvements, thereby informing the size of heat pumps required.Keywords: heat demand, heat pump, renewable energy, retrofit
Procedia PDF Downloads 9849 Multifunctional Epoxy/Carbon Laminates Containing Carbon Nanotubes-Confined Paraffin for Thermal Energy Storage
Authors: Giulia Fredi, Andrea Dorigato, Luca Fambri, Alessandro Pegoretti
Abstract:
Thermal energy storage (TES) is the storage of heat for later use, thus filling the gap between energy request and supply. The most widely used materials for TES are the organic solid-liquid phase change materials (PCMs), such as paraffin. These materials store/release a high amount of latent heat thanks to their high specific melting enthalpy, operate in a narrow temperature range and have a tunable working temperature. However, they suffer from a low thermal conductivity and need to be confined to prevent leakage. These two issues can be tackled by confining PCMs with carbon nanotubes (CNTs). TES applications include the buildings industry, solar thermal energy collection and thermal management of electronics. In most cases, TES systems are an additional component to be added to the main structure, but if weight and volume savings are key issues, it would be advantageous to embed the TES functionality directly in the structure. Such multifunctional materials could be employed in the automotive industry, where the diffusion of lightweight structures could complicate the thermal management of the cockpit environment or of other temperature sensitive components. This work aims to produce epoxy/carbon structural laminates containing CNT-stabilized paraffin. CNTs were added to molten paraffin in a fraction of 10 wt%, as this was the minimum amount at which no leakage was detected above the melting temperature (45°C). The paraffin/CNT blend was cryogenically milled to obtain particles with an average size of 50 µm. They were added in various percentages (20, 30 and 40 wt%) to an epoxy/hardener formulation, which was used as a matrix to produce laminates through a wet layup technique, by stacking five plies of a plain carbon fiber fabric. The samples were characterized microstructurally, thermally and mechanically. Differential scanning calorimetry (DSC) tests showed that the paraffin kept its ability to melt and crystallize also in the laminates, and the melting enthalpy was almost proportional to the paraffin weight fraction. These thermal properties were retained after fifty heating/cooling cycles. Laser flash analysis showed that the thermal conductivity through the thickness increased with an increase of the PCM, due to the presence of CNTs. The ability of the developed laminates to contribute to the thermal management was also assessed by monitoring their cooling rates through a thermal camera. Three-point bending tests showed that the flexural modulus was only slightly impaired by the presence of the paraffin/CNT particles, while a more sensible decrease of the stress and strain at break and the interlaminar shear strength was detected. Optical and scanning electron microscope images revealed that these could be attributed to the preferential location of the PCM in the interlaminar region. These results demonstrated the feasibility of multifunctional structural TES composites and highlighted that the PCM size and distribution affect the mechanical properties. In this perspective, this group is working on the encapsulation of paraffin in a sol-gel derived organosilica shell. Submicron spheres have been produced, and the current activity focuses on the optimization of the synthesis parameters to increase the emulsion efficiency.Keywords: carbon fibers, carbon nanotubes, lightweight materials, multifunctional composites, thermal energy storage
Procedia PDF Downloads 16348 Diabetic Screening in Rural Lesotho, Southern Africa
Authors: Marie-Helena Docherty, Sion Edryd Williams
Abstract:
The prevalence of diabetes mellitus is increasing worldwide. In Sub-Saharan Africa, type 2 diabetes represents over 90% of all types of diabetes with the number of diabetic patients expected to rise. This represents a huge economic burden in an area already contending with high rates of other significant diseases, including the highest worldwide prevalence of HIV. Diabetic complications considerably impact on morbidity and mortality. The epidemiological data for the region quotes high rates of retinopathy (7-63%), neuropathy (27-66%) and microalbuminuria (10-83%). It is therefore imperative that diabetic screening programmes are established. It is recognised that in many parts of the developing world the implementation and management of such programmes is limited by a lack of available resources. The International Diabetes Federation produced guidelines in 2012 taking these limitations into account suggesting that all diabetic patients should have access to basic screening. These guidelines are consistent with the national diabetic guidelines produced by the Lesotho Medical Council. However, diabetic care in Lesotho is delivered at the local level, with variable levels of quality. A cross sectional study was performed in the outpatient department of Maluti Hospital in Mapoteng, Lesotho, a busy rural hospital in the Berea district. Demographic data on gender, age and modality of treatment