Search results for: biological data mining
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27372

Search results for: biological data mining

23952 Design and Construction of Temperature and Humidity Control Channel for a Bacteriological Incubator

Authors: Carlos R. Duharte Rodríguez, Ibrain Ceballo Acosta, Carmen B. Busoch Morlán, Angel Regueiro Gómez, Annet Martinez Hernández

Abstract:

This work shows the designing and characterization of a prototype of laboratory incubator as support of research in Microbiology, in particular during studies of bacterial growth in biological samples, with the help of optic methods (Turbidimetry) and electrometric measurements of bioimpedance. It shows the results of simulation and experimentation of the design proposed for the canals of measurement of the variables: temperature and humidity, with a high linearity from the adequate selection of sensors and analogue components of every channel, controlled with help of a microcontroller AT89C51 (ATMEL) with adequate benefits for this type of application.

Keywords: microbiology, bacterial growth, incubation station, microorganisms

Procedia PDF Downloads 401
23951 Allocating Channels and Flow Estimation at Flood Prone Area in Desert, Example from AlKharj City, Saudi Arabia

Authors: Farhan Aljuaidi

Abstract:

The rapid expansion of Alkarj city, Saudi Arabia, towards the outlet of Wadi AlAin is critical for the planners and decision makers. Nowadays, two major projects such as Salman bin Abdulaziz University compound and new industrial area are developed in this flood prone area where no channels are clear and identified. The main contribution of this study is to divert the flow away from these vital projects by reconstructing new channels. To do so, Lidar data were used to generate contour lines for the actual elevation of the highways and local roads. These data were analyzed and compared to the contour lines derived from the topographical maps 1:50.000. The magnitude of the expected flow was estimated using Snyder's Model based on the morphometric data acquired by DEM of the catchment area. The results indicate that maximum discharge peak reaches 2694,3 m3/sec, the mean is 303,7 m3/sec and the minimum is 74,3 m3/sec. The runoff was estimated at 252,2. 610 m3/s, the mean is 41,5. 610 m3/s and the minimum is 12,4. 610 m3/s.

Keywords: Desert flood, Saudi Arabia, Snyder's Model, flow estimation

Procedia PDF Downloads 309
23950 Europium Chelates as a Platform for Biosensing

Authors: Eiman A. Al-Enezi, Gin Jose, Sikha Saha, Paul Millner

Abstract:

Rare earth nanotechnology has gained a considerable amount of interest in the field of biosensing due to the unique luminescence properties of lanthanides. Chelating rare earth ions plays a significant role in biological labelling applications including medical diagnostics, due to their different excitation and emission wavelengths, variety of their spectral properties, sharp emission peaks and long fluorescence lifetimes. We aimed to develop a platform for biosensors based on Europium (Eu³⁺) chelates against biomarkers of cardiac injury (heart-type fatty acid binding protein; H-FABP3) and stroke (glial fibrillary acidic protein; GFAP). Additional novelty in this project is the use of synthetic binding proteins (Affimers), which could offer an excellent alternative targeting strategy to the existing antibodies. Anti-GFAP and anti-HFABP3 Affimer binders were modified to increase the number of carboxy functionalities. Europium nitrate then incubated with the modified Affimer. The luminescence characteristics of the Eu³⁺ complex with modified Affimers and antibodies against anti-GFAP and anti-HFABP3 were measured against different concentrations of the respective analytes on excitation wavelength of 395nm. Bovine serum albumin (BSA) was used as a control against the IgG/Affimer Eu³⁺ complexes. The emission spectrum of Eu³⁺ complex resulted in 5 emission peaks ranging between 550-750 nm with the highest intensity peaks were at 592 and 698 nm. The fluorescence intensity of Eu³⁺ chelates with the modified Affimer or antibodies increased significantly by 4-7 folder compared to the emission spectrum of Eu³⁺ complex. The fluorescence intensity of the Affimer complex was quenched proportionally with increased analyte concentration, but this did not occur with antibody complex. In contrast, the fluorescence intensity for Eu³⁺ complex increased slightly against increased concentration of BSA. These data demonstrate that modified Affimers Eu³⁺ complexes can function as nanobiosensors with potential diagnostic and analytical applications.

Keywords: lanthanides, europium, chelates, biosensors

Procedia PDF Downloads 525
23949 Public Bus Transport Passenger Safety Evaluations in Ghana: A Phenomenological Constructivist Exploration

Authors: Enoch F. Sam, Kris Brijs, Stijn Daniels, Tom Brijs, Geert Wets

Abstract:

Notwithstanding the growing body of literature that recognises the importance of personal safety to public transport (PT) users, it remains unclear what PT users consider regarding their safety. In this study, we explore the criteria PT users in Ghana use to assess bus safety. This knowledge will afford a better understanding of PT users’ risk perceptions and assessments which may contribute to theoretical models of PT risk perceptions. We utilised phenomenological research methodology, with data drawn from 61 purposively sampled participants. Data collection (through focus group discussions and in-depth interviews) and analyses were done concurrently to the point of saturation. Our inductive data coding and analyses through the constant comparison and content analytic techniques resulted in 4 code categories (conceptual dimensions), 27 codes (safety items/criteria), and 100 quotations (data segments). Of the number of safety criteria participants use to assess bus safety, vehicle condition, driver’s marital status, and transport operator’s safety records were the most considered. With each criterion, participants rightly demonstrated its respective relevance to bus safety. These findings imply that investment in and maintenance of safer vehicles, and responsible and safety-conscious drivers, and prioritization of passengers’ safety are key-targets for public bus/minibus operators in Ghana.

