Search results for: biological sensor
282 Association between G2677T/A MDR1 Polymorphism with the Clinical Response to Disease Modifying Anti-Rheumatic Drugs in Rheumatoid Arthritis
Authors: Alan Ruiz-Padilla, Brando Villalobos-Villalobos, Yeniley Ruiz-Noa, Claudia Mendoza-Macías, Claudia Palafox-Sánchez, Miguel Marín-Rosales, Álvaro Cruz, Rubén Rangel-Salazar
Abstract:
Introduction: In patients with rheumatoid arthritis, resistance or poor response to disease modifying antirheumatic drugs (DMARD) may be a reflection of the increase in g-P. The expression of g-P may be important in mediating the effluence of DMARD from the cell. In addition, P-glycoprotein is involved in the transport of cytokines, IL-1, IL-2 and IL-4, from normal lymphocytes activated to the surrounding extracellular matrix, thus influencing the activity of RA. The involvement of P-glycoprotein in the transmembrane transport of cytokines can serve as a modulator of the efficacy of DMARD. It was shown that a number of lymphocytes with glycoprotein P activity is increased in patients with RA; therefore, P-glycoprotein expression could be related to the activity of RA and could be a predictor of poor response to therapy. Objective: To evaluate in RA patients, if the G2677T/A MDR1 polymorphisms is associated with differences in the rate of therapeutic response to disease-modifying antirheumatic agents in patients with rheumatoid arthritis. Material and Methods: A prospective cohort study was conducted. Fifty seven patients with RA were included. They had an active disease according to DAS-28 (score >3.2). We excluded patients receiving biological agents. All the patients were followed during 6 months in order to identify the rate of therapeutic response according to the American College of Rheumatology (ACR) criteria. At the baseline peripheral blood samples were taken in order to identify the G2677T/A MDR1 polymorphisms using PCR- Specific allele. The fragment was identified by electrophoresis in polyacrylamide gels stained with ethidium bromide. For statistical analysis, the genotypic and allelic frequencies of MDR1 gene polymorphism between responders and non-responders were determined. Chi-square tests as well as, relative risks with 95% confidence intervals (95%CI) were computed to identify differences in the risk for achieving therapeutic response. Results: RA patients had a mean age of 47.33 ± 12.52 years, 87.7% were women with a mean for DAS-28 score of 6.45 ± 1.12. At the 6 months, the rate of therapeutic response was 68.7 %. The observed genotype frequencies were: for G/G 40%, T/T 32%, A/A 19%, G/T 7% and for A/A genotype 2%. Patients with G allele developed at 6 months of treatment, higher rate for therapeutic response assessed by ACR20 compared to patients with others alleles (p=0.039). Conclusions: Patients with G allele of the - G2677T/A MDR1 polymorphisms had a higher rate of therapeutic response at 6 months with DMARD. These preliminary data support the requirement for a deep evaluation of these and other genotypes as factors that may influence the therapeutic response in RA.Keywords: pharmacogenetics, MDR1, P-glycoprotein, therapeutic response, rheumatoid arthritis
Procedia PDF Downloads 208281 Correlation Between Cytokine Levels and Lung Injury in the Syrian Hamster (Mesocricetus Auratus) Covid-19 Model
Authors: Gleb Fomin, Kairat Tabynov, Nurkeldy Turebekov, Dinara Turegeldiyeva, Rinat Islamov
Abstract:
The level of major cytokines in the blood of patients with COVID-19 varies greatly depending on age, gender, duration and severity of infection, and comorbidity. There are two clinically significant cytokines, IL-6 and TNF-α, which increase in levels in patients with severe COVID-19. However, in a model of COVID-19 in hamsters, TNF-α levels are unchanged or reduced, while the expression of other cytokines reflects the profile of cytokines found in patients’ plasma. The aim of our study was to evaluate the relationship between the level of cytokines in the blood, lungs, and lung damage in the model of the Syrian hamster (Mesocricetus auratus) infected with the SARS-CoV-2 strain. The study used outbred female and male Syrian hamsters (n=36, 4 groups) weighing 80-110 g and 5 months old (protocol IACUC, #4, 09/22/2020). Animals were infected intranasally with the hCoV-19/Kazakhstan/KazNAU-NSCEDI-481/2020 strain and euthanized at 3 d.p.i. The level of cytokines IL-6, TNF-α, IFN-α, and IFN-γ was determined by ELISA MyBioSourse (USA) for hamsters. Lung samples were subjected to histological processing. The presence of pathological changes in histological preparations was assessed on a 3-point scale. The work was carried out in the ABSL-3 laboratory. The data were analyzed in GraphPad Prism 6.00 (GraphPad Software, La Jolla, California, USA). The work was supported by the MES RK grant (AP09259865). In the blood, the level of TNF-α increased in males (p=0.0012) and IFN-γ in males and females (p=0.0001). On the contrary, IFN-α production decreased (p=0.0006). Only TNF-α level increased in lung tissues (p=0.0011). Correlation analysis showed a negative relationship between the level of IL-6 in the blood and lung damage in males (r -0.71, p=0.0001) and females (r-0.57, p=0.025). On the contrary, in males, the level of IL-6 in the lungs and score is positively correlated (r 0.80, p=0.01). The level of IFN-γ in the blood (r -0.64, p=0.035) and lungs (r-0.72, p=0.017) in males has a negative correlation with lung damage. No links were found for TNF-α and IFN-α. The study showed a positive association between lung injury and tissue levels of IL-6 in male hamsters. It is known that in humans, high concentrations of IL-6 in the lungs are associated with suppression of cellular immunity and, as a result, with an increase in the severity of COVID-19. TNF-α and IFN-γ play a key role in the pathogenesis of COVID-19 in hamsters. However, the mechanisms of their activity require more detailed study. IFN-α plays a lesser role in direct lung injury in a Syrian hamster model. We have shown the significance of tissue IL-6 and IFN-γ as predictors of the severity of lung damage in COVID-19 in the Syrian hamster model. Changes in the level of cytokines in the blood may not always reflect pathological processes in the lungs with COVID-19.Keywords: syrian hamster, COVID-19, cytokines, biological model
