Search results for: central auditory processing disorder
4347 A Rare Form of Rapidly Progressive Parkinsonism Associated with Dementia
Authors: Murat Emre, Zeynep Tufekcioglu
Abstract:
Objective: We describe a patient with late onset phenylketonuria which presented with rapidly progressive dementia and parkinsonism that were reversible after management. Background: Phenylketonuria is an autosomal recessive disorder due to mutations in the phenylalanine hydroxlase gene. It normally presents in childhood, in rare cases, however, it may have its onset in adulthood and may mimic other neurological disorders. Case description: A previously normal functioning, 59 year old man was admitted for blurred vision, cognitive impairment and gait difficulty which emerged over the past eight months. In neurological examination he had brisk reflexes, slow gait and left-dominant parkinsonism. Mini-mental state examination score was 25/30, neuropsychological testing revealed a dysexecutive syndrome with constructional apraxia and simultanagnosia. In cranial MRI there were bilateral diffuse hyper-intense lesions in parietal and occipital white matter with no significant atrophy. Electroencephalography showed diffuse slowing with predominance of teta waves. In cerebrospinal fluid examination protein level was slightly elevated (61mg/dL), oligoclonal bands were negative. Electromyography was normal. Routine laboratory examinations for rapidly progressive dementia and parkinsonism were also normal. Serum amino acid levels were determined to explore metabolic leukodystrophies and phenylalanine level was found to be highly elevated (1075 µmol/L) with normal tyrosine (61,20 µmol/L). His cognitive impairment and parkinsonian symptoms improved following three months of phenylalanine restricted diet. Conclusions: Late onset phenylketonuria is a rare, potentially reversible cause of rapidly progressive parkinsonism with dementia. It should be considered in the differential diagnosis of patients with suspicious features.Keywords: dementia, neurology, Phenylketonuria, rapidly progressive parkinsonism
Procedia PDF Downloads 2694346 Young Female’s Heart Was Bitten by Unknown Ghost (Isolated Cardiac Sarcoidosis): A Case Report
Authors: Heru Al Amin
Abstract:
Sarcoidosis is a granulomatous inflammatory disorder of unclear etiology that can affect multiple different organ systems. Isolated cardiac sarcoidosis is a very rare condition that causes lethal arrhythmia and heart failure. A definite diagnosis of cardiac sarcoidosis remains challenging. The use of multimodality imaging plays a pivotal role in the diagnosis of this entity. Case summary: In this report, we discuss a case of a 50-year-old woman who presented with recurrent palpitation, dizziness, vertigo and presyncope. Electrocardiogram revealed variable heart blocks, including first-degree AV block, second-degree AV block, high-degree AV block, complete AV block, trifascicular block and sometimes supraventricular arrhythmia. Twenty-four hours of Holter monitoring show atrial bigeminy, first-degree AV block and trifascicular block. Transthoracic echocardiography showed Thinning of basal anteroseptal and inferred septum with LV dilatation with reduction of Global Longitudinal Strain. A dual-chamber pacemaker was implanted. CT Coronary angiogram showed no coronary artery disease. Cardiac magnetic resonance revealed basal anteroseptal and inferior septum thinning with focal edema with LGE suggestive of sarcoidosis. Computed tomography of the chest showed no lymphadenopathy or pulmonary infiltration. 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) of the whole body showed. We started steroids and followed up with the patient. Conclusion: This case serves to highlight the challenges in identifying and managing isolated CS in a young patient with recurrent syncope with variable heart block. Early, even late initiation of steroids can improve arrhythmia as well as left ventricular function.Keywords: cardiac sarcoidosis, conduction abnormality, syncope, cardiac MRI
Procedia PDF Downloads 914345 Angle of Arrival Estimation Using Maximum Likelihood Method
Authors: Olomon Wu, Hung Lu, Nick Wilkins, Daniel Kerr, Zekeriya Aliyazicioglu, H. K. Hwang
Abstract:
Multiple Input Multiple Output (MIMO) radar has received increasing attention in recent years. MIMO radar has many advantages over conventional phased array radar such as target detection, resolution enhancement, and interference suppression. In this paper, the results are presented from a simulation study of MIMO Uniformly-Spaced Linear Array (ULA) antennas. The performance is investigated under varied parameters, including varied array size, Pseudo Random (PN) sequence length, number of snapshots, and Signal to Noise Ratio (SNR). The results of MIMO are compared to a traditional array antenna.Keywords: MIMO radar, phased array antenna, target detection, radar signal processing
Procedia PDF Downloads 5424344 Brainbow Image Segmentation Using Bayesian Sequential Partitioning
Authors: Yayun Hsu, Henry Horng-Shing Lu
Abstract:
This paper proposes a data-driven, biology-inspired neural segmentation method of 3D drosophila Brainbow images. We use Bayesian Sequential Partitioning algorithm for probabilistic modeling, which can be used to detect somas and to eliminate cross talk effects. This work attempts to develop an automatic methodology for neuron image segmentation, which nowadays still lacks a complete solution due to the complexity of the image. The proposed method does not need any predetermined, risk-prone thresholds since biological information is inherently included in the image processing procedure. Therefore, it is less sensitive to variations in neuron morphology; meanwhile, its flexibility would be beneficial for tracing the intertwining structure of neurons.Keywords: brainbow, 3D imaging, image segmentation, neuron morphology, biological data mining, non-parametric learning