Keywords: safety evaluations, public bus/minibus, passengers, phenomenology, Ghana

Procedia PDF Downloads 338
23948 Data-Driven Analysis of Velocity Gradient Dynamics Using Neural Network

Authors: Nishant Parashar, Sawan S. Sinha, Balaji Srinivasan

Abstract:

We perform an investigation of the unclosed terms in the evolution equation of the velocity gradient tensor (VGT) in compressible decaying turbulent flow. Velocity gradients in a compressible turbulent flow field influence several important nonlinear turbulent processes like cascading and intermittency. In an attempt to understand the dynamics of the velocity gradients various researchers have tried to model the unclosed terms in the evolution equation of the VGT. The existing models proposed for these unclosed terms have limited applicability. This is mainly attributable to the complex structure of the higher order gradient terms appearing in the evolution equation of VGT. We investigate these higher order gradients using the data from direct numerical simulation (DNS) of compressible decaying isotropic turbulent flow. The gas kinetic method aided with weighted essentially non-oscillatory scheme (WENO) based flow- reconstruction is employed to generate DNS data. By applying neural-network to the DNS data, we map the structure of the unclosed higher order gradient terms in the evolution of the equation of the VGT with VGT itself. We validate our findings by performing alignment based study of the unclosed higher order gradient terms obtained using the neural network with the strain rate eigenvectors.

Keywords: compressible turbulence, neural network, velocity gradient tensor, direct numerical simulation

Procedia PDF Downloads 168
23947 Comparison of Authentication Methods in Internet of Things Technology

Authors: Hafizah Che Hasan, Fateen Nazwa Yusof, Maslina Daud

Abstract:

Internet of Things (IoT) is a powerful industry system, which end-devices are interconnected and automated, allowing the devices to analyze data and execute actions based on the analysis. The IoT technology leverages the technology of Radio-Frequency Identification (RFID) and Wireless Sensor Network (WSN), including mobile and sensor. These technologies contribute to the evolution of IoT. However, due to more devices are connected each other in the Internet, and data from various sources exchanged between things, confidentiality of the data becomes a major concern. This paper focuses on one of the major challenges in IoT; authentication, in order to preserve data integrity and confidentiality are in place. A few solutions are reviewed based on papers from the last few years. One of the proposed solutions is securing the communication between IoT devices and cloud servers with Elliptic Curve Cryptograhpy (ECC) based mutual authentication protocol. This solution focuses on Hyper Text Transfer Protocol (HTTP) cookies as security parameter.  Next proposed solution is using keyed-hash scheme protocol to enable IoT devices to authenticate each other without the presence of a central control server. Another proposed solution uses Physical Unclonable Function (PUF) based mutual authentication protocol. It emphasizes on tamper resistant and resource-efficient technology, which equals a 3-way handshake security protocol.

Keywords: Internet of Things (IoT), authentication, PUF ECC, keyed-hash scheme protocol

Procedia PDF Downloads 264
23946 Recommendations Using Online Water Quality Sensors for Chlorinated Drinking Water Monitoring at Drinking Water Distribution Systems Exposed to Glyphosate

Authors: Angela Maria Fasnacht

Abstract:

Detection of anomalies due to contaminants’ presence, also known as early detection systems in water treatment plants, has become a critical point that deserves an in-depth study for their improvement and adaptation to current requirements. The design of these systems requires a detailed analysis and processing of the data in real-time, so it is necessary to apply various statistical methods appropriate to the data generated, such as Spearman’s Correlation, Factor Analysis, Cross-Correlation, and k-fold Cross-validation. Statistical analysis and methods allow the evaluation of large data sets to model the behavior of variables; in this sense, statistical treatment or analysis could be considered a vital step to be able to develop advanced models focused on machine learning that allows optimized data management in real-time, applied to early detection systems in water treatment processes. These techniques facilitate the development of new technologies used in advanced sensors. In this work, these methods were applied to identify the possible correlations between the measured parameters and the presence of the glyphosate contaminant in the single-pass system. The interaction between the initial concentration of glyphosate and the location of the sensors on the reading of the reported parameters was studied.

Keywords: glyphosate, emergent contaminants, machine learning, probes, sensors, predictive

Procedia PDF Downloads 123
23945 Generating Arabic Fonts Using Rational Cubic Ball Functions

Authors: Fakharuddin Ibrahim, Jamaludin Md. Ali, Ahmad Ramli

Abstract:

In this paper, we will discuss about the data interpolation by using the rational cubic Ball curve. To generate a curve with a better and satisfactory smoothness, the curve segments must be connected with a certain amount of continuity. The continuity that we will consider is of type G1 continuity. The conditions considered are known as the G1 Hermite condition. A simple application of the proposed method is to generate an Arabic font satisfying the required continuity.

Keywords: data interpolation, rational ball curve, hermite condition, continuity

Procedia PDF Downloads 429
23944 Teenagers’ Decisions to Undergo Orthodontic Treatment: A Qualitative Study

Authors: Babak Nematshahrbabaki, Fallahi Arezoo

Abstract:

Objective: The aim of this study was to describe teenagers’ decisions to undergo orthodontic treatment through a qualitative study. Materials and methods: Twenty-three patients (12 girls), aged 12–18 years, at a dental clinic in Sanandaj the western part of Iran participated. Face-to-face and semi-structured interviews and two focus group discussions were held to gather data. Data analyzed by the grounded theory method. Results: ‘Decision-making’ was the core category. During the data analysis four main themes were developed: ‘being like everyone else’, ‘being diagnosed’, ‘maintaining the mouth’ and ‘cultural-social and environmental factors’. Conclusions: cultural- social and environmental factors have crucial role in decision-making to undergo orthodontic treatment. The teenagers were not fully conscious of these external influences. They thought their decision to undergo orthodontic treatment is independent while it is related to cultural- social and environmental factors.

