Search results for: signals processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4511

Search results for: signals processing

1121 Development of Methods for Plastic Injection Mold Weight Reduction

Authors: Bita Mohajernia, R. J. Urbanic

Abstract:

Mold making techniques have focused on meeting the customers’ functional and process requirements; however, today, molds are increasing in size and sophistication, and are difficult to manufacture, transport, and set up due to their size and mass. Presently, mold weight saving techniques focus on pockets to reduce the mass of the mold, but the overall size is still large, which introduces costs related to the stock material purchase, processing time for process planning, machining and validation, and excess waste materials. Reducing the overall size of the mold is desirable for many reasons, but the functional requirements, tool life, and durability cannot be compromised in the process. It is proposed to use Finite Element Analysis simulation tools to model the forces, and pressures to determine where the material can be removed. The potential results of this project will reduce manufacturing costs. In this study, a light weight structure is defined by an optimal distribution of material to carry external loads. The optimization objective of this research is to determine methods to provide the optimum layout for the mold structure. The topology optimization method is utilized to improve structural stiffness while decreasing the weight using the OptiStruct software. The optimized CAD model is compared with the primary geometry of the mold from the NX software. Results of optimization show an 8% weight reduction while the actual performance of the optimized structure, validated by physical testing, is similar to the original structure.

Keywords: finite element analysis, plastic injection molding, topology optimization, weight reduction

Procedia PDF Downloads 288
1120 Methods and Algorithms of Ensuring Data Privacy in AI-Based Healthcare Systems and Technologies

Authors: Omar Farshad Jeelani, Makaire Njie, Viktoriia M. Korzhuk

Abstract:

Recently, the application of AI-powered algorithms in healthcare continues to flourish. Particularly, access to healthcare information, including patient health history, diagnostic data, and PII (Personally Identifiable Information) is paramount in the delivery of efficient patient outcomes. However, as the exchange of healthcare information between patients and healthcare providers through AI-powered solutions increases, protecting a person’s information and their privacy has become even more important. Arguably, the increased adoption of healthcare AI has resulted in a significant concentration on the security risks and protection measures to the security and privacy of healthcare data, leading to escalated analyses and enforcement. Since these challenges are brought by the use of AI-based healthcare solutions to manage healthcare data, AI-based data protection measures are used to resolve the underlying problems. Consequently, this project proposes AI-powered safeguards and policies/laws to protect the privacy of healthcare data. The project presents the best-in-school techniques used to preserve the data privacy of AI-powered healthcare applications. Popular privacy-protecting methods like Federated learning, cryptographic techniques, differential privacy methods, and hybrid methods are discussed together with potential cyber threats, data security concerns, and prospects. Also, the project discusses some of the relevant data security acts/laws that govern the collection, storage, and processing of healthcare data to guarantee owners’ privacy is preserved. This inquiry discusses various gaps and uncertainties associated with healthcare AI data collection procedures and identifies potential correction/mitigation measures.

Keywords: data privacy, artificial intelligence (AI), healthcare AI, data sharing, healthcare organizations (HCOs)

Procedia PDF Downloads 92
1119 A Comprehensive Analysis of the Rheological Properties of Polymer Hydrogels in Order to Explore Their Potential for Practical Utilization in Industries

Authors: Raana Babadi Fathipour

Abstract:

Hydrogels are three-dimensional structures formed by the interweaving of polymeric materials, possessing the remarkable ability to imbibe copious amounts of water. Numerous methodologies have been devised for examining and understanding the properties of these synthesized gels. Amongst them, spectroscopic techniques such as ultraviolet/visible (UV/Vis) and Fourier-transform infrared (FTIR) spectroscopy offer a glimpse into molecular and atomic aspects. Additionally, diffraction methods like X-ray diffraction (XRD) enable one to measure crystallinity within the gel's structure, while microscopy tools encompassing scanning electron microscopy (SEM) and transmission electron microscopy (TEM) provide insights into surface texture and morphology. Furthermore, rheology serves as an invaluable tool for unraveling the viscoelastic behavior inherent in hydrogels—a parameter crucial not only to numerous industries, including pharmaceuticals, cosmetics, food processing, agriculture and water treatment, but also pivotal to related fields of research. Likewise, the ultimate configuration of the product is contingent upon its characterization at a microscopic scale in order to comprehend the intricacies of the hydrogel network's structure and interaction dynamics in response to external forces. Within this present scrutiny, our attention has been devoted to unraveling the intricate rheological tendencies exhibited by materials founded on synthetic, natural, and semi-synthetic hydrogels. We also explore their practical utilization within various facets of everyday life from an industrial perspective.

Keywords: rheology, hydrogels characterization, viscoelastic behavior, application

Procedia PDF Downloads 49
1118 Conservativeness of Functional Proteins in Bovine Milk by Pulsed Electric Field Technology

Authors: Sulhee Lee, Geon Kim, Young-Seo Park

Abstract:

Unlike the traditional milk sterilization methods (LTLT, HTST, or UHT), pulsed electric field (PEF) technology is a non-thermal pasteurization process. This technology minimizes energy required for heat treatment in food processing, changes in sensory properties, and physical losses. In this study, structural changes of bovine milk proteins, the amount of immunoproteins such as IgG, and their storability by PEF treatment were examined. When the changes of protein content in PEF-treated milk were examined using HPLC, the amounts of α-casein and β-lactoglobulin were reduced over 40% each, whereas those of κ-casein and β-casein did not change. The amount of α-casein in HTST milk was reduced to 50%. When PEF was applied to milk at the energy level of 250 kJ, the amounts of IgG, IgA, β-lactoglobulin (β-LG), lactoferrin, and α-lactalbumin (α-LA) decreased by 43, 41, 35, 63, and 45%, respectively. When milk was sterilized by LTLT process followed by PEF process at the level of 150 kJ, the concentrations of IgG, IgA, β-LG, lactoferrin, and α-LA were 56.6, 10.6, 554, 2.8 and 660.1 μg/mL, respectively. When the bovine milk was sterilized by LTLT process followed by PEF process at the energy level of 180 kJ, storability of immunoproteins of milk was the highest and the concentrations of IgG, IgA, and β-LG decreased by 79.5, 6.5, and 134.5 μg/mL, respectively, when compared with the initial concentrations of those proteins. When bovine milk was stored at 4℃ after sterilization through HTST sterilizer followed by PEF process at the energy level of 200 kJ, the amount of lactoferrin decreased 7.3% after 36 days of storage, whereas that of lactoferrin of raw milk decreased 16.4%. Our results showed that PEF treatment did not change the protein structure nor induce protein denaturation in milk significantly when compared with LTLT or HTST sterilization. Also, LTLT or HTST process in combination with PEF were more effective than LTLT only or HTST only process in the conservation of immunoproteins in bovine milk.

