Search results for: language acquisition and learning
6865 Terraria AI: YOLO Interface for Decision-Making Algorithms
Authors: Emmanuel Barrantes Chaves, Ernesto Rivera Alvarado
Abstract:
This paper presents a method to enable agents for the Terraria game to evaluate algorithms commonly used in general video game artificial intelligence competitions. The usage of the ‘You Only Look Once’ model in the first layer of the process obtains information from the screen, translating this information into a video game description language known as “Video Game Description Language”; the agents take that as input to make decisions. For this, the state-of-the-art algorithms were tested and compared; Monte Carlo Tree Search and Rolling Horizon Evolutionary; in this case, Rolling Horizon Evolutionary shows a better performance. This approach’s main advantage is that a VGDL beforehand is unnecessary. It will be built on the fly and opens the road for using more games as a framework for AI.Keywords: AI, MCTS, RHEA, Terraria, VGDL, YOLOv5
Procedia PDF Downloads 966864 Potential Roles of Motivation and Teaching Strategies in Communicative Competencies among Palestinian University Students
Authors: Hazem Hasan Hushayish
Abstract:
Motivation and teaching strategies are commonly believed to improve students’ communicative competence in English as a foreign language; still, there is not much empirical evidence to support this claim. The present study is intended to focus on the effects of motivational factors and teaching strategies on the communicative competence among the Palestinian undergraduates. In the first phase, one hundred and eighty participants, who are studying English language in three Palestinian universities, answered a questionnaire. The questionnaire included items derived from Gardner’s 2001, 2004, 2006, 2007 Attitude/Motivation Test Battery AMTB and items from Dörnyei 2007 and Guilloteaux and Dörnyei 2008 teaching strategies framework for foreign language classrooms. In the second phase, 6 participants, from the same universities, were interviewed. The quantitative results indicated that participants’ communicative competence is significantly affected by motivation and teaching strategies. Also, the qualitative results indicated that teaching strategies do not directly affect students’ communicative competence, but rather affect their motivation. Consequently, the current study will add substantively to the literature concerning the effects of motivation and teaching strategies in communicative competencies among EFL learners in the Palestinian context, and some suggested procedures and suggestions that help improve learners’ communicative competences.Keywords: communicative competence, motivation, teaching strategies, Palestinian undergraduates
Procedia PDF Downloads 1906863 Poor Proficiency of English Language among Tertiary Level Students in Bangladesh and Its Effect on Employability: An Investigation to Find Facts and Solutions
Authors: Tanvir Ahmed, Nahian Fyrose Fahim, Subrata Majumder, Sarker Kibria
Abstract:
English is unanimously recognized as the standard second language in the world, and no one can deny this fact. Many people believe that possessing English proficiency skills is the key to communicating effectively globally, especially for developing countries, which can bring further success to itself on many fronts, as well as to other countries, by ensuring its people worldwide access to education, business, and technology. Bangladesh is a developing country of about 160 million people. A notable number of students in Bangladesh are currently pursuing higher education, especially at the tertiary or collegiate level, in more than 150 public and private universities. English is the dominant linguistic medium through which college instruction and lectures are given to students in Bangladesh. However, many of our students who have only completed their primary and secondary levels of education in the Bangla medium or language are generally in an awkward position to suddenly take and complete many unfamiliar requirements by the time they enter the university as freshmen. As students, they struggle to complete at least 18 courses to acquire proficiency in English. After obtaining a tertiary education certificate, the students could then have the opportunity to acquire a sustainable position in the job market industry; however, many of them do fail, unfortunately, because of poor English proficiency skills. Our study focuses on students in both public and private universities (N=150) as well as education experts (N=30) in Bangladesh. We had prepared two sets of questionnaires that were based upon a literature review on this subject, as we had also collected data and identified the reasons, and arrived at probable solutions to overcoming these problems. After statistical analysis, the study suggested certain remedial measures that could be taken in order to increase student's proficiency in English as well as to ensure their employability potential.Keywords: tertiary education, English language proficiency, employability, unemployment problems
Procedia PDF Downloads 1046862 Enhancing Critical Reflective Practice in Fieldwork Education: An Exploratory Study of the Role of Social Work Agencies in the Welfare Context of Hong Kong
Authors: Yee-May Chan
Abstract:
In recent decades, it is observed that social work agencies have participated actively, and thus, have gradually been more influential in social work education in Hong Kong. The neo-liberal welfare ideologies and changing funding mode have transformed the landscape in social work practice and have also had a major influence on the fieldwork environment in Hong Kong. The aim of this research is to explore the educational role of social work agencies and examine in particular whether they are able to enhance or hinder critical reflective learning in fieldwork. In-depth interviews with 15 frontline social workers and managers in different social work agencies were conducted to collect their views and experience in helping social work students in fieldwork. The overall findings revealed that under the current social welfare context most social workers consider that the most important role of social work agencies in fieldwork is to help students prepare to fit-in the practice requirements and work within agencies’ boundary. The fit-for-purpose and down-to-earth