Keywords: decision-making, qualitative study, teenager, orthodontic treatment

Procedia PDF Downloads 452
23943 A Generalized Framework for Adaptive Machine Learning Deployments in Algorithmic Trading

Authors: Robert Caulk

Abstract:

A generalized framework for adaptive machine learning deployments in algorithmic trading is introduced, tested, and released as open-source code. The presented software aims to test the hypothesis that recent data contains enough information to form a probabilistically favorable short-term price prediction. Further, the framework contains various adaptive machine learning techniques that are geared toward generating profit during strong trends and minimizing losses during trend changes. Results demonstrate that this adaptive machine learning approach is capable of capturing trends and generating profit. The presentation also discusses the importance of defining the parameter space associated with the dynamic training data-set and using the parameter space to identify and remove outliers from prediction data points. Meanwhile, the generalized architecture enables common users to exploit the powerful machinery while focusing on high-level feature engineering and model testing. The presentation also highlights common strengths and weaknesses associated with the presented technique and presents a broad range of well-tested starting points for feature set construction, target setting, and statistical methods for enforcing risk management and maintaining probabilistically favorable entry and exit points. The presentation also describes the end-to-end data processing tools associated with FreqAI, including automatic data fetching, data aggregation, feature engineering, safe and robust data pre-processing, outlier detection, custom machine learning and statistical tools, data post-processing, and adaptive training backtest emulation, and deployment of adaptive training in live environments. Finally, the generalized user interface is also discussed in the presentation. Feature engineering is simplified so that users can seed their feature sets with common indicator libraries (e.g. TA-lib, pandas-ta). The user also feeds data expansion parameters to fill out a large feature set for the model, which can contain as many as 10,000+ features. The presentation describes the various object-oriented programming techniques employed to make FreqAI agnostic to third-party libraries and external data sources. In other words, the back-end is constructed in such a way that users can leverage a broad range of common regression libraries (Catboost, LightGBM, Sklearn, etc) as well as common Neural Network libraries (TensorFlow, PyTorch) without worrying about the logistical complexities associated with data handling and API interactions. The presentation finishes by drawing conclusions about the most important parameters associated with a live deployment of the adaptive learning framework and provides the road map for future development in FreqAI.

Keywords: machine learning, market trend detection, open-source, adaptive learning, parameter space exploration

Procedia PDF Downloads 89
23942 Smart Sensor Data to Predict Machine Performance with IoT-Based Machine Learning and Artificial Intelligence

Authors: C. J. Rossouw, T. I. van Niekerk

Abstract:

The global manufacturing industry is utilizing the internet and cloud-based services to further explore the anatomy and optimize manufacturing processes in support of the movement into the Fourth Industrial Revolution (4IR). The 4IR from a third world and African perspective is hindered by the fact that many manufacturing systems that were developed in the third industrial revolution are not inherently equipped to utilize the internet and services of the 4IR, hindering the progression of third world manufacturing industries into the 4IR. This research focuses on the development of a non-invasive and cost-effective cyber-physical IoT system that will exploit a machine’s vibration to expose semantic characteristics in the manufacturing process and utilize these results through a real-time cloud-based machine condition monitoring system with the intention to optimize the system. A microcontroller-based IoT sensor was designed to acquire a machine’s mechanical vibration data, process it in real-time, and transmit it to a cloud-based platform via Wi-Fi and the internet. Time-frequency Fourier analysis was applied to the vibration data to form an image representation of the machine’s behaviour. This data was used to train a Convolutional Neural Network (CNN) to learn semantic characteristics in the machine’s behaviour and relate them to a state of operation. The same data was also used to train a Convolutional Autoencoder (CAE) to detect anomalies in the data. Real-time edge-based artificial intelligence was achieved by deploying the CNN and CAE on the sensor to analyse the vibration. A cloud platform was deployed to visualize the vibration data and the results of the CNN and CAE in real-time. The cyber-physical IoT system was deployed on a semi-automated metal granulation machine with a set of trained machine learning models. Using a single sensor, the system was able to accurately visualize three states of the machine’s operation in real-time. The system was also able to detect a variance in the material being granulated. The research demonstrates how non-IoT manufacturing systems can be equipped with edge-based artificial intelligence to establish a remote machine condition monitoring system.