Keywords: pulsed electric field, bovine milk, immunoproteins, sterilization

Procedia PDF Downloads 435
1117 A Retrospective Study to Evaluate Verbal Scores of Autistic Children Who Received Hyperbaric Oxygen Therapy

Authors: Tami Peterson

Abstract:

Hyperbaric oxygen therapy (HBOT) has been hypothesized as an effective treatment for increasing verbal language skills in individuals on the autism spectrum. A child’s ability to effectively communicate with peers, parents, and caregivers impacts their level of independence and quality of personal relationships. This retrospective study will compare the speech development of participants aged 2-17 years that received 40 sessions of HBOT at 2.0 ATA to those who had not. Both groups will have a verbal assessment every six months. There were 31 subjects in the HBO group and 32 subjects in the non-HBO group. The statistical analysis will focus on whether hyperbaric oxygen therapy made a significant difference in Verbal Behavior Milestones Assessment and Placement Program (VB-MAPP) or Assessment of Basic Language and Learning Skills (ABLLS) results. The evidence demonstrates a strong correlation between HBOT and an increased change from baseline verbal scores compared to the control group, even in difficult to grasp areas such as spontaneous vocalization. We suggest this is due to the anti-inflammatory effects of hyperbaric oxygen therapy. Neuroinflammation causes hypoperfusion of critical central nervous system areas responsible for the symptoms described within the autism spectrum, such as problems with thought processing, memory, and speech. Decreasing the inflammation allows the brain to function properly, which results in improved verbal scores for the participants that underwent HBOT.

Keywords: assessment of basic language and learning skills, autism spectrum disorder, hyperbaric oxygen therapy, verbal behavior milestones assessment and placement program

Procedia PDF Downloads 212
1116 Geospatial Techniques and VHR Imagery Use for Identification and Classification of Slums in Gujrat City, Pakistan

Authors: Muhammad Ameer Nawaz Akram

Abstract:

The 21st century has been revealed that many individuals around the world are living in urban settlements than in rural zones. The evolution of numerous cities in emerging and newly developed countries is accompanied by the rise of slums. The precise definition of a slum varies countries to countries, but the universal harmony is that slums are dilapidated settlements facing severe poverty and have lacked access to sanitation, water, electricity, good living styles, and land tenure. The slum settlements always vary in unique patterns within and among the countries and cities. The core objective of this study is the spatial identification and classification of slums in Gujrat city Pakistan from very high-resolution GeoEye-1 (0.41m) satellite imagery. Slums were first identified using GPS for sample site identification and ground-truthing; through this process, 425 slums were identified. Then Object-Oriented Analysis (OOA) was applied to classify slums on digital image. Spatial analysis softwares, e.g., ArcGIS 10.3, Erdas Imagine 9.3, and Envi 5.1, were used for processing data and performing the analysis. Results show that OOA provides up to 90% accuracy for the identification of slums. Jalal Cheema and Allah Ho colonies are severely affected by slum settlements. The ratio of criminal activities is also higher here than in other areas. Slums are increasing with the passage of time in urban areas, and they will be like a hazardous problem in coming future. So now, the executive bodies need to make effective policies and move towards the amelioration process of the city.

Keywords: slums, GPS, satellite imagery, object oriented analysis, zonal change detection

Procedia PDF Downloads 133
1115 How Different Are We After All: A Cross-Cultural Study Using the International Affective Picture System

Authors: Manish Kumar Asthana, Alicia Bundis, Zahn Xu, Braj Bhushan

Abstract:

Despite ample cross-cultural studies with emotional valence, it is unclear if the emotions are universal or particular. Previous studies have shown that the individualist culture favors high-valence emotions compared to low-valence emotions. In contrast, collectivist culture favors low-valence emotions compared to high-valence emotions. In this current study, Chinese, Mexicans, and Indians reported valence and semantic-contingency. In total, 120 healthy participants were selected by ethnicity and matched for age and education. Each participant was presented 45 non-chromatic pictures, which were converted from chromatic pictures selected from International Affective Picture Database (IAPS) belonging to five-categories, i.e. (i) less pleasant, (ii) high pleasant, (iii) less unpleasant (iv) high unpleasant (v) neutral. The valence scores assigned to neutral, less-unpleasant, and high-pleasant pictures differed significantly between Chinese, Indian, and Mexicans participants. Significant effects demonstrated from the two-way ANOVAs, confirmed main significant effects of valence (F(1,117) = 24.83, p =0.000) and valence x country (F(2,117) = 2.74, p = 0.035). Significant effects emerging from the one-way ANOVAs were followed up through Bonferroni’s test post-hoc comparisons (p < 0.01). This analysis showed significant effect of neutral (F(2,119) = 6.50, p =0.002), less-unpleasant (F(2,119) = 13.79, p =0.000), and high-unpleasant (F(2,119) = 5.99, p =0.003). There were no significant differences in valence scores for the less-pleasant and more-pleasant between participants from three countries. The IAPS norms require modification for their appropriate application in individualist and collectivist cultures.

Keywords: cultural difference, affective processing, valence, non-chromatic, international affective picture system (IAPS)

Procedia PDF Downloads 139
1114 Frictional Effects on the Dynamics of a Truncated Double-Cone Gravitational Motor

Authors: Barenten Suciu

Abstract:

In this work, effects of the friction and truncation on the dynamics of a double-cone gravitational motor, self-propelled on a straight V-shaped horizontal rail, are evaluated. Such mechanism has a variable radius of contact, and, on one hand, it is similar to a pulley mechanism that changes the potential energy into the kinetic energy of rotation, but on the other hand, it is similar to a pendulum mechanism that converts the potential energy of the suspended body into the kinetic energy of translation along a circular path. Movies of the self- propelled double-cones, made of S45C carbon steel and wood, along rails made of aluminum alloy, were shot for various opening angles of the rails. Kinematical features of the double-cones were estimated through the slow-motion processing of the recorded movies. Then, a kinematical model is derived under assumption that the distance traveled by the contact points on the rectilinear rails is identical with the distance traveled by the contact points on the truncated conical surface. Additionally, a dynamic model, for this particular contact problem, was proposed and validated against the experimental results. Based on such model, the traction force and the traction torque acting on the double-cone are identified. One proved that the rolling traction force is always smaller than the sliding friction force; i.e., the double-cone is rolling without slipping. Results obtained in this work can be used to achieve the proper design of such gravitational motor.