view of fieldwork practice is seen as prevalent among most social workers. This narrow perception of agency’s role seems to be more favourable to competence-based approaches. In contrast, though critical reflection has been seen as important in addressing the changing needs of service users, the role of enhancing critical reflective learning has not been clearly expected or understood by most agency workers. The notion of critical reflection, if considered, has been narrowly perceived in fieldwork learning. The findings suggest that the importance of critical reflection is found to be subordinate to that of practice competence. The lack of critical reflection in the field is somehow embedded in the competence-based social work practice. In general, social work students’ critical reflection has not been adequately supported or enhanced in fieldwork agencies, nor critical reflective practice has been encouraged in fieldwork process. To address this situation, the role of social work agencies in fieldwork should be re-examined. To maximise critical reflective learning in the field, critical reflection as an avowed objective in fieldwork learning should be clearly stated. Concrete suggestions are made to help fieldwork agencies become more prepared to critical reflective learning. It is expected that the research can help social work communities to reflect upon the current realities of fieldwork context and to identify ways to strengthen agencies’ capacities to enhance critical reflective learning and practice of social work students.Keywords: competence-based social work, critical reflective learning, fieldwork agencies, neo-liberal welfare
Procedia PDF Downloads 3216861 Uncertainty in Risk Modeling
Authors: Mueller Jann, Hoffmann Christian Hugo
Abstract:
Conventional quantitative risk management in banking is a risk factor of its own, because it rests on assumptions such as independence and availability of data which do not hold when rare events of extreme consequences are involved. There is a growing recognition of the need for alternative risk measures that do not make these assumptions. We propose a novel method for modeling the risk associated with investment products, in particular derivatives, by using a formal language for specifying financial contracts. Expressions in this language are interpreted in the category of values annotated with (a formal representation of) uncertainty. The choice of uncertainty formalism thus becomes a parameter of the model, so it can be adapted to the particular application and it is not constrained to classical probabilities. We demonstrate our approach using a simple logic-based uncertainty model and a case study in which we assess the risk of counter party default in a portfolio of collateralized loans.Keywords: risk model, uncertainty monad, derivatives, contract algebra
Procedia PDF Downloads 5766860 Leveraging Reasoning through Discourse: A Case Study in Secondary Mathematics Classrooms
Authors: Cory A. Bennett
Abstract:
Teaching and learning through the use of discourse support students’ conceptual understanding by attending to key concepts and relationships. One discourse structure used in primary classrooms is number talks wherein students mentally calculate, discuss, and reason about the appropriateness and efficiency of their strategies. In the secondary mathematics classroom, the mathematics understudy does not often lend itself to mental calculations yet learning to reason, and articulate reasoning, is central to learning mathematics. This qualitative case study discusses how one secondary school in the Middle East adapted the number talk protocol for secondary mathematics classrooms. Several challenges in implementing ‘reasoning talks’ became apparent including shifting current discourse protocols and practices to a more student-centric model, accurately recording and probing student thinking, and specifically attending to reasoning rather than computations.Keywords: discourse, reasoning, secondary mathematics, teacher development
Procedia PDF Downloads 1876859 Systematic and Meta-Analysis of Navigation in Oral and Maxillofacial Trauma and Impact of Machine Learning and AI in Management
Authors: Shohreh Ghasemi
Abstract:
Introduction: Managing oral and maxillofacial trauma is a multifaceted challenge, as it can have life-threatening consequences and significant functional and aesthetic impact. Navigation techniques have been introduced to improve surgical precision to meet this challenge. A machine learning algorithm was also developed to support clinical decision-making regarding treating oral and maxillofacial trauma. Given these advances, this systematic meta-analysis aims to assess the efficacy of navigational techniques in treating oral and maxillofacial trauma and explore the impact of machine learning on their management. Methods: A detailed and comprehensive analysis of studies published between January 2010 and September 2021 was conducted through a systematic meta-analysis. This included performing a thorough search of Web of Science, Embase, and PubMed databases to identify studies evaluating the efficacy of navigational techniques and the impact of machine learning in managing oral and maxillofacial trauma. Studies that did not meet established entry criteria were excluded. In addition, the overall quality of studies included was evaluated using Cochrane risk of bias tool and the Newcastle-Ottawa scale. Results: Total of 12 studies, including 869 patients with oral and maxillofacial trauma, met the inclusion criteria. An analysis of studies revealed that navigation techniques effectively improve surgical accuracy and minimize the risk of complications. Additionally, machine learning algorithms have proven effective in predicting treatment outcomes and identifying patients at high risk for complications. Conclusion: The introduction of navigational technology has great potential to improve surgical precision in oral and maxillofacial trauma treatment. Furthermore, developing machine learning algorithms offers opportunities to improve clinical decision-making and patient outcomes. Still, further studies are necessary to corroborate these results and establish the optimal use of these technologies in managing oral and maxillofacial traumaKeywords: trauma, machine learning, navigation, maxillofacial, management