Keywords: IoT, cyber-physical systems, artificial intelligence, manufacturing, vibration analytics, continuous machine condition monitoring

Procedia PDF Downloads 88
23941 Physiological Assessment for Straightforward Symptom Identification (PASSify): An Oral Diagnostic Device for Infants

Authors: Kathryn Rooney, Kaitlyn Eddy, Evan Landers, Weihui Li

Abstract:

The international mortality rate for neonates and infants has been declining at a disproportionally low rate when compared to the overall decline in child mortality in recent decades. A significant portion of infant deaths could be prevented with the implementation of low-cost and easy to use physiological monitoring devices, by enabling early identification of symptoms before they progress into life-threatening illnesses. The oral diagnostic device discussed in this paper serves to continuously monitor the key vital signs of body temperature, respiratory rate, heart rate, and oxygen saturation. The device mimics an infant pacifier, designed to be easily tolerated by infants as well as orthodontically inert. The fundamental measurements are gathered via thermistors and a pulse oximeter, each encapsulated in medical-grade silicone and wired internally to a microcontroller chip. The chip then translates the raw measurements into physiological values via an internal algorithm, before outputting the data to a liquid crystal display screen and an Android application. Additionally, a biological sample collection chamber is incorporated into the internal portion of the device. The movement within the oral chamber created by sucking on the pacifier-like device pushes saliva through a small check valve in the distal end, where it is accumulated and stored. The collection chamber can be easily removed, making the sample readily available to be tested for various diseases and analytes. With the vital sign monitoring and sample collection offered by this device, abnormal fluctuations in physiological parameters can be identified and appropriate medical care can be sought. This device enables preventative diagnosis for infants who may otherwise have gone undiagnosed, due to the inaccessibility of healthcare that plagues vast numbers of underprivileged populations.

Keywords: neonate mortality, infant mortality, low-cost diagnostics, vital signs, saliva testing, preventative care

Procedia PDF Downloads 152
23940 Assessment of Land Suitability for Tea Cultivation Using Geoinformatics in the Mansehra and Abbottabad District, Pakistan

Authors: Nasir Ashraf, Sajid Rahid Ahmad, Adeel Ahmad

Abstract:

Pakistan is a major tea consumer country and ranked as the third largest importer of tea worldwide. Out of all beverage consumed in Pakistan, tea is the one with most demand for which tea import is inevitable. Being an agrarian country, Pakistan should cultivate its own tea and save the millions of dollars cost from tea import. So the need is to identify the most suitable areas with favorable weather condition and suitable soils where tea can be planted. This research is conducted over District Mansehra and District Abbottabad in Khyber Pakhtoonkhwah Province of Pakistan where the most favorable conditions for tea cultivation already exist and National Tea Research Institute has done successful experiments to cultivate high quality tea. High tech approach is adopted to meet the objectives of this research by using the remotely sensed data i.e. Aster DEM, Landsat8 Imagery. The Remote Sensing data was processed in Erdas Imagine, Envi and further analyzed in ESRI ArcGIS spatial analyst for final results and representation of result data in map layouts. Integration of remote sensing data with GIS provided the perfect suitability analysis. The results showed that out of all study area, 13.4% area is highly suitable while 33.44% area is suitable for tea plantation. The result of this research is an impressive GIS based outcome and structured format of data for the agriculture planners and Tea growers. Identification of suitable tea growing areas by using remotely sensed data and GIS techniques is a pressing need for the country. Analysis of this research lets the planners to address variety of action plans in an economical and scientific manner which can lead tea production in Pakistan to meet demand. This geomatics based model and approach may be used to identify more areas for tea cultivation to meet our demand which we can reduce by planting our own tea, and our country can be independent in tea production.

Keywords: agrarian country, GIS, geoinformatics, suitability analysis, remote sensing

Procedia PDF Downloads 389
23939 Adsoption Tests of Two Industrial Dyes by Hydroxyds of Metals

Authors: R. Berrached, H. Ait Mahamed, A. Iddou

Abstract:

Water pollution is nowadays a serious problem, due to the increasing scarcity of water and thus to the impact induced by such pollution on the human health. Various techniques are made use of to deal with water pollution. Among the most used ones, some can be enumerated: the bacterian bed, the activated sludge, lagoons as biological processes and coagulation-flocculation as a physic-chemical process. These processes are very expensive and a decreasing in efficiency treatment with the increase of the initial pollutants concentration. This is the reason why research has been reoriented towards the use of adsorption process as an alternative solution instead of the other traditional processes. In our study, we have tempted to explore the characteristics of hydroxides of Al and Fe to purify contaminated water by two industrial dyes SBL blue and SRL-150 orange. Results have shown the efficiency of the two materials on the blue SBL dye.

Keywords: metallic hydroxydes, dyes, purification, adsorption

Procedia PDF Downloads 337
23938 Machine Learning Algorithms for Rocket Propulsion

Authors: Rômulo Eustáquio Martins de Souza, Paulo Alexandre Rodrigues de Vasconcelos Figueiredo

Abstract:

In recent years, there has been a surge in interest in applying artificial intelligence techniques, particularly machine learning algorithms. Machine learning is a data-analysis technique that automates the creation of analytical models, making it especially useful for designing complex situations. As a result, this technology aids in reducing human intervention while producing accurate results. This methodology is also extensively used in aerospace engineering since this is a field that encompasses several high-complexity operations, such as rocket propulsion. Rocket propulsion is a high-risk operation in which engine failure could result in the loss of life. As a result, it is critical to use computational methods capable of precisely representing the spacecraft's analytical model to guarantee its security and operation. Thus, this paper describes the use of machine learning algorithms for rocket propulsion to aid the realization that this technique is an efficient way to deal with challenging and restrictive aerospace engineering activities. The paper focuses on three machine-learning-aided rocket propulsion applications: set-point control of an expander-bleed rocket engine, supersonic retro-propulsion of a small-scale rocket, and leak detection and isolation on rocket engine data. This paper describes the data-driven methods used for each implementation in depth and presents the obtained results.