Keywords: Truncated double-cone, friction, rolling and sliding, dynamic model, gravitational motor

Procedia PDF Downloads 269
1113 Neurosciences in Entrepreneurship: The Multitasking Case in Favor of Social Entrepreneurship Innovation

Authors: Berger Aida

Abstract:

Social entrepreneurship has emerged as an active area of practice and research within the last three decades and has called for a focus on Social Entrepreneurship innovation. Areas such as academics, practitioners , institutions or governments have placed Social Entrepreneurship on the priority list of reflexion and action. It has been accepted that Social entrepreneurship (SE) shares large similarities with its parent, Traditional Entrepreneurship (TE). SE has grown over the past ten years exploring entrepreneurial cognition and the analysis of the ways of thinking of entrepreneurs. The research community believes that value exists in grounding entrepreneurship in neuroscience and notes that SE, like Traditional Entrepreneurship, needs to undergo efforts in clarification, definition and differentiation. Moreover, gaps in SE research call for integrative multistage and multilevel framework for further research. The cognitive processes underpinning entrepreneurial action are similar for SE and TE even if Social Entrepreneurship orientation shows an increased empathy value. Theoretically, there is a need to develop sound models of how to process functions and how to work more effectively as entrepreneurs and research on efficiency improvement calls for the analysis of the most common practices in entrepreneurship. Multitasking has been recognized as a daily and unavoidable habit of entrepreneurs. Hence, we believe in the need of analyzing the multiple task phenomena as a methodology for skill acquisition. We will conduct our paper including Social Entrepreneurship within the wider spectrum of Traditional Entrepreneurship, for the purpose of simplifying the neuroscientific lecture of the entrepreneurial cognition. A question to be inquired is to know if there is a way of developing multitasking habits in order to improve entrepreneurial skills such as speed of information processing , creativity and adaptability . Nevertheless, the direct link between the neuroscientific approach to multitasking and entrepreneurship effectiveness is yet to be uncovered. That is why an extensive Literature Review on Multitasking is a propos.

Keywords: cognitive, entrepreneurial, empathy, multitasking

Procedia PDF Downloads 170
1112 A Comparative Study Mechanical Properties of Polytetrafluoroethylene Materials Synthesized by Non-Conventional and Conventional Techniques

Authors: H. Lahlali F. El Haouzi, A.M.Al-Baradi, I. El Aboudi, M. El Azhari, A. Mdarhri

Abstract:

Polytetrafluoroethylene (PTFE) is a high performance thermoplastic polymer with exceptional physical and chemical properties, such as a high melting temperature, high thermal stability, and very good chemical resistance. Nevertheless, manufacturing PTFE is problematic due to its high melt viscosity (10 12 Pa.s). In practice, it is by now well established that this property presents a serious problem when the classical methods are used to synthesized the dense PTFE materials in particularly hot pressing, high temperature extrusion. In this framework, we use here a new process namely spark plasma sintering (SPS) to elaborate PTFE samples from the micro metric particles powder. It consists in applying simultaneous electric current and pressure directly on the sample powder. By controlling the processing parameters of this technique, a series of PTFE samples are easy obtained and associated to remarkably short time as is reported in an early work. Our central goal in the present study is to understand how the non conventional SPS affects the mechanical properties at room temperature. For this end, a second commercially series of PTFE synthesized by using the extrusion method is investigated. The first data according to the tensile mechanical properties are found to be superior for the first set samples (SPS). However, this trend is not observed for the results obtained from the compression testing. The observed macro-behaviors are correlated to some physical properties of the two series of samples such as their crystallinity or density. Upon a close examination of these properties, we believe the SPS technique can be seen as a promising way to elaborate the polymer having high molecular mass without compromising their mechanical properties.

Keywords: PTFE, extrusion, Spark Plasma Sintering, physical properties, mechanical behavior

Procedia PDF Downloads 306
1111 Production of Metal Matrix Composites with Diamond for Abrasive Cutting Resistance by Gas Infiltration Casting

Authors: Haydar S. Al Shabbani, M. Marshall, R. Goodall

Abstract:

Metal matrix composites (MMCs) have been explored for many applications for many decades. Recently, this includes investigations for thermal applications associated with electronics, such as in heat sinks. Here, to promote thermal conductivity, composites of a metal matrix with diamond particles are used. However, this class of composites has not yet been extensively examined for mechanical and tribological behavior, especially for applications that require extreme mechanical and tribological strength, such as the resistance to abrasive cutting. Therefore, this research seeks to develop a composite material with metal matrix and diamond particles which resist abrasive and cutting forces. The development progresses through a series of steps, exploring methods to process the material, understanding the mechanics of abrasive behavior and optimizing the composite structure to resist abrasive cutting. In processing, infiltration casting under gas pressure has been applied to molten aluminum to obtain a significant penetration of the metal into a preform of diamond particles. Different diamond particle sizes were used with different surface modifications (coated/uncoated), and to compare resulting composites with the same particle sizes. Al-1 wt.% Mg as a matrix alloy was utilised to investigate the possible effect of Mg on bonding phases during the infiltration process. The mechanical behavior and microstructure of the materials produced have been characterised. These tests showed that the surface modification of the diamond particles with a reactive material (Ti-coating) has an important role for enhancing the bonding between the aluminium matrix and diamond reinforcement as apparent under SEM observation. The effect of this improved bond is seen in the cutting resistance of the material.

Keywords: aluminium, composites, diamond, Ti-coated, tribology

Procedia PDF Downloads 269
1110 Applying Kinect on the Development of a Customized 3D Mannequin

Authors: Shih-Wen Hsiao, Rong-Qi Chen

Abstract:

In the field of fashion design, 3D Mannequin is a kind of assisting tool which could rapidly realize the design concepts. While the concept of 3D Mannequin is applied to the computer added fashion design, it will connect with the development and the application of design platform and system. Thus, the situation mentioned above revealed a truth that it is very critical to develop a module of 3D Mannequin which would correspond with the necessity of fashion design. This research proposes a concrete plan that developing and constructing a system of 3D Mannequin with Kinect. In the content, ergonomic measurements of objective human features could be attained real-time through the implement with depth camera of Kinect, and then the mesh morphing can be implemented through transformed the locations of the control-points on the model by inputting those ergonomic data to get an exclusive 3D mannequin model. In the proposed methodology, after the scanned points from the Kinect are revised for accuracy and smoothening, a complete human feature would be reconstructed by the ICP algorithm with the method of image processing. Also, the objective human feature could be recognized to analyze and get real measurements. Furthermore, the data of ergonomic measurements could be applied to shape morphing for the division of 3D Mannequin reconstructed by feature curves. Due to a standardized and customer-oriented 3D Mannequin would be generated by the implement of subdivision, the research could be applied to the fashion design or the presentation and display of 3D virtual clothes. In order to examine the practicality of research structure, a system of 3D Mannequin would be constructed with JAVA program in this study. Through the revision of experiments the practicability-contained research result would come out.