Procedia PDF Downloads 4874343 Shaping Traditional Chinese Culture in Contemporary Fashion: ‘Guochao’ as a Rising Aesthetic and the Case Study of the Designer Brand Angel Chen
Authors: Zhe Ginnie Wang
Abstract:
Recent cultural design studies have begun to shed light on the discussion of Western-Eastern cultural and aesthetic hybridization, especially in the field of fashion. With the unprecedented spread of cultural Chinese fashion design in the global fashion system, the under-identified ‘Guochao’ aesthetic that has emerged in the global market needs to be academically emphasized with a methodological approach looking at the Western-Eastern cultural hybridization present in fashion visualization. Through an in-depth and comprehensive investigation of a representative international-based Chinese designer, Angel Chen's fashion show 'Madam Qing', this paper provides a methodological approach on how a form of traditional culture can be effectively extracted and applied to modern design using the most effective techniques. The central approach examined in this study involves creating aesthetic revolutions by addressing Chinese cultural identity through re-creating and modernizing traditional Chinese culture in design.Keywords: style modernization, Chinese culture, guochao, design identity, fashion show, Angel Chen
Procedia PDF Downloads 3564342 Ethical Considerations in In-Utero Gene Editing
Authors: Shruti Govindarajan
Abstract:
In-utero gene editing with CRISPR-Cas9 opens up new possibilities for treating genetic disorders during pregnancy while still in mother’s womb. By targeting genetic mutations in the early stages of fetal development, this approach could potentially prevent severe conditions—like cystic fibrosis, sickle cell anemia, and muscular dystrophy—from causing harm. CRISPR-Cas9, which allows precise DNA edits, could be delivered into fetal cells through vectors such as adeno-associated viruses (AAVs) or nanoparticles, correcting disease-causing mutations and possibly offering lifelong relief from these disorders. For families facing severe genetic diagnoses, in-utero gene editing could provide a transformative option. However, technical challenges remain, including ensuring that gene editing only targets the intended cells and verifying long-term safety. Ethical considerations are also at the forefront of this technology. The editing of a fetus's genes brings up difficult questions about consent, especially since these genetic changes will affect the child’s entire life without their input. There's also concern over possible unintended side effects, or changes passed down to future generations. Moreover, if used beyond therapeutic purposes, this technology could be misused for ‘enhancements,’ like selecting for certain physical or cognitive traits, raising concerns about inequality and social pressures. In this way, in-utero gene editing brings both exciting potential and complex moral questions. As research progresses, addressing these scientific and ethical concerns will be key to ensuring that this technology is used responsibly, prioritizing safety, fairness, and a focus on alleviating genetic disease. A cautious and inclusive approach, along with clear regulations, will be essential to realizing the benefits of in-utero gene editing while protecting against unintended consequences.Keywords: in-utero gene editing, CRISPR, bioethics, genetic disorder
Procedia PDF Downloads 84341 Data Presentation of Lane-Changing Events Trajectories Using HighD Dataset
Authors: Basma Khelfa, Antoine Tordeux, Ibrahima Ba
Abstract:
We present a descriptive analysis data of lane-changing events in multi-lane roads. The data are provided from The Highway Drone Dataset (HighD), which are microscopic trajectories in highway. This paper describes and analyses the role of the different parameters and their significance. Thanks to HighD data, we aim to find the most frequent reasons that motivate drivers to change lanes. We used the programming language R for the processing of these data. We analyze the involvement and relationship of different variables of each parameter of the ego vehicle and the four vehicles surrounding it, i.e., distance, speed difference, time gap, and acceleration. This was studied according to the class of the vehicle (car or truck), and according to the maneuver it undertook (overtaking or falling back).Keywords: autonomous driving, physical traffic model, prediction model, statistical learning process
Procedia PDF Downloads 2614340 In vitro Antioxidant and Antisickling Effects of Aerva javanica, and Ficus palmata Extracts on Sickle Cell Anemia
Authors: E. A. Alaswad, H. M. Choudhry, F. Z. Filimban
Abstract:
Sickle Cell Anemia (SCA) is one type of blood diseases related to autosomal disorder. The sickle shaped red blood cells are the main cause of many problems in the blood vessels and capillaries. Aerva Javanica (J) and Ficus Palmata (P) are medicinal plants that have many popular uses and have been proved their efficacy. The aim of this study was to assess the antioxidants activity and the antisickling effect of J and P extractions. The period of this study, air-dried leaves of J, and P plants were ground and the active components were extracted by maceration in water (W) and methanol (M) as solvents. The antioxidants activity of JW, PW, JM, and PM were assessed by way of the radical scavenging method using 2,2-diphenyl-1-picrylhydrazyl (DPPH). To determine the antisickling effect of J and P extracts. 