Keywords: data analysis, modeling, machine learning, aerospace, rocket propulsion

Procedia PDF Downloads 115
23937 Resource Sharing Issues of Distributed Systems Influences on Healthcare Sector Concurrent Environment

Authors: Soo Hong Da, Ng Zheng Yao, Burra Venkata Durga Kumar

Abstract:

The Healthcare sector is a business that consists of providing medical services, manufacturing medical equipment and drugs as well as providing medical insurance to the public. Most of the time, the data stored in the healthcare database is to be related to patient’s information which is required to be accurate when it is accessed by authorized stakeholders. In distributed systems, one important issue is concurrency in the system as it ensures the shared resources to be synchronized and remains consistent through multiple read and write operations by multiple clients. The problems of concurrency in the healthcare sector are who gets the access and how the shared data is synchronized and remains consistent when there are two or more stakeholders attempting to the shared data simultaneously. In this paper, a framework that is beneficial to distributed healthcare sector concurrent environment is proposed. In the proposed framework, four different level nodes of the database, which are national center, regional center, referral center, and local center are explained. Moreover, the frame synchronization is not symmetrical. There are two synchronization techniques, which are complete and partial synchronization operation are explained. Furthermore, when there are multiple clients accessed at the same time, synchronization types are also discussed with cases at different levels and priorities to ensure data is synchronized throughout the processes.

Keywords: resources, healthcare, concurrency, synchronization, stakeholders, database

Procedia PDF Downloads 150
23936 Evaluation of Longitudinal Relaxation Time (T1) of Bone Marrow in Lumbar Vertebrae of Leukaemia Patients Undergoing Magnetic Resonance Imaging

Authors: M. G. R. S. Perera, B. S. Weerakoon, L. P. G. Sherminie, M. L. Jayatilake, R. D. Jayasinghe, W. Huang

Abstract:

The aim of this study was to measure and evaluate the Longitudinal Relaxation Times (T1) in bone marrow of an Acute Myeloid Leukaemia (AML) patient in order to explore the potential for a prognostic biomarker using Magnetic Resonance Imaging (MRI) which will be a non-invasive prognostic approach to AML. MR image data were collected in the DICOM format and MATLAB Simulink software was used in the image processing and data analysis. For quantitative MRI data analysis, Region of Interests (ROI) on multiple image slices were drawn encompassing vertebral bodies of L3, L4, and L5. T1 was evaluated using the T1 maps obtained. The estimated bone marrow mean value of T1 was 790.1 (ms) at 3T. However, the reported T1 value of healthy subjects is significantly (946.0 ms) higher than the present finding. This suggests that the T1 for bone marrow can be considered as a potential prognostic biomarker for AML patients.

Keywords: acute myeloid leukaemia, longitudinal relaxation time, magnetic resonance imaging, prognostic biomarker.

Procedia PDF Downloads 531
23935 Research on Reservoir Lithology Prediction Based on Residual Neural Network and Squeeze-and- Excitation Neural Network

Authors: Li Kewen, Su Zhaoxin, Wang Xingmou, Zhu Jian Bing

Abstract:

Conventional reservoir prediction methods ar not sufficient to explore the implicit relation between seismic attributes, and thus data utilization is low. In order to improve the predictive classification accuracy of reservoir lithology, this paper proposes a deep learning lithology prediction method based on ResNet (Residual Neural Network) and SENet (Squeeze-and-Excitation Neural Network). The neural network model is built and trained by using seismic attribute data and lithology data of Shengli oilfield, and the nonlinear mapping relationship between seismic attribute and lithology marker is established. The experimental results show that this method can significantly improve the classification effect of reservoir lithology, and the classification accuracy is close to 70%. This study can effectively predict the lithology of undrilled area and provide support for exploration and development.

Keywords: convolutional neural network, lithology, prediction of reservoir, seismic attributes

Procedia PDF Downloads 177
23934 Effect of Planting Date on Quantitative and Qualitative Characteristics of Different Bread Wheat and Durum Cultivars

Authors: Mahdi Nasiri Tabrizi, A. Dadkhah, M. Khirkhah

Abstract:

In order to study the effect of planting on yield, yield components and quality traits in bread and durum wheat varieties, a field split-plot experiment based on complete randomized design with three replications was conducted in Agricultural and Natural Resources Research Center of Razavi Khorasan located in city of Mashhad during 2013-2014. Main factor were consisted of five sowing dates (first October, fifteenth December, first March, tenth March, twentieth March) and as sub-factors consisted of different bread wheat (Bahar, Pishgam, Pishtaz, Mihan, Falat and Karim) and two durum wheat (Dena and Dehdasht). According to results of analysis variance the effect of planting date was significant on all examined traits (grain yield, biological yield, harvest index, number of grain per spike, thousands kernel weight, number of spike per square meter, plant height, the number of days to heading, the number of days to maturity, during the grain filling period, percentage of wet gluten, percentage of dry gluten, gluten index, percentage of protein). By delay in planting, majority of traits significantly decreased, except quality traits (percentage of wet gluten, percentage of dry gluten and percentage of protein). Results of means comparison showed, among planting date the highest grain yield and biological yield were related to first planting date (Octobr) with mean of production of 5/6 and 1/17 tons per hectare respectively and the highest bread quality (gluten index) with mean of 85 and percentage of protein with mean of 13% to fifth planting date also the effect of genotype was significant on all traits. The highest grain yield among of studied wheat genotypes was related to Dehdasht cultivar with an average production of 4.4 tons per hectare. The highest protein percentage and bread quality (gluten index) were related to Dehdasht cultivar with 13.4% and Falat cultivar with number of 90 respectively. The interaction between cultivar and planting date was significant on all traits and different varieties had different trend for these traits. The highest grain yield was related to first planting date (October) and Falat cultivar with an average of production of 6/7 tons per hectare while in grain yield did not show a significant different with Pishtas and Mihan cultivars also the most of gluten index (bread quality index) and protein percentage was belonged to the third planting date and Karim cultivar with 7.98 and Dena cultivar with 7.14% respectively.