Keywords: 3D mannequin, kinect scanner, interactive closest point, shape morphing, subdivision

Procedia PDF Downloads 304
1109 Effect of Biostimulants on Downstream Processing of Endophytic Fungi Hosted in Aromatic Plant, Ocimum basicilium

Authors: Kanika Chowdhary, Satyawati Sharma

Abstract:

Endophytic microbes are hosted inside plants in a symbiotic and hugely benefitting relationship. Exploring agriculturally beneficial endophytes is quite a prospective field of research. In the present work fungal endophytes associated with aromatic plant Ocimum basicilium L. were investigated for biocontrol potential. The anti-plant pathogenic activity of fungal endophytes was tested against causal agent of stem rot Sclerotinia sclerotiorum. 75 endophytic fungi were recovered through culture-dependent approach. Fungal identification was performed both microscopically and by rDNA ITS sequencing. Curvuaria lunata (Sb-6) and Colletotrichum lindemuthianum (Sb-8) inhibited 86% and 72% mycelia growth of S. sclerotinia on Sabouraud dextrose agar medium at 7.4 pH. Small-scale fermentation was carried out on sterilised oatmeal grain medium. In another set of experiment, fungi were grown in oatmeal grain medium amended with certain biostimulants such as aqueous seaweed extract (10% v/w); methanolic seaweed extract (5% v/w); cow urine (20% v/w); biochar (10% w/w) in triplicate along with control of each to ascertain the degree of metabolic difference and anti-plant pathogenic activity induced. Phytochemically extracts of both the fungal isolates showed the presence of flavanoids, phenols, tannins, alkaloids and terpenoids. Ethylacetate extract of C. lunata and C. lindemuthianum suppressed S. sclerotinia conidial germination at IC50 values of 0.514± 0.02 and 0.913± 0.04 mg/ml. Therefore, fungal endophytes of O. basicilium are highly promising bio-resource agent, which can be developed further for sustainable agriculture.

Keywords: endophytic fungi, ocimum basicilium, sclerotinia sclerotiorum, biostimulants

Procedia PDF Downloads 175
1108 Predictive Analytics in Oil and Gas Industry

Authors: Suchitra Chnadrashekhar

Abstract:

Earlier looked as a support function in an organization information technology has now become a critical utility to manage their daily operations. Organizations are processing huge amount of data which was unimaginable few decades before. This has opened the opportunity for IT sector to help industries across domains to handle the data in the most intelligent manner. Presence of IT has been a leverage for the Oil & Gas industry to store, manage and process the data in most efficient way possible thus deriving the economic value in their day-to-day operations. Proper synchronization between Operational data system and Information Technology system is the need of the hour. Predictive analytics supports oil and gas companies by addressing the challenge of critical equipment performance, life cycle, integrity, security, and increase their utilization. Predictive analytics go beyond early warning by providing insights into the roots of problems. To reach their full potential, oil and gas companies need to take a holistic or systems approach towards asset optimization and thus have the functional information at all levels of the organization in order to make the right decisions. This paper discusses how the use of predictive analysis in oil and gas industry is redefining the dynamics of this sector. Also, the paper will be supported by real time data and evaluation of the data for a given oil production asset on an application tool, SAS. The reason for using SAS as an application for our analysis is that SAS provides an analytics-based framework to improve uptimes, performance and availability of crucial assets while reducing the amount of unscheduled maintenance, thus minimizing maintenance-related costs and operation disruptions. With state-of-the-art analytics and reporting, we can predict maintenance problems before they happen and determine root causes in order to update processes for future prevention.

Keywords: hydrocarbon, information technology, SAS, predictive analytics

Procedia PDF Downloads 359
1107 Co-Disposal of Coal Ash with Mine Tailings in Surface Paste Disposal Practices: A Gold Mining Case Study

Authors: M. L. Dinis, M. C. Vila, A. Fiúza, A. Futuro, C. Nunes

Abstract:

The present paper describes the study of paste tailings prepared in laboratory using gold tailings, produced in a Finnish gold mine with the incorporation of coal ash. Natural leaching tests were conducted with the original materials (tailings, fly and bottom ashes) and also with paste mixtures that were prepared with different percentages of tailings and ashes. After leaching, the solid wastes were physically and chemically characterized and the results were compared to those selected as blank – the unleached samples. The tailings and the coal ash, as well as the prepared mixtures, were characterized, in addition to the textural parameters, by the following measurements: grain size distribution, chemical composition and pH. Mixtures were also tested in order to characterize their mechanical behavior by measuring the flexural strength, the compressive strength and the consistency. The original tailing samples presented an alkaline pH because during their processing they were previously submitted to pressure oxidation with destruction of the sulfides. Therefore, it was not possible to ascertain the effect of the coal ashes in the acid mine drainage. However, it was possible to verify that the paste reactivity was affected mostly by the bottom ash and that the tailings blended with bottom ash present lower mechanical strength than when blended with a combination of fly and bottom ash. Surface paste disposal offer an attractive alternative to traditional methods in addition to the environmental benefits of incorporating large-volume wastes (e.g. bottom ash). However, a comprehensive characterization of the paste mixtures is crucial to optimize paste design in order to enhance engineer and environmental properties.

Keywords: coal ash, mine tailings, paste blends, surface disposal

Procedia PDF Downloads 291
1106 Impact of Mucormycosis Infection In Limb Salvage for Trauma Patients

Authors: Katie-Beth Webster

Abstract:

Mucormycosis is a rare opportunistic fungal infection that, if left untreated, can cause large scale tissue necrosis and death. There are a number of cases of this in the literature, most commonly in the head and neck region arising from sinuses. It is also usually found in immunocompromised patient subgroups. This study reviewed a number of cases of mucormycosis in previously fit and healthy young trauma patients to assess predisposing factors for infection and adequacy of current treatment paradigms. These trauma patients likely contracted the fungal infection from the soil at the site of the incident. Despite early washout and debridement of the wounds at the scene of the injury and on arrival in hospital, both these patients contracted mucormycosis. It was suspected that inadequate early debridement of soil contaminated limbs was one of the major factors that can lead to catastrophic tissue necrosis. In both cases, this resulted in the patients having a higher level of amputation than would have initially been required based on the level of their injury. This was secondary to cutaneous and soft tissue necrosis secondary to the fungal infiltration leading to osteomyelitis and systemic sepsis. In the literature, it appears diagnosis is often protracted in this condition secondary to inadequate early treatment and long processing times for fungal cultures. If fungal cultures were sent at the time of first assessment and adequate debridements are performed aggressively early, it could lead to these critically unwell trauma patients receiving appropriate antifungal and surgical treatment earlier in their episode of care. This is likely to improve long term outcomes for these patients.