20 samples were collected from sickle cell anemia patients. Different concentrations of J and P extracts (200 and 110 μg/mL) were added on the sample and incubated. A drop of each sample was examined with light microscope. Normal and sickled RBCs were calculated and expressed as the percent of sickling. The stabilization effect of the extracts was measured by the osmotic fragility test for erythrocytes. The finding suggests as estimated by DPPH method, all the extracts showed an antioxidant activity with a significant inhibition of the DPPH radicals. PM has the least IC50% with 71.49 μg/ml while JM was the most with 408.49 μg/ml. Sickle cells treated with extracts at different concentrations significantly reduced the percentage of sickling compering to control samples. However, JM 200 μg/mL give the highest anti-sickling affect with 17.4% of sickling compared to control 67.5 of sickling while PM at 200 μg/mL showed the highest membrane cell stability. In a conclusion, the results showed that J and P extracts have antisickling effects. Therefore, the Aerva javanica and Ficus palmata may have a role in SCA management and a good impact on the patient's lives.Keywords: Aerva javanica, antioxidant, antisickling, Ficus palmata, sickle cell anemia
Procedia PDF Downloads 1684339 Dysfunctional Behavior of External Auditors, The Collision of Time Budget and Time Deadline
Authors: Rabih Nehme, Abdullah Al Mutawa
Abstract:
The general goal behind this research is to gain a better understanding of factors leading to dysfunctional behavior of auditors. Recent accounting scandals -Enron, Waste Management Inc., WorldCom, Xerox Corporation, etc. -provided an ample proof of how the role of auditors has become the basis of controversial debates in many circles and instances in our modern time. The majority of lawsuits and accounting scandals seem to have a central topic in focus, namely the question ''Where were the auditors? The survey we offer up for research is made up of 34 questions that are designed to analyse the perception of auditors and the cause of dysfunctional behavior. The object of this research is comprised of auditors positioned and employed at the Big Four audit firms in Kuwait. Dysfunctional behavior (DB) is measured against two signal proxies of dysfunctional behavior; premature sign-off and under reporting of chargeable time. DB is analysed against time budget pressure and time deadline pressure. The research results' suggest that the general belief among auditors is that the profession of accountancy predetermines their tendency to commit certain patterns of dysfunctional behavior. Having our investigation conducted at the Big Four audit firms, we have come to the conclusion that there is a general difference in behavior patterns among perceptions of dysfunctional behavior and normal skeptic professional behavior.Keywords: big four, dysfunctional behavior, time budget, time deadline
Procedia PDF Downloads 4714338 Chinese Event Detection Technique Based on Dependency Parsing and Rule Matching
Authors: Weitao Lin
Abstract:
To quickly extract adequate information from large-scale unstructured text data, this paper studies the representation of events in Chinese scenarios and performs the regularized abstraction. It proposes a Chinese event detection technique based on dependency parsing and rule matching. The method first performs dependency parsing on the original utterance, then performs pattern matching at the word or phrase granularity based on the results of dependent syntactic analysis, filters out the utterances with prominent non-event characteristics, and obtains the final results. The experimental results show the effectiveness of the method.Keywords: natural language processing, Chinese event detection, rules matching, dependency parsing
Procedia PDF Downloads 1414337 Secret Security Smart Lock Using Artificial Intelligence Hybrid Algorithm
Authors: Vahid Bayrami Rad
Abstract:
Ever since humans developed a collective way of life to the development of urbanization, the concern of security has always been considered one of the most important challenges of life. To protect property, locks have always been a practical tool. With the advancement of technology, the form of locks has changed from mechanical to electric. One of the most widely used fields of using artificial intelligence is its application in the technology of surveillance security systems. Currently, the technologies used in smart anti-theft door handles are one of the most potential fields for using artificial intelligence. Artificial intelligence has the possibility to learn, calculate, interpret and process by analyzing data with the help of algorithms and mathematical models and make smart decisions. We will use Arduino board to process data.Keywords: arduino board, artificial intelligence, image processing, solenoid lock
Procedia PDF Downloads 694336 Hydrogen: Contention-Aware Hybrid Memory Management for Heterogeneous CPU-GPU Architectures
Authors: Yiwei Li, Mingyu Gao
Abstract:
Integrating hybrid memories with heterogeneous processors could leverage heterogeneity in both compute and memory domains for better system efficiency. To ensure performance isolation, we introduce Hydrogen, a hardware architecture to optimize the allocation of hybrid memory resources to heterogeneous CPU-GPU systems. Hydrogen supports efficient capacity and bandwidth partitioning between CPUs and GPUs in both memory tiers. We propose decoupled memory channel mapping and token-based data migration throttling to enable flexible partitioning. We also support epoch-based online search for optimized configurations and lightweight reconfiguration with reduced data movements. Hydrogen significantly outperforms existing designs by 1.21x on average and up to 1.31x.Keywords: hybrid memory, heterogeneous systems, dram cache, graphics processing units
Procedia PDF Downloads 964335 Mixed Convection Enhancement in a 3D Lid-Driven Cavity Containing a Rotating Cylinder by Applying an Artificial Roughness
Authors: Ali Khaleel Kareem, Shian Gao, Ahmed Qasim Ahmed
Abstract:
A numerical investigation of unsteady mixed convection heat transfer in a 3D moving top wall enclosure, which has a central rotating cylinder and uses either artificial roughness on the bottom hot plate or smooth bottom hot plate to study the heat transfer enhancement, is completed for fixed circular cylinder, and anticlockwise and clockwise rotational speeds, -1 ≤ Ω ≤ 1, at Reynolds number of 5000. The top lid-driven wall was cooled, while the other remaining walls that completed obstructed cubic were kept insulated and motionless. A standard k-ε model of Unsteady Reynolds-Averaged Navier-Stokes (URANS) method is involved to deal with turbulent flow. It has been clearly noted that artificial roughness can strongly control the thermal fields and fluid flow patterns. Ultimately, the heat transfer rate has been dramatically increased by involving artificial roughness on the heated bottom wall in the presence of rotating cylinder.Keywords: artificial roughness, lid-driven cavity, mixed convection heat transfer, rotating cylinder, URANS method
Procedia PDF Downloads 1984334 Comparative Analysis between Corn and Ramon (Brosimum alicastrum) Starches to Be Used as Sustainable Bio-Based Plastics
Authors: C. R. Ríos-Soberanis, V. M. Moo-Huchin, R. J. Estrada-Leon, E. Perez-Pacheco
Abstract:
Polymers from renewable resources have attracted an increasing amount of attention over the last two decades, predominantly due to two major reasons: firstly environmental concerns, and secondly the realization that our petroleum resources are finite. Finding new uses for agricultural commodities is also an important area of research. Therefore, it is crucial to get new sources of natural materials that can be used in different applications. Ramon tree (Brosimum alicastrum) is a tropical plant that grows freely in Yucatan countryside. This paper focuses on the seeds recollection, processing and starch extraction and characterization in order to find out about its suitability as biomaterial. Results demonstrated that it has a high content of qualities to be used not only as comestible but also as an important component in polymeric blends.Keywords: biomaterials, characterization techniques, natural resource, starch
Procedia PDF Downloads 3254333 Frequent Item Set Mining for Big Data Using MapReduce Framework
Authors: Tamanna Jethava, Rahul Joshi
Abstract:
Frequent Item sets play an essential role in many data Mining tasks that try to find interesting patterns from the database. Typically it refers to a set of items that frequently appear together in transaction dataset. There are several mining algorithm being used for frequent item set mining, yet most do not scale to the type of data we presented with today, so called “BIG DATA”. Big Data is a collection of large data sets. Our approach is to work on the frequent item set mining over the large dataset with scalable and speedy way. Big Data basically works with Map Reduce along with HDFS is used to find out frequent item sets from Big Data on large cluster. This paper focuses on using pre-processing & mining algorithm as hybrid approach for big data over Hadoop platform.Keywords: frequent item set mining, big data, Hadoop, MapReduce
Procedia PDF Downloads 4364332 Applying an Application-Based Knowledge Capturing and Reusing for Construction Consultant Organizations Applying
Authors: Phan Nghiem Vu, Le Tuan Vu, Ta Quang Tai
Abstract:
Knowledge Management effectively is critical to the survival and advance of a company, especially in company-based industries such as construction. Knowledge management practice is crucial to the survival and progress of a company, especially company-based knowledge such as construction consultancy. Effective knowledge management practices are very significant to the competitive and development of a consulting organization. Hence, the success of knowledge management implementation depends on knowledge capturing and reusing effectively. In this paper, a survey was carried out of engineers and managers with experience in seven construction consulting organizations that provide services on the north-central coast of Vietnam. The main objectives of the survey to finding out how these organizations capture and reuse knowledge and significant barriers to the implementation of knowledge management. A conceptual framework based-on Trello application is proposed to formalize the knowledge-capturing and reusing process within construction consulting companies. It is showed that the conceptual framework could be used to manage both implicit and explicit knowledge effectively in construction consultant organizations.Keywords: knowledge management, construction consultant organization, knowledge capturing, reusing knowledge, application-based technology
Procedia PDF Downloads 1304331 Proposal of a Damage Inspection Tool After Earthquakes: Case of Algerian Buildings
Authors: Akkouche Karim, Nekmouche Aghiles, Bouzid Leyla
Abstract:
This study focuses on the development of a multifunctional Expert System (ES) called post-seismic damage inspection tool (PSDIT), a powerful tool which allows the evaluation, the processing and the archiving of the collected data stock after earthquakes. PSDIT can be operated by two user types; an ordinary user (engineer, expert or architect) for the damage visual inspection and an administrative user for updating the knowledge and / or for adding or removing the ordinary user. The knowledge acquisition is driven by a hierarchical knowledge model, the Information from investigation reports and those acquired through feedback from expert / engineer questionnaires are part.Keywords: buildings, earthquake, seismic damage, damage assessment, expert system
Procedia PDF Downloads 874330 Parallel Computing: Offloading Matrix Multiplication to GPU
Authors: Bharath R., Tharun Sai N., Bhuvan G.