Procedia PDF Downloads 586858 Development of Web-Based Iceberg Detection Using Deep Learning
Authors: A. Kavya Sri, K. Sai Vineela, R. Vanitha, S. Rohith
Abstract:
Large pieces of ice that break from the glaciers are known as icebergs. The threat that icebergs pose to navigation, production of offshore oil and gas services, and underwater pipelines makes their detection crucial. In this project, an automated iceberg tracking method using deep learning techniques and satellite images of icebergs is to be developed. With a temporal resolution of 12 days and a spatial resolution of 20 m, Sentinel-1 (SAR) images can be used to track iceberg drift over the Southern Ocean. In contrast to multispectral images, SAR images are used for analysis in meteorological conditions. This project develops a web-based graphical user interface to detect and track icebergs using sentinel-1 images. To track the movement of the icebergs by using temporal images based on their latitude and longitude values and by comparing the center and area of all detected icebergs. Testing the accuracy is done by precision and recall measures.Keywords: synthetic aperture radar (SAR), icebergs, deep learning, spatial resolution, temporal resolution
Procedia PDF Downloads 916857 An Optimal Path for Virtual Reality Education using Association Rules
Authors: Adam Patterson
Abstract:
This study analyzes the self-reported experiences of virtual reality users to develop insight into an optimal learning path for education within virtual reality. This research uses a sample of 1000 observations to statistically define factors influencing (i) immersion level and (ii) motion sickness rating for virtual reality experience respondents of college age. This paper recommends an efficient duration for each virtual reality session, to minimize sickness and maximize engagement, utilizing modern machine learning methods such as association rules. The goal of this research, in augmentation with previous literature, is to inform logistical decisions relating to implementation of pilot instruction for virtual reality at the collegiate level. Future research will include a Randomized Control Trial (RCT) to quantify the effect of virtual reality education on student learning outcomes and engagement measures. Current research aims to maximize the treatment effect within the RCT by optimizing the learning benefits of virtual reality. Results suggest significant gender heterogeneity amongst likelihood of reporting motion sickness. Females are 1.7 times more likely, than males, to report high levels of motion sickness resulting from a virtual reality experience. Regarding duration, respondents were 1.29 times more likely to select the lowest level of motion sickness after an engagement lasting between 24.3 and 42 minutes. Conversely, respondents between 42 to 60 minutes were 1.2 times more likely to select the higher levels of motion sickness.Keywords: applications and integration of e-education, practices and cases in e-education, systems and technologies in e-education, technology adoption and diffusion of e-learning
Procedia PDF Downloads 676856 Machine Learning Approach for Lateralization of Temporal Lobe Epilepsy
Authors: Samira-Sadat JamaliDinan, Haidar Almohri, Mohammad-Reza Nazem-Zadeh
Abstract:
Lateralization of temporal lobe epilepsy (TLE) is very important for positive surgical outcomes. We propose a machine learning framework to ultimately identify the epileptogenic hemisphere for temporal lobe epilepsy (TLE) cases using magnetoencephalography (MEG) coherence source imaging (CSI) and diffusion tensor imaging (DTI). Unlike most studies that use classification algorithms, we propose an effective clustering approach to distinguish between normal and TLE cases. We apply the famous Minkowski weighted K-Means (MWK-Means) technique as the clustering framework. To overcome the problem of poor initialization of K-Means, we use particle swarm optimization (PSO) to effectively select the initial centroids of clusters prior to applying MWK-Means. We demonstrate that compared to K-means and MWK-means independently, this approach is able to improve the result of a benchmark data set.Keywords: temporal lobe epilepsy, machine learning, clustering, magnetoencephalography
Procedia PDF Downloads 1566855 Formal Specification of Web Services Applications for Digital Reference Services of Library Information System
Authors: Magaji Zainab Musa, Nordin M. A. Rahman, Julaily Aida Jusoh
Abstract:
This paper discusses the formal specification of web services applications for digital reference services (WSDRS). Digital reference service involves a user requesting for help from a reference librarian and a reference librarian responding to the request of a user all by electronic means. In most cases users do not get satisfied while using digital reference service due to delay of response of the librarians. Another may be due to no response or due to librarian giving an irrelevant solution to the problem submitted by the user. WDSRS is an informal model that claims to reduce the problems of digital reference services in libraries. It uses web services technology to provide efficient way of satisfying users’ need in the reference section of libraries. But informal model is in natural language which is inconsistent and ambiguous that may cause difficulties to the developers of the system. In order to solve this problem we decided to convert the informal specifications into formal specifications. This is supposed to reduce the overall development time and cost. Formal specification can be used to provide an unambiguous and precise supplement to natural language descriptions. It can be rigorously validated and verified leading to the early detection of specification errors. We use Z language to develop the formal model and verify it with Z/EVES theorem prover tool.Keywords: formal, specifications, web services, digital reference services
Procedia PDF Downloads 3766854 Applying Program Theory-Driven Approach to Design and Evaluate a Teacher Professional Development Program
Abstract:
Japanese Scholar Manabu Sato has been advocating the Learning Community, which changed Japanese fundamental education during the last three decades. It was also called a “Quiet Revolution.” Manabu Sato criticized that traditional education only focused on individual competition, exams, teacher-centered instruction, and memorization. The students lacked leaning motivation. Therefore, Manabu Sato proclaimed that learning should be a sustainable process of “constantly weaving the relationship and the meanings” by having dialogues with learning materials, with peers, and with oneself. For a long time, secondary school education in Taiwan has been focused on exams and emphasized reciting and memorizing. The incident of “giving up learning” happened to some students. Manabu Sato’s learning community program has been implemented very successfully in Japan. It is worth exploring if learning community can resolve the issue of “Escape from learning” phenomenon among secondary school students in Taiwan. This study was the first year of a two-year project. This project applied a program theory-driven approach to evaluating the impact of teachers’ professional development interventions on students’ learning by using a mix of methods, qualitative inquiry, and quasi-experimental design. The current study was to show the results of using the method of theory-driven approach to program planning to design and evaluate a teachers’ professional development program (TPDP). The Manabu Sato’s learning community theory was applied to structure all components of a 54-hour workshop. The participants consisted of seven secondary school science teachers from two schools. The research procedure was comprised of: 1) Defining the problem and assessing participants’ needs; 2) Selecting the Theoretical Framework; 3) Determining theory-based goals and objectives; 4) Designing the TPDP intervention; 5) Implementing the TPDP intervention; 6) Evaluating the TPDP intervention. Data was collected from a number of different sources, including TPDP checklist, activity responses of workshop, LC subject matter test, teachers’ e-portfolio, course design documents, and teachers’ belief survey. The major findings indicated that program design was suitable to participants. More than 70% of the participants were satisfied with program implementation. They revealed that TPDP was beneficial to their instruction and promoted their professional capacities. However, due to heavy teaching loadings during the project some participants were unable to attend all workshops. To resolve this problem, the author provided options to them by watching DVD or reading articles offered by the research team. This study also established a communication platform for participants to share their thoughts and learning experiences. The TPDP had marked impacts on participants’ teaching beliefs. They believe that learning should be a sustainable process of “constantly weaving the relationship and the meanings” by having dialogues with learning materials, with peers, and with oneself. Having learned from TPDP, they applied a “learner-centered” approach and instructional strategies to design their courses, such as learning by doing, collaborative learning, and reflective learning. To conclude, participants’ beliefs, knowledge, and skills were promoted by the program instructions.Keywords: program theory-driven approach, learning community, teacher professional development program, program evaluation
Procedia PDF Downloads 3086853 Developing a Virtual Reality System to Assist in Anatomy Teaching and Evaluating the Effectiveness of That System
Authors: Tarek Abdelkader, Suresh Selvaraj, Prasad Iyer, Yong Mun Hin, Hajmath Begum, P. Gopalakrishnakone
Abstract:
Nowadays, more and more educational institutes, as well as students, rely on 3D anatomy programs as an important tool that helps students correlate the actual locations of anatomical structures in a 3D dimension. Lately, virtual reality (VR) is gaining more favor from the younger generations due to its higher interactive mode. As a result, using virtual reality as a gamified learning platform for anatomy became the current goal. We present a model where a Virtual Human Anatomy Program (VHAP) was developed to assist with the anatomy learning experience of students. The anatomy module has been built, mostly, from real patient CT scans. Segmentation and surface rendering were used to create the 3D model by direct segmentation of CT scans for each organ individually and exporting that model as a 3D file. After acquiring the 3D files for all needed organs, all the files were introduced into a Virtual Reality environment as a complete body anatomy model. In this ongoing experiment, students from different Allied Health orientations are testing the VHAP. Specifically, the cardiovascular system has been selected as the focus system of study since all of our students finished learning about it in the 1st trimester. The initial results suggest that the VHAP system is adding value to the learning process of our students, encouraging them to get more involved and to ask more questions. Involved students comments show that they are excited about the VHAP system with comments about its interactivity as well as the ability to use it solo as a self-learning aid in combination with the lectures. Some students also experienced minor side effects like dizziness.Keywords: 3D construction, health sciences, teaching pedagogy, virtual reality
Procedia PDF Downloads 1576852 From “Learning to Read” to “Reading to Learn”
Authors: Lucélia Alcântara
Abstract:
Reading has been seen as a passive skill by many people for a long time. However, when one comes to study it deeply and in a such a way that the act of reading equals acquiring knowledge through living an experience that belongs to him/her, passive definitely becomes active. Material development with a focus on reading has to consider much more than reading strategies. The following questions are asked: Is the material appropriate to the students’ reality? Does it make students think and state their points of view? With that in mind a lesson has been developed to illustrate theory becoming practice. Knowledge, criticality, intercultural experience and social interaction. That is what reading is for.Keywords: reading, culture, material development, learning
Procedia PDF Downloads 5346851 A Critical Discourse Analysis of the Impact of the Linguistic Behavior of the Soccer Moroccan Coach in Light of Motivation Theory and Discursive Psychology
Authors: Abdelaadim Bidaoui
Abstract:
As one of the most important linguistic inquiries, the topic of the intertwined relationship between language, the mind, and the world has attracted many scholars. In the fifties, Sapir and Whorf advocated the hypothesis that language shapes our cultural realities as an early attempt to provide answers to this linguistic inquiry. Later, discursive psychology views the linguistic behavior as “a dynamic form of social practice which constructs the social world, individual selves and identity.” (Jorgensen & Phillips 2002, 118). Discursive psychology also considers discourse as a trigger of social action and change. Building on discursive psychology and motivation theory, this paper examines the impact of linguistic behavior of the Moroccan coach Walid Reggragui on the Moroccan team’s exceptional performance in Qatar 2022 Soccer World Cup. The data used in the research is based on interviews conducted by the Moroccan coach prior and during the World Cup. Using a discourse analysis of the linguistic behavior of Reggragui, this paper shows how the linguistic behavior of Reggragui provided support for the three psychological needs: sense of belonging, competence, and autonomy. As any CDA research, this paper uses a triangulated theoretical framework that includes language, cognition and society.Keywords: critical discourse analysis, motivation theory, discursive psychology, linguistic behavior
Procedia PDF Downloads 906850 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia
Authors: Carol Anne Hargreaves
Abstract:
A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.Keywords: machine learning, stock market trading, logistic regression, cluster analysis, factor analysis, decision trees, neural networks, automated stock investment system
Procedia PDF Downloads 1576849 Classification of Computer Generated Images from Photographic Images Using Convolutional Neural Networks
Authors: Chaitanya Chawla, Divya Panwar, Gurneesh Singh Anand, M. P. S Bhatia
Abstract:
This paper presents a deep-learning mechanism for classifying computer generated images and photographic images. The proposed method accounts for a convolutional layer capable of automatically learning correlation between neighbouring pixels. In the current form, Convolutional Neural Network (CNN) will learn features based on an image's content instead of the structural features of the image. The layer is particularly designed to subdue an image's content and robustly learn the sensor pattern noise features (usually inherited from image processing in a camera) as well as the statistical properties of images. The paper was assessed on latest natural and computer generated images, and it was concluded that it performs better than the current state of the art methods.Keywords: image forensics, computer graphics, classification, deep learning, convolutional neural networks
Procedia PDF Downloads 3376848 Scenario-Based Learning Using Virtual Optometrist Applications
Authors: J. S. M. Yang, G. E. T. Chua
Abstract:
Diploma in Optometry (OPT) course is a three-year program offered by Ngee Ann Polytechnic (NP) to train students to provide primary eye care. Students are equipped with foundational conceptual knowledge and practical skills in the first three semesters before clinical modules in fourth to six semesters. In the clinical modules, students typically have difficulties in integrating the acquired knowledge and skills from the past semesters to perform general eye examinations on public patients at NP Optometry Centre (NPOC). To help the students overcome the challenge, a web-based game Virtual Optometrist (VO) was developed to help students apply their skills and knowledge through scenario-based learning. It consisted of two interfaces, Optical Practice Counter (OPC) and Optometric Consultation Room (OCR), to provide two simulated settings for authentic learning experiences. In OPC, students would recommend and provide appropriate frame and lens selection based on virtual patient’s case history. In OCR, students would diagnose and manage virtual patients with common ocular conditions. Simulated scenarios provided real-world clinical situations that required contextual application of integrated knowledge from relevant modules. The stages in OPC and OCR are of increasing complexity to align to expected students’ clinical competency as they progress to more senior semesters. This prevented gameplay fatigue as VO was used over the semesters to achieve different learning outcomes. Numerous feedback opportunities were provided to students based on their decisions to allow individualized learning to take place. The game-based learning element in VO was achieved through the scoreboard and leader board to enhance students' motivation to perform. Scores were based on the speed and accuracy of students’ responses to the questions posed in the simulated scenarios, preparing the students to perform accurately and effectively under time pressure in a realistic optometric environment. Learning analytics was generated in VO’s backend office based on students’ responses, offering real-time data on distinctive and observable learners’ behavior to monitor students’ engagement and learning progress. The backend office allowed versatility to add, edit, and delete scenarios for different intended learning outcomes. Likert Scale was used to measure students’ learning experience with VO for OPT Year 2 and 3 students. The survey results highlighted the learning benefits of implementing VO in the different modules, such as enhancing recall and reinforcement of clinical knowledge for contextual application to develop higher-order thinking skills, increasing efficiency in clinical decision-making, facilitating learning through immediate feedback and second attempts, providing exposure to common and significant ocular conditions, and training effective communication skills. The results showed that VO has been useful in reinforcing optometry students’ learning and supporting the development of higher-order thinking, increasing efficiency in clinical decision-making, and allowing students to learn from their mistakes with immediate feedback and second attempts. VO also exposed the students to diverse ocular conditions through simulated real-world clinical scenarios, which may otherwise not be encountered in NPOC, and promoted effective communication skills.Keywords: authentic learning, game-based learning, scenario-based learning, simulated clinical scenarios
Procedia PDF Downloads 1176847 Neural Style Transfer Using Deep Learning
Authors: Shaik Jilani Basha, Inavolu Avinash, Alla Venu Sai Reddy, Bitragunta Taraka Ramu