Keywords: mucormycosis, plastic surgery, osteomyelitis, trauma

Procedia PDF Downloads 204
1105 Occurrence of Foreign Matter in Food: Applied Identification Method - Association of Official Agricultural Chemists (AOAC) and Food and Drug Administration (FDA)

Authors: E. C. Mattos, V. S. M. G. Daros, R. Dal Col, A. L. Nascimento

Abstract:

The aim of this study is to present the results of a retrospective survey on the foreign matter found in foods analyzed at the Adolfo Lutz Institute, from July 2001 to July 2015. All the analyses were conducted according to the official methods described on Association of Official Agricultural Chemists (AOAC) for the micro analytical procedures and Food and Drug Administration (FDA) for the macro analytical procedures. The results showed flours, cereals and derivatives such as baking and pasta products were the types of food where foreign matters were found more frequently followed by condiments and teas. Fragments of stored grains insects, its larvae, nets, excrement, dead mites and rodent excrement were the most foreign matter found in food. Besides, foreign matters that can cause a physical risk to the consumer’s health such as metal, stones, glass, wood were found but rarely. Miscellaneous (shell, sand, dirt and seeds) were also reported. There are a lot of extraneous materials that are considered unavoidable since are something inherent to the product itself, such as insect fragments in grains. In contrast, there are avoidable extraneous materials that are less tolerated because it is preventable with the Good Manufacturing Practice. The conclusion of this work is that although most extraneous materials found in food are considered unavoidable it is necessary to keep the Good Manufacturing Practice throughout the food processing as well as maintaining a constant surveillance of the production process in order to avoid accidents that may lead to occurrence of these extraneous materials in food.

Keywords: extraneous materials, food contamination, foreign matter, surveillance

Procedia PDF Downloads 358
1104 Neuropsychology of Social Awareness: A Research Study Applied to University Students in Greece

Authors: Argyris Karapetsas, Maria Bampou, Andriani Mitropoulou

Abstract:

The aim of the present work is to study the role of brain function in social awareness processing. Mind controls all the psychosomatic functions. Mind’s functioning enables individual not only to recognize one's own self and propositional attitudes, but also to assign such attitudes to other individuals, and to consider such observed mental states in the elucidation of behavior. Participants and Methods: Twenty (n=20) undergraduate students (mean age 18 years old) were involved in this study. Students participated in a clinical assessment, being conducted in Laboratory of Neuropsychology, at University of Thessaly, in Volos, Greece. Assessment included both electrophysiological (i.e.Event Related Potentials (ERPs) esp.P300 waveform) and neuropsychological tests (Raven's Progressive Matrices (RPM) and Sally-Anne test). Results: Initial assessment’s results confirmed statistically significant differences between the males and females, as well as in score performance to the tests applied. Strong correlations emerged between prefrontal lobe functioning, RPM, Sally-Anne test and P300 latencies. Also, significant dysfunction of mind has been found, regarding its three dimensions (straight, circular and helical). At the end of the assessment, students received consultation and appropriate guidelines in order to improve their intrapersonal and interpersonal skills. Conclusions: Mind and social awareness phenomena play a vital role in human development and may act as determinants of the quality of one’s own life. Meanwhile, brain function is highly correlated with social awareness and it seems that different set of brain structures are involved in social behavior.

Keywords: brain activity, emotions, ERP's, social awareness

Procedia PDF Downloads 191
1103 In-Situ Determination of Radioactivity Levels and Radiological Hazards in and around the Gold Mine Tailings of the West Rand Area, South Africa

Authors: Paballo M. Moshupya, Tamiru A. Abiye, Ian Korir

Abstract:

Mining and processing of naturally occurring radioactive materials could result in elevated levels of natural radionuclides in the environment. The aim of this study was to evaluate the radioactivity levels on a large scale in the West Rand District in South Africa, which is dominated by abandoned gold mine tailings and the consequential radiological exposures to members of the public. The activity concentrations of ²³⁸U, ²³²Th and 40K in mine tailings, soil and rocks were assessed using the BGO Super-Spec (RS-230) gamma spectrometer. The measured activity concentrations for ²³⁸U, ²³²Th and 40K in the studied mine tailings were found to range from 209.95 to 2578.68 Bq/kg, 19.49 to 108.00 Bq/kg and 31.30 to 626.00 Bq/kg, respectively. In surface soils, the overall average activity concentrations were found to be 59.15 Bq/kg, 34.91 and 245.64 Bq/kg for 238U, ²³²Th and 40K, respectively. For the rock samples analyzed, the mean activity concentrations were 32.97 Bq/kg, 32.26 Bq/kg and 351.52 Bg/kg for ²³⁸U, ²³²Th and 40K, respectively. High radioactivity levels were found in mine tailings, with ²³⁸U contributing significantly to the overall activity concentration. The external gamma radiation received from surface soil in the area is generally low, with an average of 0.07 mSv/y. The highest annual effective doses were estimated from the tailings dams and the levels varied between 0.14 mSv/y and 1.09 mSv/y, with an average of 0.51 mSv/y. In certain locations, the recommended dose constraint of 0.25 mSv/y from a single source to the average member of the public within the exposed population was exceeded, indicating the need for further monitoring and regulatory control measures specific to these areas to ensure the protection of resident members of the public.