Abstract:
This project focuses on developing a Parallel Computing method aimed at optimizing matrix multiplication through GPU acceleration. Addressing algorithmic challenges, GPU programming intricacies, and integration issues, the project aims to enhance efficiency and scalability. The methodology involves algorithm design, GPU programming, and optimization techniques. Future plans include advanced optimizations, extended functionality, and integration with high-level frameworks. User engagement is emphasized through user-friendly interfaces, open- source collaboration, and continuous refinement based on feedback. The project's impact extends to significantly improving matrix multiplication performance in scientific computing and machine learning applications.Keywords: matrix multiplication, parallel processing, cuda, performance boost, neural networks
Procedia PDF Downloads 584329 1/Sigma Term Weighting Scheme for Sentiment Analysis
Authors: Hanan Alshaher, Jinsheng Xu
Abstract:
Large amounts of data on the web can provide valuable information. For example, product reviews help business owners measure customer satisfaction. Sentiment analysis classifies texts into two polarities: positive and negative. This paper examines movie reviews and tweets using a new term weighting scheme, called one-over-sigma (1/sigma), on benchmark datasets for sentiment classification. The proposed method aims to improve the performance of sentiment classification. The results show that 1/sigma is more accurate than the popular term weighting schemes. In order to verify if the entropy reflects the discriminating power of terms, we report a comparison of entropy values for different term weighting schemes.Keywords: 1/sigma, natural language processing, sentiment analysis, term weighting scheme, text classification
Procedia PDF Downloads 2044328 Evaluation and Strategic Development of IT in Accounting in Turkey
Authors: Eda Kocakaya, Sebahat Seker, Dogan Argun
Abstract:
The aim of this study is to determine the process of information technologies and the connections between concepts in accounting management services in Turkey. The objective of this study is to determine the adaptation and evaluation process of information technologies and the connections between concepts and differences in accounting management services in Turkey. The situation and determination of the IT applications of Accounting Management were studied. The applications of • Billing • Order Processing • Accounts Receivable/Payable Management • Contract Management • Bank Account Management Were discussed in this study. The IT applications were demonstrated and realized in actual accounting services. The sectoral representative's companies were selected, and the IT application was searched by bibliometric analysis.Keywords: management, accounting, information technologies, adaptation
Procedia PDF Downloads 3094327 Radar-Based Classification of Pedestrian and Dog Using High-Resolution Raw Range-Doppler Signatures
Authors: C. Mayr, J. Periya, A. Kariminezhad
Abstract:
In this paper, we developed a learning framework for the classification of vulnerable road users (VRU) by their range-Doppler signatures. The frequency-modulated continuous-wave (FMCW) radar raw data is first pre-processed to obtain robust object range-Doppler maps per coherent time interval. The complex-valued range-Doppler maps captured from our outdoor measurements are further fed into a convolutional neural network (CNN) to learn the classification. This CNN has gone through a hyperparameter optimization process for improved learning. By learning VRU range-Doppler signatures, the three classes 'pedestrian', 'dog', and 'noise' are classified with an average accuracy of almost 95%. Interestingly, this classification accuracy holds for a combined longitudinal and lateral object trajectories.Keywords: machine learning, radar, signal processing, autonomous driving
Procedia PDF Downloads 2464326 Data Analysis Tool for Predicting Water Scarcity in Industry
Authors: Tassadit Issaadi Hamitouche, Nicolas Gillard, Jean Petit, Valerie Lavaste, Celine Mayousse
Abstract:
Water is a fundamental resource for the industry. It is taken from the environment either from municipal distribution networks or from various natural water sources such as the sea, ocean, rivers, aquifers, etc. Once used, water is discharged into the environment, reprocessed at the plant or treatment plants. These withdrawals and discharges have a direct impact on natural water resources. These impacts can apply to the quantity of water available, the quality of the water used, or to impacts that are more complex to measure and less direct, such as the health of the population downstream from the watercourse, for example. Based on the analysis of data (meteorological, river characteristics, physicochemical substances), we wish to predict water stress episodes and anticipate prefectoral decrees, which can impact the performance of plants and propose improvement solutions, help industrialists in their choice of location for a new plant, visualize possible interactions between companies to optimize exchanges and encourage the pooling of water treatment solutions, and set up circular economies around the issue of water. The development of a system for the collection, processing, and use of data related to water resources requires the functional constraints specific to the latter to be made explicit. Thus the system will have to be able to store a large amount of data from sensors (which is the main type of data in plants and their environment). In addition, manufacturers need to have 'near-real-time' processing of information in order to be able to make the best decisions (to be rapidly notified of an event that would have a significant impact on water resources). Finally, the visualization of data must be adapted to its temporal and geographical dimensions. In this