were collected over a six-week time period. Information regarding 3 basic screening parameters was obtained. These parameters included eye screening (defined as a documented ophthalmology review within the last 12 months), foot screening (defined as a documented foot health assessment by any health care professional within the last 12 months) and secondary prevention (defined as a documented blood pressure and lipid profile reading within the last 12 months). These parameters were selected on the basis of the absolute minimum level of resources in Maluti Hospital. Renal screening was excluded, as the hospital does not have access to reliable renal profile checks or urinalysis. There is however a fully functioning on-site ophthalmology department run by a senior ophthalmologist with the ability to provide retinal photography, retinal surgery and photocoagulation therapy. Data was collected on 183 type 2 diabetics. 112 patients were male and 71 were female. The average age was 43 years. 4 patients were diet controlled, 140 patients were on oral hypoglycaemic agents (metformin and/or glibenclamide), and 39 patients were on a combination of insulin and oral hypoglycaemics. In the preceding 12 months, 5 patients had undergone eye screening (3%), 24 patients had undergone foot screening (13%), and 31 patients had lipid profile testing (17%). All patients had a documented blood pressure reading (100%). Our results show that screening is poorly performed in the basic indicators suggested by the IDF and the Lesotho Medical Council. On the basis of these results, a screening programme was developed using the mnemonic SaFE; secondary prevention, foot and eye care. This is simple, memorable and transferable between healthcare professionals. In the future, the expectation would be to expand upon this current programme to include renal screening, and to further develop screening pertaining to secondary prevention.Keywords: Africa, complications, rural, screening
Procedia PDF Downloads 28947 Mixed Mode Fracture Analyses Using Finite Element Method of Edge Cracked Heavy Annulus Pulley
Authors: Bijit Kalita, K. V. N. Surendra
Abstract:
The pulley works under both compressive loading due to contacting belt in tension and central torque due to cause rotation. In a power transmission system, the belt pulley assemblies offer a contact problem in the form of two mating cylindrical parts. In this work, we modeled a pulley as a heavy two-dimensional circular disk. Stress analysis due to contact loading in the pulley mechanism is performed. Finite element analysis (FEA) is conducted for a pulley to investigate the stresses experienced on its inner and outer periphery. In most of the heavy-duty applications, most frequently used mechanisms to transmit power in applications such as automotive engines, industrial machines, etc. is Belt Drive. Usually, very heavy circular disks are used as pulleys. A pulley could be entitled as a drum and may have a groove between two flanges around the circumference. A rope, belt, cable or chain can be the driving element of a pulley system that runs over the pulley inside the groove. A pulley is experienced by normal and shear tractions on its contact region in the process of motion transmission. The region may be belt-pulley contact surface or pulley-shaft contact surface. In 1895, Hertz solved the elastic contact problem for point contact and line contact of an ideal smooth object. Afterward, this hypothesis is generally utilized for computing the actual contact zone. Detailed stress analysis in such contact region of such pulleys is quite necessary to prevent early failure. In this paper, the results of the finite element analyses carried out on the compressed disk of a belt pulley arrangement using fracture mechanics concepts are shown. Based on the literature on contact stress problem induced in the wide field of applications, generated stress distribution on the shaft-pulley and belt-pulley interfaces due to the application of high-tension and torque was evaluated in this study using FEA concepts. Finally, the results obtained from ANSYS (APDL) were compared with the Hertzian contact theory. The study is mainly focused on the fatigue life estimation of a rotating part as a component of an engine assembly using the most famous Paris equation. Digital Image Correlation (DIC) analyses have been performed using the open-source software. From the displacement computed using the images acquired at a minimum and maximum force, displacement field amplitude is computed. From these fields, the crack path is defined and stress intensity factors and crack tip position are extracted. A non-linear least-squares projection is used for the purpose of the estimation of fatigue crack growth. Further study will be extended for the various application of rotating machinery such as rotating flywheel disk, jet engine, compressor disk, roller disk cutter etc., where Stress Intensity Factor (SIF) calculation plays a significant role on the accuracy and reliability of a safe design. Additionally, this study will be progressed to predict crack propagation in the pulley using maximum tangential stress (MTS) criteria for mixed mode fracture.Keywords: crack-tip deformations, contact stress, stress concentration, stress intensity factor