Abstract:
We can use the neural style transfer technique to build a picture with the same "content" as the beginning image but the "style" of the picture we've chosen. Neural style transfer is a technique for merging the style of one image into another while retaining its original information. The only change is how the image is formatted to give it an additional artistic sense. The content image depicts the plan or drawing, as well as the colors of the drawing or paintings used to portray the style. It is a computer vision programme that learns and processes images through deep convolutional neural networks. To implement software, we used to train deep learning models with the train data, and whenever a user takes an image and a styled image, the output will be as the style gets transferred to the original image, and it will be shown as the output.Keywords: neural networks, computer vision, deep learning, convolutional neural networks
Procedia PDF Downloads 956846 Gaia (Earth) Education Philosophy – A Journey Back to the Future
Authors: Darius Singh
Abstract:
This study adopts a research, develop, and deploy methodology to create a state-of-the-art forest preschool environment using technology and the Gaia (Earth) Education Philosophy as design support. The new philosophy adopts an ancient Greek terminology, “Gaia,” meaning “Mother Earth”, and it take its principle to model everything with the oldest living and breathing entity that it know – Earth. This includes using nature and biomimicry-based principles in building design, environments, curricula, teaching, learning, values and outcomes for children. The study highlights the potential effectiveness of the Gaia (Earth) Education Philosophy as a means of designing Earth-inspired environments for children’s learning. The discuss the strengths of biomimicry-based design principles and propose a curriculum that emphasizes natural outcomes for early childhood learning. Theoretical implications of the study are that the Gaia (Earth) Education Philosophy could serve as a strong foundation for educating young learners.it present a unique approach that promotes connections with Earth-principles and lessons that can contribute to the development of social and environmental consciousness among children and help educate generations to come into a stable and balanced future.Keywords: earth science, nature education, sustainability, gaia, forest school, nature, inspirational teaching and learning
Procedia PDF Downloads 656845 Sociophonetic Conditioning of F0 Range Compression in Diasporic Nepali Communities
Authors: Neelam Chhetry, Indranil Dutta
Abstract:
The present study accounts for the fundamental frequency (f0) perturbations of stop types in Nepali spoken in the Maram region of Manipur, India. Two different experiments were performed on the speech of the native speakers of Nepali in order to investigate if the f0 perturbation following the stop types would be affected due to contact with tonal language, Maram. We found that the Nepali speakers maintained four way stop contrast: voiceless stop (VS), voiceless aspirated stop (VLAS), voiced stop (VS) and voiced aspirated stop (VAS) despite being in contact with Maramfor a very long time. We also found that the F0 range was greater for VAS leading to F0 compression for speakers with high level of proficiency (LOP) in Maram due to extensive language contact.Keywords: F0, sociophonetic, F0 range, sociophonetic
Procedia PDF Downloads 3246844 Media Literacy: Information and Communication Technology Impact on Teaching and Learning Methods in Albanian Education System
Authors: Loreta Axhami
Abstract:
Media literacy in the digital age emerges not only as a set of skills to generate true knowledge and information but also as a pedagogy methodology, as a kind of educational philosophy. In addition to such innovations as information integration and communication technologies, media infrastructures, and web usage in the educational system, media literacy enables the change in the learning methods, pedagogy, teaching programs, and school curriculum itself. In this framework, this study focuses on ICT's impact on teaching and learning methods and the degree they are reflected in the Albanian education system. The study is based on a combination of quantitative and qualitative methods of scientific research. Referring to the study findings, it results that student’s limited access to the internet in school, focus on the hardcopy textbooks and the role of the teacher as the only or main source of knowledge and information are some of the main factors contributing to the implementation of authoritarian pedagogical methods in the Albanian education system. In these circumstances, the implementation of media literacy is recommended as an apt educational process for the 21st century, which requires a reconceptualization of textbooks as well as the application of modern teaching and learning methods by integrating information and communication technologies.Keywords: authoritarian pedagogic model, education system, ICT, media literacy
Procedia PDF Downloads 1406843 Challenges of the Implementation of Real Time Online Learning in a South African Context
Authors: Thifhuriwi Emmanuel Madzunye, Patricia Harpur, Ephias Ruhode
Abstract:
A review of the pertinent literature identified a gap concerning the hindrances and opportunities accompanying the implementation of real-time online learning systems (RTOLs) in rural areas. Whilst RTOLs present a possible solution to teaching and learning issues in rural areas, little is known about the implementation of digital strategies among schools in isolated communities. This study explores associated guidelines that have the potential to inform decision-making where Internet-based education could improve educational opportunities. A systematic literature review has the potential to consolidate and focus on disparate literature served to collect interlinked data from specific sources in a structured manner. During qualitative data analysis (QDA) of selected publications via the application of a QDA tool - ATLAS.ti, the following overarching themes emerged: digital divide, educational strategy, human factors, and support. Furthermore, findings from data collection and literature review suggest that signiant factors include a lack of digital knowledge, infrastructure shortcomings such as a lack of computers, poor internet connectivity, and handicapped real-time online may limit students’ progress. The study recommends that timeous consideration should be given to the influence of the digital divide. Additionally, the evolution of educational strategy that adopts digital approaches, a focus on training of role-players and stakeholders concerning human factors, and the seeking of governmental funding and support are essential to the implementation and success of RTOLs.Keywords: communication, digital divide, digital skills, distance, educational strategy, government, ICT, infrastructures, learners, limpopo, lukalo, network, online learning systems, political-unrest, real-time, real-time online learning, real-time online learning system, pass-rate, resources, rural area, school, support, teachers, teaching and learning and training