study, we set up an infrastructure centered on the TICK application stack (for Telegraf, InfluxDB, Chronograf, and Kapacitor), which is a set of loosely coupled but tightly integrated open source projects designed to manage huge amounts of time-stamped information. The software architecture is coupled with the cross-industry standard process for data mining (CRISP-DM) data mining methodology. The robust architecture and the methodology used have demonstrated their effectiveness on the study case of learning the level of a river with a 7-day horizon. The management of water and the activities within the plants -which depend on this resource- should be considerably improved thanks, on the one hand, to the learning that allows the anticipation of periods of water stress, and on the other hand, to the information system that is able to warn decision-makers with alerts created from the formalization of prefectoral decrees.Keywords: data mining, industry, machine Learning, shortage, water resources
Procedia PDF Downloads 1214325 Malignancy Assessment of Brain Tumors Using Convolutional Neural Network
Authors: Chung-Ming Lo, Kevin Li-Chun Hsieh
Abstract:
The central nervous system in the World Health Organization defines grade 2, 3, 4 gliomas according to the aggressiveness. For brain tumors, using image examination would have a lower risk than biopsy. Besides, it is a challenge to extract relevant tissues from biopsy operation. Observing the whole tumor structure and composition can provide a more objective assessment. This study further proposed a computer-aided diagnosis (CAD) system based on a convolutional neural network to quantitatively evaluate a tumor's malignancy from brain magnetic resonance imaging. A total of 30 grade 2, 43 grade 3, and 57 grade 4 gliomas were collected in the experiment. Transferred parameters from AlexNet were fine-tuned to classify the target brain tumors and achieved an accuracy of 98% and an area under the receiver operating characteristics curve (Az) of 0.99. Without pre-trained features, only 61% of accuracy was obtained. The proposed convolutional neural network can accurately and efficiently classify grade 2, 3, and 4 gliomas. The promising accuracy can provide diagnostic suggestions to radiologists in the clinic.Keywords: convolutional neural network, computer-aided diagnosis, glioblastoma, magnetic resonance imaging
Procedia PDF Downloads 1474324 Partial Differential Equation-Based Modeling of Brain Response to Stimuli
Authors: Razieh Khalafi
Abstract:
The brain is the information processing centre of the human body. Stimuli in the form of information are transferred to the brain and then brain makes the decision on how to respond to them. In this research, we propose a new partial differential equation which analyses the EEG signals and make a relationship between the incoming stimuli and the brain response to them. In order to test the proposed model, a set of external stimuli applied to the model and the model’s outputs were checked versus the real EEG data. The results show that this model can model the EEG signal well. The proposed model is useful not only for modelling of EEG signal in case external stimuli but it can be used for modelling of brain response in case of internal stimuli.Keywords: brain, stimuli, partial differential equation, response, EEG signal
Procedia PDF Downloads 5544323 A New Approach for Assertions Processing during Assertion-Based Software Testing
Authors: Ali M. Alakeel
Abstract:
Assertion-based software testing has been shown to be a promising tool for generating test cases that reveal program faults. Because the number of assertions may be very large for industry-size programs, one of the main concerns to the applicability of assertion-based testing is the amount of search time required to explore a large number of assertions. This paper presents a new approach for assertions exploration during the process of Assertion-Based software testing. Our initial exterminations with the proposed approach show that the performance of Assertion-Based testing may be improved, therefore, making this approach more efficient when applied on programs with large number of assertions.Keywords: software testing, assertion-based testing, program assertions, generating test
Procedia PDF Downloads 4604322 Characterization of the Queuine Salvage Pathway From Bacteria in the Human Parasite Entamoeba Histolytica
Authors: Lotem Sarid, Meirav Trebicz-Geffen, Serge Ankri
Abstract:
Queuosine (Q) is a naturally occurring modified nucleoside that occurs in the first position of transfer RNA anticodons such as Asp, Asn, His, and Tyr. As eukaryotes lack pathways to synthesize queuine, the nucleobase of queuosine, they must obtain it from their diet or gut microbiota. Our previous work investigated the effects of queuine on the physiology of the eukaryotic parasite Entamoeba histolytica and defined the enzyme EhTGT responsible for its incorporation into tRNA. To our best knowledge, it is unknown how E. histolytica salvages Q from gut bacteria. We used N-acryloyl-3-aminophenylboronic acid (APB) PAGE analysis to demonstrate that E. histolytica trophozoites can salvage queuine from Q or E. coli K12 but not from the modified E. coli QueC strain, which cannot produce queuine. Next, we examined the role of EhDUF2419, a protein with homology to DNA glycosylase, as a queuine salvage enzyme in E. histolytica. When EhDUF2419 expression is silenced, it inhibits Q's conversion to queuine, resulting in a decrease in Q-tRNA levels. We also observed that Q protects control trophozoites from oxidative stress (OS), but not siEhDUF2419 trophozoites. Overall, our data reveal that EhDUF2419 is central for the salvaging of queuine from bacteria and for the resistance of the parasite to OS.Keywords: entamoeba histolytica, epitranscriptomics, gut microbiota, queuine, queuosine, response to oxidative stress, tRNA modification.