Keywords: yield component, yield, planting date, cultivar, quality traits, wheat

Procedia PDF Downloads 430
23933 A Comparison of Caesarean Section Indications and Characteristics in 2009 and 2020 in a Saudi Tertiary Hospital

Authors: Sarah K. Basudan, Ragad I. Al Jazzar, Zeinah Sulaihim, Hanan M. Al-Kadri

Abstract:

Background: Cesarean section has been increasing in recent years, with a wide range of etiologies contributing to this rise. This study aimed to assess the indications, outcomes, and complications in Riyadh, Saudi Arabia. Methods: A Retrospective Cohort study was conducted at King Abdulaziz medical city. The study includes two cohorts: G1 (2009) and G2 (2020) groups who met the inclusion criteria. The data was transferred to the SPSS (statistical package for social sciences) version 24 for analysis. The initial descriptive statistics were run for all variables, including numerical and categorical data. The numerical data were reported as median, and standard deviation and categorical data were reported as frequencies and percentages. Results: The data were collected from 399 women who were divided into two groups, G1(199) and G2(200). The mean age of all participants is 32+-6​; G1 and G2 had significant differences in age means with 30+-6 and 34+-5, respectively, with a p-value of <0.001, which indicates delayed fertility by four years. Moreover, a breech presentation was less likely to occur in G2 (OR 0.64, CI: 0.21-0.62. P<0.001). Nonetheless, maternal causes such as repeated C-sections and maternal medical conditions were more likely to happen in G2 (OR 1.5, CI: 1.04-2.38, p=0.03) and (OR 5.4, CI: 1.12-23.9, P=0.01), respectively. Furthermore, postpartum hemorrhage showed an increase of 12% in G2 (OR 5.4, CI: 2.2-13.4, p<0.001). G2 was more likely to be admitted to the neonatal intensive care unit (NICU) (OR 16, CI: 7.4-38.7) and to special care baby (SCB) (OR 7.2, CI: 3.9-13.1), both with a p-value<0.001 compared to regular nursery admission. Conclusion: There are multiple factors that are contributing to the increase in c section rate in a Saudi tertiary hospitals. The factors were suggested to be previous c-sections, abnormal fetal heart rate, malpresentation, and maternal or fetal medical conditions.

Keywords: cesarean sections, maternal indications, maternal complications, neonatal condition

Procedia PDF Downloads 89
23932 Optimal Cropping Pattern in an Irrigation Project: A Hybrid Model of Artificial Neural Network and Modified Simplex Algorithm

Authors: Safayat Ali Shaikh

Abstract:

Software has been developed for optimal cropping pattern in an irrigation project considering land constraint, water availability constraint and pick up flow constraint using modified Simplex Algorithm. Artificial Neural Network Models (ANN) have been developed to predict rainfall. AR (1) model used to generate 1000 years rainfall data to train the ANN. Simulation has been done with expected rainfall data. Eight number crops and three types of soil class have been considered for optimization model. Area under each crop and each soil class have been quantified using Modified Simplex Algorithm to get optimum net return. Efficacy of the software has been tested using data of large irrigation project in India.

Keywords: artificial neural network, large irrigation project, modified simplex algorithm, optimal cropping pattern

Procedia PDF Downloads 203
23931 Two-Phase Sampling for Estimating a Finite Population Total in Presence of Missing Values

Authors: Daniel Fundi Murithi

Abstract:

Missing data is a real bane in many surveys. To overcome the problems caused by missing data, partial deletion, and single imputation methods, among others, have been proposed. However, problems such as discarding usable data and inaccuracy in reproducing known population parameters and standard errors are associated with them. For regression and stochastic imputation, it is assumed that there is a variable with complete cases to be used as a predictor in estimating missing values in the other variable, and the relationship between the two variables is linear, which might not be realistic in practice. In this project, we estimate population total in presence of missing values in two-phase sampling. Instead of regression or stochastic models, non-parametric model based regression model is used in imputing missing values. Empirical study showed that nonparametric model-based regression imputation is better in reproducing variance of population total estimate obtained when there were no missing values compared to mean, median, regression, and stochastic imputation methods. Although regression and stochastic imputation were better than nonparametric model-based imputation in reproducing population total estimates obtained when there were no missing values in one of the sample sizes considered, nonparametric model-based imputation may be used when the relationship between outcome and predictor variables is not linear.