Procedia PDF Downloads 3346842 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications
Authors: Atish Bagchi, Siva Chandrasekaran
Abstract:
Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning
Procedia PDF Downloads 1506841 ACBM: Attention-Based CNN and Bi-LSTM Model for Continuous Identity Authentication
Authors: Rui Mao, Heming Ji, Xiaoyu Wang
Abstract:
Keystroke dynamics are widely used in identity recognition. It has the advantage that the individual typing rhythm is difficult to imitate. It also supports continuous authentication through the keyboard without extra devices. The existing keystroke dynamics authentication methods based on machine learning have a drawback in supporting relatively complex scenarios with massive data. There are drawbacks to both feature extraction and model optimization in these methods. To overcome the above weakness, an authentication model of keystroke dynamics based on deep learning is proposed. The model uses feature vectors formed by keystroke content and keystroke time. It ensures efficient continuous authentication by cooperating attention mechanisms with the combination of CNN and Bi-LSTM. The model has been tested with Open Data Buffalo dataset, and the result shows that the FRR is 3.09%, FAR is 3.03%, and EER is 4.23%. This proves that the model is efficient and accurate on continuous authentication.Keywords: keystroke dynamics, identity authentication, deep learning, CNN, LSTM
Procedia PDF Downloads 1556840 A Case Study of Remote Location Viewing, and Its Significance in Mobile Learning
Authors: James Gallagher, Phillip Benachour
Abstract:
As location aware mobile technologies become ever more omnipresent, the prospect of exploiting their context awareness to enforce learning approaches thrives. Utilizing the growing acceptance of ubiquitous computing, and the steady progress both in accuracy and battery usage of pervasive devices, we present a case study of remote location viewing, how the application can be utilized to support mobile learning in situ using an existing scenario. Through the case study we introduce a new innovative application: Mobipeek based around a request/response protocol for the viewing of a remote location and explore how this can apply both as part of a teacher lead activity and informal learning situations. The system developed allows a user to select a point on a map, and send a request. Users can attach messages alongside time and distance constraints. Users within the bounds of the request can respond with an image, and accompanying message, providing context to the response. This application can be used alongside a structured learning activity such as the use of mobile phone cameras outdoors as part of an interactive lesson. An example of a learning activity would be to collect photos in the wild about plants, vegetation, and foliage as part of a geography or environmental science lesson. Another example could be to take photos of architectural buildings and monuments as part of an architecture course. These images can be uploaded then displayed back in the classroom for students to share their experiences and compare their findings with their peers. This can help to fosters students’ active participation while helping students to understand lessons in a more interesting and effective way. Mobipeek could augment the student learning experience by providing further interaction with other peers in a remote location. The activity can be part of a wider study between schools in different areas of the country enabling the sharing and interaction between more participants. Remote location viewing can be used to access images in a specific location. The choice of location will depend on the activity and lesson. For example architectural buildings of a specific period can be shared between two or more cities. The augmentation of the learning experience can be manifested in the different contextual and cultural influences as well as the sharing of images from different locations. In addition to the implementation of Mobipeek, we strive to analyse this application, and a subset of other possible and further solutions targeted towards making learning more engaging. Consideration is given to the benefits of such a system, privacy concerns, and feasibility of widespread usage. We also propose elements of “gamification”, in an attempt to further the engagement derived from such a tool and encourage usage. We conclude by identifying limitations, both from a technical, and a mobile learning perspective.Keywords: context aware, location aware, mobile learning, remote viewing
Procedia PDF Downloads 2916839 The Transition from National Policy to Institutional Practice of Vietnamese English Language Teacher Education
Authors: Thi Phuong Lan Nguyen
Abstract:
The English Language Teacher Education (ELTE) in Vietnam is rapidly changing to address the new requirements of the globalization and socialization era. Although there has been a range of investments and innovation in policy and curriculum, tertiary educators and learners do not engage in the enactment. It is vital to understand the practices at the tertiary education level. The study is to understand the higher education curriculum development policy, both in theory and in practice across four representatives of ELTE institutions in the North of Vietnam. The lecturers’ perceptions about the extent to which the enacted curriculum is aligned with national standards will be explored. Nineteen policy documents, seventy surveys, and twelve interviews with lecturers and instructional leaders across these four Vietnamese Northern ELTE institutions have been analyzed to investigate how the policy shape the practice. The two most significant findings are (i) a low level of alignment between curriculum and soft-skills standards of the graduates required by the Vietnamese Ministry of Education and Training (MOET) and (ii) incoherence between current national policy and these institutions’ implementation. In order to address these gaps, it is strongly recommended that curriculum needs to be further developed, focusing more on the institutional outcomes, MOET’s standards, and the social demands in times of globalization. More importantly, professional development in ELTE is vital for a range of curriculum and educational policy stakeholders. The study helps to develop the English teaching profession in Vietnam in a systematic way, from policymakers to implementers, and from instructors to learners. Its significance lies in its relevance to English teaching careers, particularly within the researcher’s specific context, yet also remains relevant to ELTE in other parts of Vietnam and in other EFL (English as a Foreign Language) countries.Keywords: curriculum, English language teaching education, policy implementation, standard, teaching practice
Procedia PDF Downloads 2396838 H. P. Grice’s Cooperative Principle in a Reproductive Health Clinic in Kenya
Authors: Melvin Ouma
Abstract:
Language is one of the most crucial tools in medical interaction. Its importance is as great today as it was many decades ago. Difficulty in openly discussing certain diseases and body parts is one of the challenges in language use in medical contexts. Guided by H. P. Grice’s Cooperative Principle, this paper explores the flouting of the cooperative principles in Swahili speaking medical setting. The paper examines how men flout the maxims using the Swahili language when reporting reproductive health problems to the doctor. The data used was gathered from a qualitative study carried out in a reproductive health clinic in a public facility in Nakuru County, Kenya. All the research protocols were observed by acquiring all the research permits. Respondents' ethical considerations of consent, privacy, and confidentiality were observed. The respondents recruited were men who visited the reproductive health clinic and voluntarily agreed to participate in the study without coercion or compensation. Participant observation was the key data collection tool, with the doctor and patient conversation digitally recorded. The researcher was allowed into the clinic in a socially acceptable role. Male patients flouted the maxims of quantity, quality, relation, and manner in order to describe their reproductive health problems without embarrassment using the Swahili language. The flouting was done through the discursive strategies of narration and circumlocution. Flouting of the maxims was acceptable to the doctor and patient due to the fact that sexual intercourse and private body parts are taboo topics and uncomfortable to talk about. The quality of health care received by the patient depended on the doctor’s patience when all the maxims were flouted. In the reproductive health clinic, flouting of maxims hindered communication and, at the same time, enhanced communication between the doctor and patient.Keywords: cooperative principle, doctor, men, reproductive health
Procedia PDF Downloads 1066837 System for the Detecting of Fake Profiles on Online Social Networks Using Machine Learning and the Bio-Inspired Algorithms
Authors: Sekkal Nawel, Mahammed Nadir
Abstract:
The proliferation of online activities on Online Social Networks (OSNs) has captured significant user attention. However, this growth has been hindered by the emergence of fraudulent accounts that do not represent real individuals and violate privacy regulations within social network communities. Consequently, it is imperative to identify and remove these profiles to enhance the security of OSN users. In recent years, researchers have turned to machine learning (ML) to develop strategies and methods to tackle this issue. Numerous studies have been conducted in this field to compare various ML-based techniques. However, the existing literature still lacks a comprehensive examination, especially considering different OSN platforms. Additionally, the utilization of bio-inspired algorithms has been largely overlooked. Our study conducts an extensive comparison analysis of various fake profile detection techniques in online social networks. The results of our study indicate that supervised models, along with other machine learning techniques, as well as unsupervised models, are effective for detecting false profiles in social media. To achieve optimal results, we have incorporated six bio-inspired algorithms to enhance the performance of fake profile identification results.Keywords: machine learning, bio-inspired algorithm, detection, fake profile, system, social network
Procedia PDF Downloads 676836 Lightweight Hybrid Convolutional and Recurrent Neural Networks for Wearable Sensor Based Human Activity Recognition
Authors: Sonia Perez-Gamboa, Qingquan Sun, Yan Zhang
Abstract:
Non-intrusive sensor-based human activity recognition (HAR) is utilized in a spectrum of applications, including fitness tracking devices, gaming, health care monitoring, and smartphone applications. Deep learning models such as convolutional neural networks (CNNs) and long short term memory (LSTM) recurrent neural networks (RNNs) provide a way to achieve HAR accurately and effectively. In this paper, we design a multi-layer hybrid architecture with CNN and LSTM and explore a variety of multi-layer combinations. Based on the exploration, we present a lightweight, hybrid, and multi-layer model, which can improve the recognition performance by integrating local features and scale-invariant with dependencies of activities. The experimental results demonstrate the efficacy of the proposed model, which can achieve a 94.7% activity recognition rate on a benchmark human activity dataset. This model outperforms traditional machine learning and other deep learning methods. Additionally, our implementation achieves a balance between recognition rate and training time consumption.Keywords: deep learning, LSTM, CNN, human activity recognition, inertial sensor
Procedia PDF Downloads 150