Procedia PDF Downloads 1214321 Living in the Edge: Crisis in Indian Tea Industry and Social Deprivation of Tea Garden Workers in Dooars Region of India
Authors: Saraswati Kerketta
Abstract:
Tea industry is one of the oldest organised sector of India. It employs roughly 1.5 million people directly. Since the last decade Indian tea industry, especially in the northern region is experiencing worst crisis in the post-independence period. Due to many reason the prices of tea show steady decline. The workers are paid one of the lowest wage in tea industry in the world (1.5$ a day) below the UN's $2 a day for extreme poverty. The workers rely on addition benefits from plantation which includes food, housing and medical facilities. These have been effective means of enslavement of generations of labourers by the owners. There is hardly any change in the tea estates where the owners determine the fate of workers. When the tea garden is abandoned or is closed all the facilities disappear immediately. The workers are the descendants of tribes from central India also known as 'tea tribes'. Alienated from their native place, the geographical and social isolation compounded their vulnerability of these people. The economy of the region being totally dependent on tea has resulted in absolute unemployment for the workers of these tea gardens. With no other livelihood and no land to grow food, thousands of workers faced hunger and starvation. The Plantation Labour Act which ensures the decent working and living condition is violated continuously. The labours are forced to migrate and are also exposed to the risk of human trafficking. Those who are left behind suffers from starvation, malnutrition and disease. The condition in the sick tea plantation is no better. Wage are not paid regularly, subsidised food, fuel are also not supplied properly. Health care facilities are in very bad shape. Objectives: • To study the socio-cultural and demographic characteristics of the tea garden labourers in the study area. • To examine the social situation of workers in sick estates in dooars region. • To assess the magnitude of deprivation the impact of economic crisis on abandoned and closed tea estates in the region. Data Base: The study is based on data collected from field survey. Methods: Quantative: Cross-Tabulation, Regression analysis. Qualitative: Household Survey, Focussed Group Discussion, In-depth interview of key informants. Findings: Purchasing power parity has declined since in last three decades. There has been many fold increase in migration. Males migrates long distance towards central and west and south India. Females and children migrates both long and short distance. No one has reported to migrate back to the place of origin of their ancestors. Migrant males work mostly as construction labourers and as factory workers whereas females and children work as domestic help and construction labourers. In about 37 cases either they haven't contacted their families in last six months or are not traceable. The families with single earning members are more likely to migrate. Burden of disease and the duration of sickness, abandonment and closure of plantation are closely related. Death tolls are likely to rise 1.5 times in sick tea gardens and three times in closed tea estates. Sixty percent of the people are malnourished in the sick tea gardens and more than eighty five per cent in abandoned and sick tea gardens.Keywords: migration, trafficking, starvation death, tea garden workers
Procedia PDF Downloads 3834320 Poverty Reduction in European Cities: Local Governments’ Strategies and Programmes to Reduce Poverty; Interview Results from Austria
Authors: Melanie Schinnerl, Dorothea Greiling
Abstract:
In the context of the 2020 strategy, poverty and its fight returned to the center of national political efforts. This served as motivation for an Austrian research grant-funded project to focus on the under-researched local government level with the aim to identify municipal best-practice cases and to derive policy implications for Austria. Designing effective poverty reduction strategies is a complex challenge which calls for an integrated multi-actor in approach. Cities are increasingly confronted to combat poverty, even in rich EU-member states. By doing so cities face substantial demographic, cultural, economic and social challenges as well as changing welfare state regimes. Furthermore, there is a low willingness of (right-wing) governments to support the poor. Against this background, the research questions are: 1. How do local governments define poverty? 2. Who are the main risk groups and what are the most pressing problems when fighting urban poverty? 3. What is regarded as successful anti-poverty initiatives? 4. What is the underlying welfare state concept? To address the research questions a multi-method approach was chosen, consisting of a systematic literature analysis, a comprehensive document analysis, and expert interviews. For interpreting the data the project follows the qualitative-interpretive paradigm. Municipal approaches for reducing poverty are compared based on deductive, as well as inductive identified criteria. In addition to an intensive literature analysis, interviews (40) were conducted in Austria since the project started in March 2018. From the other countries, 14 responses have been collected, providing a first insight. Regarding the definition of poverty the EU SILC-definition as well as counting the persons who receive need-based minimum social benefits, the Austrian form of social welfare, are the predominant approaches in Austria. In addition to homeless people, single-parent families, un-skilled persons, long-term unemployed persons, migrants (first and second generation), refugees and families with