Keywords: activity concentration, gold mine tailings, in-situ gamma spectrometry, radiological exposures

Procedia PDF Downloads 126
1102 Evaluation of Virtual Reality for the Rehabilitation of Athlete Lower Limb Musculoskeletal Injury: A Method for Obtaining Practitioner’s Viewpoints through Observation and Interview

Authors: Hannah K. M. Tang, Muhammad Ateeq, Mark J. Lake, Badr Abdullah, Frederic A. Bezombes

Abstract:

Based on a theoretical assessment of current literature, virtual reality (VR) could help to treat sporting injuries in a number of ways. However, it is important to obtain rehabilitation specialists’ perspectives in order to design, develop and validate suitable content for a VR application focused on treatment. Subsequently, a one-day observation and interview study focused on the use of VR for the treatment of lower limb musculoskeletal conditions in athletes was conducted at St George’s Park England National Football Centre with rehabilitation specialists. The current paper established the methods suitable for obtaining practitioner’s viewpoints through observation and interview in this context. Particular detail was provided regarding the method of qualitatively processing interview results using the qualitative data analysis software tool NVivo, in order to produce a narrative of overarching themes. The observations and overarching themes identified could be used as a framework and success criteria of a VR application developed in future research. In conclusion, this work explained the methods deemed suitable for obtaining practitioner’s viewpoints through observation and interview. This was required in order to highlight characteristics and features of a VR application designed to treat lower limb musculoskeletal injury of athletes and could be built upon to direct future work.

Keywords: athletes, lower-limb musculoskeletal injury, rehabilitation, return-to-sport, virtual reality

Procedia PDF Downloads 255
1101 Partial Discharge Characteristics of Free- Moving Particles in HVDC-GIS

Authors: Philipp Wenger, Michael Beltle, Stefan Tenbohlen, Uwe Riechert

Abstract:

The integration of renewable energy introduces new challenges to the transmission grid, as the power generation is located far from load centers. The associated necessary long-range power transmission increases the demand for high voltage direct current (HVDC) transmission lines and DC distribution grids. HVDC gas-insulated switchgears (GIS) are considered being a key technology, due to the combination of the DC technology and the long operation experiences of AC-GIS. To ensure long-term reliability of such systems, insulation defects must be detected in an early stage. Operational experience with AC systems has proven evidence, that most failures, which can be attributed to breakdowns of the insulation system, can be detected and identified via partial discharge (PD) measurements beforehand. In AC systems the identification of defects relies on the phase resolved partial discharge pattern (PRPD). Since there is no phase information within DC systems this method cannot be transferred to DC PD diagnostic. Furthermore, the behaviour of e.g. free-moving particles differs significantly at DC: Under the influence of a constant direct electric field, charge carriers can accumulate on particles’ surfaces. As a result, a particle can lift-off, oscillate between the inner conductor and the enclosure or rapidly bounces at just one electrode, which is known as firefly motion. Depending on the motion and the relative position of the particle to the electrodes, broadband electromagnetic PD pulses are emitted, which can be recorded by ultra-high frequency (UHF) measuring methods. PDs are often accompanied by light emissions at the particle’s tip which enables optical detection. This contribution investigates PD characteristics of free moving metallic particles in a commercially available 300 kV SF6-insulated HVDC-GIS. The influences of various defect parameters on the particle motion and the PD characteristic are evaluated experimentally. Several particle geometries, such as cylinder, lamella, spiral and sphere with different length, diameter and weight are determined. The applied DC voltage is increased stepwise from inception voltage up to UDC = ± 400 kV. Different physical detection methods are used simultaneously in a time-synchronized setup. Firstly, the electromagnetic waves emitted by the particle are recorded by an UHF measuring system. Secondly, a photomultiplier tube (PMT) detects light emission with a wavelength in the range of λ = 185…870 nm. Thirdly, a high-speed camera (HSC) tracks the particle’s motion trajectory with high accuracy. Furthermore, an electrically insulated electrode is attached to the grounded enclosure and connected to a current shunt in order to detect low frequency ion currents: The shunt measuring system’s sensitivity is in the range of 10 nA at a measuring bandwidth of bw = DC…1 MHz. Currents of charge carriers, which are generated at the particle’s tip migrate through the gas gap to the electrode and can be recorded by the current shunt. All recorded PD signals are analyzed in order to identify characteristic properties of different particles. This includes e.g. repetition rates and amplitudes of successive pulses, characteristic frequency ranges and detected signal energy of single PD pulses. Concluding, an advanced understanding of underlying physical phenomena particle motion in direct electric field can be derived.

Keywords: current shunt, free moving particles, high-speed imaging, HVDC-GIS, UHF

Procedia PDF Downloads 158
1100 Major Constraints to Adoption of Improved Post-harvest Technologies among Smallholder Farmers in Developing Countries: A Systematic Review

Authors: Muganyizi Jonas Bisheko, G. Rejikumar

Abstract:

Reducing post-harvest losses could be a sustainable solution to enhance the food and income security of smallholder farmers in developing countries. While various research institutions have come up with a number of innovative post-harvest technologies for reducing post-harvest losses, most of them have not been extensively adopted by smallholder farmers. Despite this gap, the synthesized information about the major constraints of post-harvest technology is scarce. This study has been conducted to fill this gap and show the implications of the findings for future post-harvest research. The developed search strategy retrieved 2201 studies. However, after excluding duplicates, title, abstract and full article screening, a total of 41 documents were identified. The major findings are: (i) there is an outstanding deficiency of systematic evidence of the effect of climate change, off-farm income and sources of post-harvest information on the adoption of improved post-harvest technologies; (ii) there is very limited information on adoption constraints pertaining to matters of policy, rules and regulations; (iii) there is very thin literature on behavioral constraints associated with limited adoption of improved post-harvest technologies; (iv) most of the studies focused on post-harvest storage technologies (47%) followed by overall post-harvest management practices (25%), processing technologies (19%) and packaging technologies (3%). Much of the information was found on Cereals (58%), especially maize (44%); (v) geographically, Sub-Saharan Africa accounted for 79% of the reviewed interventions, while South Asia occupied only 21%. The findings of this review are intended to guide various post-harvest technologists and decision-makers in addressing the challenge of huge post-harvest losses.

Keywords: constraints, post-harvest loss, post-harvest technology , smallholder farmer

Procedia PDF Downloads 233
1099 A Survey of Field Programmable Gate Array-Based Convolutional Neural Network Accelerators

Authors: Wei Zhang

Abstract:

With the rapid development of deep learning, neural network and deep learning algorithms play a significant role in various practical applications. Due to the high accuracy and good performance, Convolutional Neural Networks (CNNs) especially have become a research hot spot in the past few years. However, the size of the networks becomes increasingly large scale due to the demands of the practical applications, which poses a significant challenge to construct a high-performance implementation of deep learning neural networks. Meanwhile, many of these application scenarios also have strict requirements on the performance and low-power consumption of hardware devices. Therefore, it is particularly critical to choose a moderate computing platform for hardware acceleration of CNNs. This article aimed to survey the recent advance in Field Programmable Gate Array (FPGA)-based acceleration of CNNs. Various designs and implementations of the accelerator based on FPGA under different devices and network models are overviewed, and the versions of Graphic Processing Units (GPUs), Application Specific Integrated Circuits (ASICs) and Digital Signal Processors (DSPs) are compared to present our own critical analysis and comments. Finally, we give a discussion on different perspectives of these acceleration and optimization methods on FPGA platforms to further explore the opportunities and challenges for future research. More helpfully, we give a prospect for future development of the FPGA-based accelerator.