Procedia PDF Downloads 12646 A Textile-Based Scaffold for Skin Replacements
Authors: Tim Bolle, Franziska Kreimendahl, Thomas Gries, Stefan Jockenhoevel
Abstract:
The therapeutic treatment of extensive, deep wounds is limited. Autologous split-skin grafts are used as a so-called ‘gold standard’. Most common deficits are the defects at the donor site, the risk of scarring as well as the limited availability and quality of the autologous grafts. The aim of this project is a tissue engineered dermal-epidermal skin replacement to overcome the limitations of the gold standard. A key requirement for the development of such a three-dimensional implant is the formation of a functional capillary-like network inside the implant to ensure a sufficient nutrient and gas supply. Tailored three-dimensional warp knitted spacer fabrics are used to reinforce the mechanically week fibrin gel-based scaffold and further to create a directed in vitro pre-vascularization along the parallel-oriented pile yarns within a co-culture. In this study various three-dimensional warp knitted spacer fabrics were developed in a factorial design to analyze the influence of the machine parameters such as the stitch density and the pattern of the fabric on the scaffold performance and further to determine suitable parameters for a successful fibrin gel-incorporation and a physiological performance of the scaffold. The fabrics were manufactured on a Karl Mayer double-bar raschel machine DR 16 EEC/EAC. A fine machine gauge of E30 was used to ensure a high pile yarn density for sufficient nutrient, gas and waste exchange. In order to ensure a high mechanical stability of the graft, the fabrics were made of biocompatible PVDF yarns. Key parameters such as the pore size, porosity and stress/strain behavior were investigated under standardized, controlled climate conditions. The influence of the input parameters on the mechanical and morphological properties as well as the ability of fibrin gel incorporation into the spacer fabric was analyzed. Subsequently, the pile yarns of the spacer fabrics were colonized with Human Umbilical Vein Endothelial Cells (HUVEC) to analyze the ability of the fabric to further function as a guiding structure for a directed vascularization. The cells were stained with DAPI and investigated using fluorescence microscopy. The analysis revealed that the stitch density and the binding pattern have a strong influence on both the mechanical and morphological properties of the fabric. As expected, the incorporation of the fibrin gel was significantly improved with higher pore sizes and porosities, whereas the mechanical strength decreases. Furthermore, the colonization trials revealed a high cell distribution and density on the pile yarns of the spacer fabrics. For a tailored reinforcing structure, the minimum porosity and pore size needs to be evaluated which still ensures a complete incorporation of the reinforcing structure into the fibrin gel matrix. That will enable a mechanically stable dermal graft with a dense vascular network for a sufficient nutrient and oxygen supply of the cells. The results are promising for subsequent research in the field of reinforcing mechanically weak biological scaffolds and develop functional three-dimensional scaffolds with an oriented pre-vascularization.Keywords: fibrin-gel, skin replacement, spacer fabric, pre-vascularization
Procedia PDF Downloads 25745 Pre-conditioning and Hot Water Sanitization of Reverse Osmosis Membrane for Medical Water Production
Authors: Supriyo Das, Elbir Jove, Ajay Singh, Sophie Corbet, Noel Carr, Martin Deetz
Abstract:
Water is a critical commodity in the healthcare and medical field. The utility of medical-grade water spans from washing surgical equipment, drug preparation to the key element of life-saving therapy such as hydrotherapy and hemodialysis for patients. A properly treated medical water reduces the bioburden load and mitigates the risk of infection, ensuring patient safety. However, any compromised condition during the production of medical-grade water can create a favorable environment for microbial growth putting patient safety at high risk. Therefore, proper upstream treatment of the medical water is essential before its application in healthcare, pharma and medical space. Reverse Osmosis (RO) is one of the most preferred treatments within healthcare industries and is recommended by all International Pharmacopeias to achieve the quality level demanded by global regulatory bodies. The RO process can remove up to 99.5% of constituents from feed water sources, eliminating bacteria, proteins and particles sizes of 100 Dalton and above. The combination of RO with other downstream water treatment technologies such as Electrodeionization and Ultrafiltration meet the quality requirements of various pharmacopeia monographs to produce highly purified water or water for injection for medical use. In the reverse osmosis process, the water from a liquid with a high concentration of dissolved solids is forced to flow through an especially engineered semi-permeable membrane to the low concentration side, resulting in high-quality grade water. However, these specially engineered RO membranes need to be sanitized either chemically or at