at least 3 children were frequently mentioned. The most pressing challenges for Austrian cities are: expected reductions of social budgets, a great insecurity of the central government's social policy reform plans, the growing number of homeless people and a lack of affordable housing. Together with affordable housing, old-age poverty will gain more importance in the future. The Austrian best practice examples, suggested by interviewees, focused primarily on homeless, children and young people (till 25). Central government’s policy changes have already negative effects on programs for refugees and elderly unemployed. Social Housing in Vienna was frequently mentioned as an international best practice case, other growing cities can learn from. The results from Austria indicate a change towards the social investment state, which primarily focuses on children and labour market integration. The first insights from the other countries indicate that affordable housing and labor market integration are cross-cutting issues. Inherited poverty and old-age poverty seems to be more pressing outside Austria.Keywords: anti-poverty policies, European cities, empirical study, social investment
Procedia PDF Downloads 1174319 Effects of Bilateral Electroconvulsive Therapy on Autobiographical Memories in Asian Patients
Authors: Lai Gwen Chan, Yining Ong, Audrey Yoke Poh Wong
Abstract:
Background. The efficacy of electroconvulsive therapy (ECT) as a form of treatment to a range of mental disorders is well-established. However, ECT is often associated with either temporary or persistent cognitive side-effects, resulting in the failure of wider prescription. Of which, retrograde amnesia is the most commonly reported cognitive side-effect. Most studies found a recalling deficit in autobiographical memories to be short-term, although a few have reported more persistent amnesic effects. Little is known about ECT-related amnesic effects in Asian population. Hence, this study aims to resolve conflicting findings, as well as to better elucidate the effects of ECT on cognitive functioning in a local sample. Method: 12 patients underwent bilateral ECT under the care of Psychological Medicine Department, Tan Tock Seng Hospital, Singapore. Participants’ cognition and level of functioning were assessed at four time-points: before ECT, between the third and fourth induced seizure, at the end of the whole course of ECT, and two months after the index course of ECT. Results: It was found that Global Assessment of Functioning scores increased significantly at the completion of ECT. Case-by-case analyses also revealed an overall improvement in Personal Semantic and Autobiographical memory two months after the index course of ECT. A transient dip in both personal semantic and autobiographical memory scores was observed in one participant between the third and fourth induced seizure, but subsequently resolved and showed better performance than at baseline. Conclusions: The findings of this study suggest that ECT is an effective form of treatment to alleviate the severity of symptoms of the diagnosis. ECT does not affect attention, language, executive functioning, personal semantic and autobiographical memory adversely. The findings suggest that Asian patients may respond to bilateral ECT differently from Western samples.Keywords: electroconvulsive therapy (ECT), autobiographical memory, cognitive impairment, psychiatric disorder
Procedia PDF Downloads 1934318 Characterization and Correlation of Neurodegeneration and Biological Markers of Model Mice with Traumatic Brain Injury and Alzheimer's Disease
Authors: J. DeBoard, R. Dietrich, J. Hughes, K. Yurko, G. Harms
Abstract:
Alzheimer’s disease (AD) is a predominant type of dementia and is likely a major cause of neural network impairment. The pathogenesis of this neurodegenerative disorder has yet to be fully elucidated. There are currently no known cures for the disease, and the best hope is to be able to detect it early enough to impede its progress. Beyond age and genetics, another prevalent risk factor for AD might be traumatic brain injury (TBI), which has similar neurodegenerative hallmarks. Our research focuses on obtaining information and methods to be able to predict when neurodegenerative effects might occur at a clinical level by observation of events at a cellular and molecular level in model mice. First, we wish to introduce our evidence that brain damage can be observed via brain imaging prior to the noticeable loss of neuromuscular control in model mice of AD. We then show our evidence that some blood biomarkers might be able to be early predictors of AD in the same model mice. Thus, we were interested to see if we might be able to predict which mice might show long-term neurodegenerative effects due to differing degrees of TBI and what level of TBI causes further damage and earlier death to the AD model mice. Upon application of TBIs via an apparatus to effectively induce extremely mild to mild TBIs, wild-type (WT) mice and AD mouse models were tested for cognition, neuromuscular control, olfactory ability, blood biomarkers, and brain imaging. Experiments are currently still in process, and more results are therefore forthcoming. Preliminary data suggest that neuromotor control diminishes as well as olfactory function for both AD and WT mice after the administration of five consecutive mild TBIs. Also, seizure activity increases significantly for both AD and WT after the administration of the five TBI treatment. If future data supports these findings, important implications about the effect of TBI on those at risk for AD might be possible.Keywords: Alzheimer's disease, blood biomarker, neurodegeneration, neuromuscular control, olfaction, traumatic brain injury
Procedia PDF Downloads 141