Keywords: deep learning, field programmable gate array, FPGA, hardware accelerator, convolutional neural networks, CNN

Procedia PDF Downloads 127
1098 A 7 Dimensional-Quantitative Structure-Activity Relationship Approach Combining Quantum Mechanics Based Grid and Solvation Models to Predict Hotspots and Kinetic Properties of Mutated Enzymes: An Enzyme Engineering Perspective

Authors: R. Pravin Kumar, L. Roopa

Abstract:

Enzymes are molecular machines used in various industries such as pharmaceuticals, cosmetics, food and animal feed, paper and leather processing, biofuel, and etc. Nevertheless, this has been possible only by the breath-taking efforts of the chemists and biologists to evolve/engineer these mysterious biomolecules to work the needful. Main agenda of this enzyme engineering project is to derive screening and selection tools to obtain focused libraries of enzyme variants with desired qualities. The methodologies for this research include the well-established directed evolution, rational redesign and relatively less established yet much faster and accurate insilico methods. This concept was initiated as a Receptor Rependent-4Dimensional Quantitative Structure Activity Relationship (RD-4D-QSAR) to predict kinetic properties of enzymes and extended here to study transaminase by a 7D QSAR approach. Induced-fit scenarios were explored using Quantum Mechanics/Molecular Mechanics (QM/MM) simulations which were then placed in a grid that stores interactions energies derived from QM parameters (QMgrid). In this study, the mutated enzymes were immersed completely inside the QMgrid and this was combined with solvation models to predict descriptors. After statistical screening of descriptors, QSAR models showed > 90% specificity and > 85% sensitivity towards the experimental activity. Mapping descriptors on the enzyme structure revealed hotspots important to enhance the enantioselectivity of the enzyme.

Keywords: QMgrid, QM/MM simulations, RD-4D-QSAR, transaminase

Procedia PDF Downloads 135
1097 Osteoarthritis (OA): A Total Knee Replacement Surgery

Authors: Loveneet Kaur

Abstract:

Introduction: Osteoarthritis (OA) is one of the leading causes of disability, and the knee is the most commonly affected joint in the body. The last resort for treatment of knee OA is Total Knee Replacement (TKR) surgery. Despite numerous advances in prosthetic design, patients do not reach normal function after surgery. Current surgical decisions are made on 2D radiographs and patient interviews. Aims: The aim of this study was to compare knee kinematics pre and post-TKR surgery using computer-animated images of patient-specific models under everyday conditions. Methods: 7 subjects were recruited for the study. Subjects underwent 3D gait analysis during 4 everyday activities and medical imaging of the knee joint pre- and one-month post-surgery. A 3D model was created from each of the scans, and the kinematic gait analysis data was used to animate the images. Results: Improvements were seen in a range of motion in all 4 activities 1-year post-surgery. The preoperative 3D images provide detailed information on the anatomy of the osteoarthritic knee. The postoperative images demonstrate potential future problems associated with the implant. Although not accurate enough to be of clinical use, the animated data can provide valuable insight into what conditions cause damage to both the osteoarthritic and prosthetic knee joints. As the animated data does not require specialist training to view, the images can be utilized across the fields of health professionals and manufacturing in the assessment and treatment of patients pre and post-knee replacement surgery. Future improvements in the collection and processing of data may yield clinically useful data. Conclusion: Although not yet of clinical use, the potential application of 3D animations of the knee joint pre and post-surgery is widespread.

Keywords: Orthoporosis, Ortharthritis, knee replacement, TKR

Procedia PDF Downloads 45
1096 Secure Automatic Key SMS Encryption Scheme Using Hybrid Cryptosystem: An Approach for One Time Password Security Enhancement

Authors: Pratama R. Yunia, Firmansyah, I., Ariani, Ulfa R. Maharani, Fikri M. Al

Abstract:

Nowadays, notwithstanding that the role of SMS as a means of communication has been largely replaced by online applications such as WhatsApp, Telegram, and others, the fact that SMS is still used for certain and important communication needs is indisputable. Among them is for sending one time password (OTP) as an authentication media for various online applications ranging from chatting, shopping to online banking applications. However, the usage of SMS does not pretty much guarantee the security of transmitted messages. As a matter of fact, the transmitted messages between BTS is still in the form of plaintext, making it extremely vulnerable to eavesdropping, especially if the message is confidential, for instance, the OTP. One solution to overcome this problem is to use an SMS application which provides security services for each transmitted message. Responding to this problem, in this study, an automatic key SMS encryption scheme was designed as a means to secure SMS communication. The proposed scheme allows SMS sending, which is automatically encrypted with keys that are constantly changing (automatic key update), automatic key exchange, and automatic key generation. In terms of the security method, the proposed scheme applies cryptographic techniques with a hybrid cryptosystem mechanism. Proofing the proposed scheme, a client to client SMS encryption application was developed using Java platform with AES-256 as encryption algorithm, RSA-768 as public and private key generator and SHA-256 for message hashing function. The result of this study is a secure automatic key SMS encryption scheme using hybrid cryptosystem which can guarantee the security of every transmitted message, so as to become a reliable solution in sending confidential messages through SMS although it still has weaknesses in terms of processing time.