Keywords: finite population total, missing data, model-based imputation, two-phase sampling

Procedia PDF Downloads 131
23930 Biocontrol Potential of Trichoderma longibrachiatum as an Entomopathogenic Fungi against Bemisia tabaci

Authors: Waheed Anwar, Kiran Nawaz, Muhammad Saleem Haider, Ahmad Ali Shahid, Sehrish Iftikhar

Abstract:

The whitefly, Bemisia tabaci (Gennadius), is a complex insect species, including many cryptic species or biotypes. Whitefly causes damage to many ornamental and horticultural crops through directly feeding on phloem sap, resulting in sooty mould and critically decreases the rate of photosynthesis of many host plants. Biological control has emerged as one of the most important methods for the management of soil-borne plant pathogens. Among the natural enemies of insects different entomopathogenic fungi are mostly used as biological control of the pest. The purpose of this research was to find indigenous insect-associated fungi and their virulence against Bemisia tabaci. A detailed survey of cotton fields in sample collection was conducted during July and August 2013 from the central mixed zone of Punjab, Pakistan. For the isolation of T. longibrachiatum, sabouraud dextrose peptone yeast extract agar (SDAY) media was used and morphological characterization of isolated T. longibrachiatum was studied using different dichotomous keys. Molecular Identification of the pathogen was confirmed by amplifying the internal transcribed spacer region. Blastn analysis showed 100% homology with already reported sequences on the database. For these bioassays, two conidial concentrations 4 × 108/mL & 4 × 104/mL of T. longibrachiatum was sprayed in clip cages for nymph and adult B. tabaci respectively under controlled environmental conditions. The pathogenicity of T. longibrachiatum was tested on nymph and adult whitefly to check mortality. Mortality of B. tabaci at nymphal and adult stages were observed after 24-hour intervals. Percentage mortality of nymphs treated with 4 x 104/mL conidia of T. longibrachiatum was 20, 24, 36 and 40% after 48, 72, 96, 72, 96, 120 and 144 hours respectively. However, no considerable difference was recorded in percentage mortality of whitefly after 120 and 144 hours. There were great variations after 24, 48, 72 and 96 hours in the rate of mortality. The efficacy of T. longibrachiatum as entomopathogenic fungi was evaluated in adult and nymphal stages of whitefly. Trichoderma longibrachiatum showed maximum activity on nymphal stages of whitefly as compared to adult stages. The percentage of conidial germination was also recorded on the outer surface of adult and nymphal stages of B. tabaci. The present findings indicated that T. longibrachiatum is an entomopathogenic fungus against B. tabaci and many species of Trichoderma were already reported as an antagonistc organism against a wide range of bacterial and fungal pathogens.

Keywords: efficacy, Trichoderma, virulence, bioassay

Procedia PDF Downloads 287
23929 The Effects of Multiple Levels of Intelligence in an Algebra 1 Classroom

Authors: Abigail Gragg

Abstract:

The goal of this research study was to adjudicate if implementing Howard Gardner’s multiple levels of intelligence would enhance student achievement levels in an Algebra 1 College Preparatory class. This was conducted within every class by incorporating one level of the eight levels of intelligence into small group work in stations. Every class was conducted utilizing small-group instruction. Achievement levels were measured through various forms of collected data that expressed student understandings in class through formative assessments versus student understandings on summative assessments. The data samples included: assessments (i.e. summative and formative assessments), observable data, video recordings, a daily log book, student surveys, and checklists kept during the observation periods. Formative assessments were analyzed during each class period to measure in-class understanding. Summative assessments were dissected per question per accuracy to review the effects of each intelligence implemented. The data was collated into a coding workbook for further analysis to conclude the resulting themes of the research. These themes include 1) there was no correlation to multiple levels of intelligence enhancing student achievement, 2) bodily-kinesthetic intelligence showed to be the intelligence that had the most improvement on test questions and 3) out of all of the bits of intelligence, interpersonal intelligence enhanced student understanding in class.

Keywords: stations, small group instruction, multiple levels of intelligence, Mathematics, Algebra 1, student achievement, secondary school, instructional Pedagogies

Procedia PDF Downloads 111
23928 Performance Analysis of Multichannel OCDMA-FSO Network under Different Pervasive Conditions

Authors: Saru Arora, Anurag Sharma, Harsukhpreet Singh

Abstract:

To meet the growing need of high data rate and bandwidth, various efforts has been made nowadays for the efficient communication systems. Optical Code Division Multiple Access over Free space optics communication system seems an effective role for providing transmission at high data rate with low bit error rate and low amount of multiple access interference. This paper demonstrates the OCDMA over FSO communication system up to the range of 7000 m at a data rate of 5 Gbps. Initially, the 8 user OCDMA-FSO system is simulated and pseudo orthogonal codes are used for encoding. Also, the simulative analysis of various performance parameters like power and core effective area that are having an effect on the Bit error rate (BER) of the system is carried out. The simulative analysis reveals that the length of the transmission is limited by the multi-access interference (MAI) effect which arises when the number of users increases in the system.

Keywords: FSO, PSO, bit error rate (BER), opti system simulation, multiple access interference (MAI), q-factor

Procedia PDF Downloads 366
23927 The Study of Implications on Modern Businesses Performances by Digital Communities: Case of Data Leak

Authors: Asim Majeed, Anwar Ul Haq, Ayesha Asim, Mike Lloyd-Williams, Arshad Jamal, Usman Butt

Abstract:

This study aims to investigate the impact of data leak of M&S customers on digital communities. Modern businesses are using digital communities as an important public relations tool for marketing purposes. This form of communication helps companies to build better relationship with their customers which also act as another source of information. The communication between the customers and the organizations is not regulated so users may post positive and negative comments. There are new platforms being developed on a daily basis and it is very crucial for the businesses to not only get themselves familiar with those but also know how to reach their existing and perspective consumers. The driving force of marketing and communication in modern businesses is the digital communities and these are continuously increasing and developing. This phenomenon is changing the way marketing is conducted. The current research has discussed the implications on M&S business performance since the data was exploited on digital communities; users contacted M&S and raised the security concerns. M&S closed down its website for few hours to try to resolve the issue. The next day M&S made a public apology about this incidence. This information was proliferated on various digital communities and it has impacted negatively on M&S brand name, sales and customers. The content analysis approach is being used to collect qualitative data from 100 digital bloggers including social media communities such as Facebook and Twitter. The results and finding provide useful new insights into the nature and form of security concerns of digital users. Findings have theoretical and practical implications. This research will showcase a large corporation utilizing various digital community platforms and can serve as a model for future organizations.