high temperatures at regular intervals to keep the bio-burden at the minimum required level. In this paper, we talk about Dupont´s FilmTec Heat Sanitizable Reverse Osmosis membrane (HSRO) for the production of medical-grade water. An HSRO element must be pre-conditioned prior to initial use by exposure to hot water (80°C-85°C) for its stable performance and to meet the manufacturer’s specifications. Without pre-conditioning, the membrane will show variations in feed pressure operations and salt rejection. The paper will discuss the critical variables of pre-conditioning steps that can affect the overall performance of the HSRO membrane and demonstrate the data to support the need for pre-conditioning of HSRO elements. Our preliminary data suggests that there can be up to 35 % reduction in flow due to initial heat treatment, which also positively affects the increase in salt rejection. The paper will go into detail about the fundamental understanding of the performance change of HSRO after the pre-conditioning step and its effect on the quality of medical water produced. The paper will also discuss another critical point, “regular hot water sanitization” of these HSRO membranes. Regular hot water sanitization (at 80°C-85°C) is necessary to keep the membrane bioburden free; however, it can negatively impact the performance of the membrane over time. We will demonstrate several data points on hot water sanitization using FilmTec HSRO elements and challenge its robustness to produce quality medical water. The last part of this paper will discuss the construction details of the FilmTec HSRO membrane and features that make it suitable to pre-condition and sanitize at high temperatures.Keywords: heat sanitizable reverse osmosis, HSRO, medical water, hemodialysis water, water for Injection, pre-conditioning, heat sanitization
Procedia PDF Downloads 21744 Impact of the 2015 Drought on Rural Livelihood – a Case Study of Masurdi Village in Latur District of Maharashtra, India
Authors: Nitin Bhagat
Abstract:
Drought is a global phenomenon. It has a huge impact on agriculture and allied sector activities. Agriculture plays a substantial role in the economy of developing countries, which mainly depends on rainfall. The present study illustrates the drought conditions in Masurdi village of Latur district in the Marathwada region, Maharashtra. This paper is based on both primary as well as secondary data sources. The multistage sample method was used for primary data collection. The 100 households sample survey data has been collected from the village through a semi-structured questionnaire. The crop production data is collected from the Department of Agriculture, Government of Maharashtra. The rainfall data is obtained from the Department of Revenue, Office of Divisional Commissioner, Aurangabad for the period from 1988 to 2018. This paper examines the severity of drought consequences of the 2015 drought on domestic water supply, crop production, and the effect on children's schooling, livestock assets, bank credit, and migration. The study also analyzed climate variables' impact on the Latur district's total food grain production for 19 years from 2000 to 2018. This study applied multiple regression analysis to check the relationship between climatic variables and the Latur district's total food grain production. The climate variables are annual rainfall, maximum temperature and minimum temperature. The study considered that climatic variables are independent variables and total food grain as the dependent variable. It shows there is a significant relationship between rainfall and maximum temperature. The study also calculated rainfall deviations to find out the drought and normal years. According to drought manual 2016, the rainfall deviation calculated using the following formula. RF dev = {(RFi – RFn) / RFn}*100.Approximately 27.43 % of the workforce migrated from rural to urban areas for searching jobs, and crop production decreased tremendously due to inadequate rainfall in the drought year 2015. Many farm and non-farm labor, some marginal and small cultivators, migrated from rural to urban areas (like Pune, Mumbai, and Western Maharashtra).About 48 % of the households' children faced education difficulties; in the drought period, children were not going to school. They left their school and joined to bring water with their mother and fathers, sometimes they fetched water on their head or using a bicycle, near about 2 km from the village. In their school-going days, drinking water was not available in their schools, so the government declared holidays early in the academic education year 2015-16 compared to another academic year. Some college and 10th class students left their education due to financial problems. Many households benefited from state government schemes, like drought subsidies, crop insurance, and bank loans. Out of 100 households, about 50 (50 %) have obtained financial support from the state government’s subsidy scheme, 58 ( 58 %) have got crop insurance, and 41(41 %) irrigated households have got bank loans from national banks; besides that, only two families have obtained loans from their relatives and moneylenders.Keywords: agriculture, drought, household, rainfall
Procedia PDF Downloads 179