Keywords: encryption scheme, hybrid cryptosystem, one time password, SMS security

Procedia PDF Downloads 127
1095 The Production of Collagen and Collagen Peptides from Nile Tilapia Skin Using Membrane Technology

Authors: M. Thuanthong, W. Youravong, N. Sirinupong

Abstract:

Nile tilapia (Oreochromis niloticus) is one of fish species cultured in Thailand with a high production volume. A lot of skin is generated during fish processing. In addition, there are many research reported that fish skin contains abundant of collagen. Thus, the use of Nile tilapia skin as collagen source can increase the benefit of industrial waste. In this study, Acid soluble collagen (ASC) was extracted at 5, 15 or 25 ˚C with 0.5 M acetic acid then the acid was removed out and collagen was concentrated by ultrafiltration-diafiltration (UFDF). The triple helix collagen from UFDF process was used as substrate to produce collagen peptides by alcalase hydrolysis in an enzymatic membrane reactor (EMR) coupling with 1 kDa molecular weight cut off (MWCO) polysulfone hollow fiber membrane. The results showed that ASC extracted at high temperature (25 ˚C) with 0.5 M acetic acid for 5 h still preserved triple helix structure. In the UFDF process, the acid removal was higher than 90 % without any effect on ASC properties, particularly triple helix structure as indicated by circular dichroism spectrum. Moreover, Collagen from UFDF was used to produce collagen peptides by EMR. In EMR, collagen was pre-hydrolyzed by alcalase for 60 min before introduced to membrane separation. The EMR operation was operated for 10 h and provided a good of protein conversion stability. The results suggested that there is a successfulness of UF in application for acid removal to produce ASC with desirable preservation of its quality. In addition, the EMR was proven to be an effective process to produce low molecular weight peptides with ACE-inhibitory activity properties.

Keywords: acid soluble collagen, ultrafiltration-diafiltration, enzymatic membrane reactor, ace-inhibitory activity

Procedia PDF Downloads 476
1094 Effects of Cooking and Drying on the Phenolic Compounds, and Antioxidant Activity of Cleome gynandra (Spider Plant)

Authors: E. Kayitesi, S. Moyo, V. Mavumengwana

Abstract:

Cleome gynandra (spider plant) is an African green leafy vegetable categorized as an indigenous, underutilized and has been reported to contain essential phenolic compounds. Phenolic compounds play a significant role in human diets due to their proposed health benefits. These compounds however may be affected by different processing methods such as cooking and drying. Cleome gynandra was subjected to boiling, steam blanching, and drying processes and analysed for Total Phenolic Content (TPC), Total Flavonoid Content (TFC), antioxidant activity and flavonoid composition. Cooking and drying significantly (p < 0.05) increased the levels of phenolic compounds and antioxidant activity of the vegetable. The boiled sample filtrate exhibited the lowest TPC followed by the raw sample while the steamed sample depicted the highest TPC levels. Antioxidant activity results showed that steamed sample showed the highest DPPH, FRAP and ABTS with mean values of 499.38 ± 2.44, 578.68 ± 5.19, and 214.39 ± 12.33 μM Trolox Equivalent/g respectively. An increase in quercetin-3-rutinoside, quercetin-rhamnoside and kaempferol-3-rutinoside occurred after all the cooking and drying methods employed. Cooking and drying exerted positive effects on the vegetable’s phenolic content, antioxidant activity as a whole, but with varied effects on the individual flavonoid molecules. The results obtained help in defining the importance of African green leafy vegetable and resultant processed products as functional foods and their potential to exert health promoting properties.

Keywords: Cleome gynandra, phenolic compounds, cooking, drying, health promoting properties

Procedia PDF Downloads 168
1093 Computer Aided Shoulder Prosthesis Design and Manufacturing

Authors: Didem Venus Yildiz, Murat Hocaoglu, Murat Dursun, Taner Akkan

Abstract:

The shoulder joint is a more complex structure than the hip or knee joints. In addition to the overall complexity of the shoulder joint, two different factors influence the insufficient outcome of shoulder replacement: the shoulder prosthesis design is far from fully developed and it is difficult to place these shoulder prosthesis due to shoulder anatomy. The glenohumeral joint is the most complex joint of the human shoulder. There are various treatments for shoulder failures such as total shoulder arthroplasty, reverse total shoulder arthroplasty. Due to its reverse design than normal shoulder anatomy, reverse total shoulder arthroplasty has different physiological and biomechanical properties. Post-operative achievement of this arthroplasty is depend on improved design of reverse total shoulder prosthesis. Designation achievement can be increased by several biomechanical and computational analysis. In this study, data of human both shoulders with right side fracture was collected by 3D Computer Tomography (CT) machine in dicom format. This data transferred to 3D medical image processing software (Mimics Materilise, Leuven, Belgium) to reconstruct patient’s left and right shoulders’ bones geometry. Provided 3D geometry model of the fractured shoulder was used to constitute of reverse total shoulder prosthesis by 3-matic software. Finite element (FE) analysis was conducted for comparison of intact shoulder and prosthetic shoulder in terms of stress distribution and displacements. Body weight physiological reaction force of 800 N loads was applied. Resultant values of FE analysis was compared for both shoulders. The analysis of the performance of the reverse shoulder prosthesis could enhance the knowledge of the prosthetic design.

Keywords: reverse shoulder prosthesis, biomechanics, finite element analysis, 3D printing

Procedia PDF Downloads 154
1092 Genome Analysis of Lactobacillus Plantarum and Lactobacillus Brevis Isolated From Traditionally Fermented Ethiopian Kocho and Their Probiotic Properties

Authors: Guesh Mulaw, Haile Beruhulay, Anteneh Tesfaye, Tesfaye Sisay Diriba Muleta

Abstract:

Probiotics are live microorganisms that, when administered in adequate amounts, promote the health of a consumer. The present work aims to study the whole genome sequence of probiotic strains of lactic acid bacteria (LAB) isolated from traditional Ethiopian fermented kocho for bacteriocin production and to evaluate their probiotic properties. LAB were isolated from traditionally fermented kocho samples and characterized following standard methods. Accordingly, a total of 150 LAB were isolated, of which 7 (4.67%) isolates showed 50.52-74.05% and 33.33-62.40% survival rates at pH 2 for 3 and 6 h, respectively. The 7 acid-tolerant isolates were also tolerated 0.3% bile salt for 24 h with 88.96 to 98.10% survival. The acid and bile salt-tolerant LAB isolates also inhibited some reference foodborne pathogenic bacteria to varying degrees. All 7 acid- and bile salt-tolerant isolates were susceptible to ampicillin, tetracycline and erythromycin. However, the potent isolates showed remarkable resistance to kanamycin. Likewise, four of the 7 isolates were resistant to streptomycin, but three of the 7 isolates were sensitive to streptomycin. The identification of the seven selected probiotic LAB isolates and their genetic relatedness was performed based on whole-genome sequence comparisons. Consequently, these isolates belonged to Lactobacillus species, including 6 Lb. plantarum, 1 Lb. brevis. Among the 7 potential probiotic LAB strains, BAGEL predicted 2 bacteriocin for class II in the genome of 7 strains. The 7 Lactobacillus strains were found to be potentially useful for producing functional products and could be suitable probiotic candidates for food processing industries

Keywords: ferneted foods, kocho, probiotics, lactic acid bacteria

Procedia PDF Downloads 28