Keywords: Digital, communities, performance, dissemination, implications, data, exploitation

Procedia PDF Downloads 402
23926 Analysis of Factors Affecting the Number of Infant and Maternal Mortality in East Java with Geographically Weighted Bivariate Generalized Poisson Regression Method

Authors: Luh Eka Suryani, Purhadi

Abstract:

Poisson regression is a non-linear regression model with response variable in the form of count data that follows Poisson distribution. Modeling for a pair of count data that show high correlation can be analyzed by Poisson Bivariate Regression. Data, the number of infant mortality and maternal mortality, are count data that can be analyzed by Poisson Bivariate Regression. The Poisson regression assumption is an equidispersion where the mean and variance values are equal. However, the actual count data has a variance value which can be greater or less than the mean value (overdispersion and underdispersion). Violations of this assumption can be overcome by applying Generalized Poisson Regression. Characteristics of each regency can affect the number of cases occurred. This issue can be overcome by spatial analysis called geographically weighted regression. This study analyzes the number of infant mortality and maternal mortality based on conditions in East Java in 2016 using Geographically Weighted Bivariate Generalized Poisson Regression (GWBGPR) method. Modeling is done with adaptive bisquare Kernel weighting which produces 3 regency groups based on infant mortality rate and 5 regency groups based on maternal mortality rate. Variables that significantly influence the number of infant and maternal mortality are the percentages of pregnant women visit health workers at least 4 times during pregnancy, pregnant women get Fe3 tablets, obstetric complication handled, clean household and healthy behavior, and married women with the first marriage age under 18 years.

Keywords: adaptive bisquare kernel, GWBGPR, infant mortality, maternal mortality, overdispersion

Procedia PDF Downloads 160
23925 A Fully-Automated Disturbance Analysis Vision for the Smart Grid Based on Smart Switch Data

Authors: Bernardo Cedano, Ahmed H. Eltom, Bob Hay, Jim Glass, Raga Ahmed

Abstract:

The deployment of smart grid devices such as smart meters and smart switches (SS) supported by a reliable and fast communications system makes automated distribution possible, and thus, provides great benefits to electric power consumers and providers alike. However, more research is needed before the full utility of smart switch data is realized. This paper presents new automated switching techniques using SS within the electric power grid. A concise background of the SS is provided, and operational examples are shown. Organization and presentation of data obtained from SS are shown in the context of the future goal of total automation of the distribution network. The description of application techniques, the examples of success with SS, and the vision outlined in this paper serve to motivate future research pertinent to disturbance analysis automation.

Keywords: disturbance automation, electric power grid, smart grid, smart switches

Procedia PDF Downloads 309
23924 Digestion Optimization Algorithm: A Novel Bio-Inspired Intelligence for Global Optimization Problems

Authors: Akintayo E. Akinsunmade

Abstract:

The digestion optimization algorithm is a novel biological-inspired metaheuristic method for solving complex optimization problems. The algorithm development was inspired by studying the human digestive system. The algorithm mimics the process of food ingestion, breakdown, absorption, and elimination to effectively and efficiently search for optimal solutions. This algorithm was tested for optimal solutions on seven different types of optimization benchmark functions. The algorithm produced optimal solutions with standard errors, which were compared with the exact solution of the test functions.

Keywords: bio-inspired algorithm, benchmark optimization functions, digestive system in human, algorithm development

Procedia PDF Downloads 14
23923 Estimating Air Particulate Matter 10 Using Satellite Data and Analyzing Its Annual Temporal Pattern over Gaza Strip, Palestine

Authors: ِAbdallah A. A. Shaheen

Abstract:

Gaza Strip faces economic and political issues such as conflict, siege and urbanization; all these have led to an increase in the air pollution over Gaza Strip. In this study, Particulate matter 10 (PM10) concentration over Gaza Strip has been estimated by Landsat Thematic Mapper (TM) and Landsat Enhanced Thematic Mapper Plus (ETM+) data, based on a multispectral algorithm. Simultaneously, in-situ measurements for the corresponding particulate are acquired for selected time period. Landsat and ground data for eleven years are used to develop the algorithm while four years data (2002, 2006, 2010 and 2014) have been used to validate the results of algorithm. The developed algorithm gives highest regression, R coefficient value i.e. 0.86; RMSE value as 9.71 µg/m³; P values as 0. Average validation of algorithm show that calculated PM10 strongly correlates with measured PM10, indicating high efficiency of algorithm for the mapping of PM10 concentration during the years 2000 to 2014. Overall results show increase in minimum, maximum and average yearly PM10 concentrations, also presents similar trend over urban area. The rate of urbanization has been evaluated by supervised classification of the Landsat image. Urban sprawl from year 2000 to 2014 results in a high concentration of PM10 in the study area.

Keywords: PM10, landsat, atmospheric reflectance, Gaza strip, urbanization

Procedia PDF Downloads 256