Procedia PDF Downloads 92280 Biofiltration Odour Removal at Wastewater Treatment Plant Using Natural Materials: Pilot Scale Studies
Authors: D. Lopes, I. I. R. Baptista, R. F. Vieira, J. Vaz, H. Varela, O. M. Freitas, V. F. Domingues, R. Jorge, C. Delerue-Matos, S. A. Figueiredo
Abstract:
Deodorization is nowadays a need in wastewater treatment plants. Nitrogen and sulphur compounds, volatile fatty acids, aldehydes and ketones are responsible for the unpleasant odours, being ammonia, hydrogen sulphide and mercaptans the most common pollutants. Although chemical treatments of the air extracted are efficient, these are more expensive than biological treatments, namely due the use of chemical reagents (commonly sulphuric acid, sodium hypochlorite and sodium hydroxide). Biofiltration offers the advantage of avoiding the use of reagents (only in some cases, nutrients are added in order to increase the treatment efficiency) and can be considered a sustainable process when the packing medium used is of natural origin. In this work the application of some natural materials locally available was studied both at laboratory and pilot scale, in a real wastewater treatment plant. The materials selected for this study were indigenous Portuguese forest materials derived from eucalyptus and pinewood, such as woodchips and bark, and coconut fiber was also used for comparison purposes. Their physico-chemical characterization was performed: density, moisture, pH, buffer and water retention capacity. Laboratory studies involved batch adsorption studies for ammonia and hydrogen sulphide removal and evaluation of microbiological activity. Four pilot-scale biofilters (1 cubic meter volume) were installed at a local wastewater treatment plant treating odours from the effluent receiving chamber. Each biofilter contained a different packing material consisting of mixtures of eucalyptus bark, pine woodchips and coconut fiber, with added buffering agents and nutrients. The odour treatment efficiency was monitored over time, as well as other operating parameters. The operation at pilot scale suggested that between the processes involved in biofiltration - adsorption, absorption and biodegradation - the first dominates at the beginning, while the biofilm is developing. When the biofilm is completely established, and the adsorption capacity of the material is reached, biodegradation becomes the most relevant odour removal mechanism. High odour and hydrogen sulphide removal efficiencies were achieved throughout the testing period (over 6 months), confirming the suitability of the materials selected, and mixtures thereof prepared, for biofiltration applications.Keywords: ammonia hydrogen sulphide and removal, biofiltration, natural materials, odour control in wastewater treatment plants
Procedia PDF Downloads 302279 Impact of Reproductive Technologies on Women's Lives in New Delhi: A Study from Feminist Perspective
Authors: Zairunisha
Abstract:
This paper is concerned with the ways in which Assisted Reproductive Technologies (ARTs) affect women’s lives and perceptions regarding their infertility, contraception and reproductive health. Like other female animals, nature has ordained human female with the biological potential of procreation and becoming mother. However, during the last few decades, this phenomenal disposition of women has become a technological affair to achieve fertility and contraception. Medical practices in patriarchal societies are governed by male scientists, technical and medical professionals who try to control women as procreator instead of providing them choices. The use of ARTs presents innumerable waxed ethical questions and issues such as: the place and role of a child in a woman’s life, freedom of women to make their choices related to use of ARTs, challenges and complexities women face at social and personal levels regarding use of ARTs, effect of ARTs on their life as mothers and other relationships. The paper is based on a survey study to explore and analyze the above ethical issues arising from the use of Assisted Reproductive Technologies (ARTs) by women in New Delhi, the capital of India. A rapid rate of increase in fertility clinics has been noticed recently. It is claimed that these clinics serve women by using ARTs procedures for infertile couples and individuals who want to have child or terminate a pregnancy. The study is an attempt to articulate a critique of ARTs from a feminist perspective. A qualitative feminist research methodology has been adopted for conducting the survey study. An attempt has been made to identify the ways in which a woman’s life is affected in terms of her perceptions, apprehensions, choices and decisions regarding new reproductive technologies. A sample of 18 women of New Delhi was taken to conduct in-depth interviews to investigate their perception and response concerning the use of ARTs with a focus on (i) successful use of ARTs, (ii) unsuccessful use of ARTs, (iii) use of ARTs in progress with results yet to be known. The survey was done to investigate the impact of ARTs on women’s physical, emotional, psychological conditions as well as on their social relations and choices. The complexities and challenges faced by women in the voluntary and involuntary (forced) use of ARTs in Delhi have been illustrated. A critical analysis of interviews revealed that these technologies are used and developed for making profits at the cost of women’s lives through which economically privileged women and individuals are able to purchase services from lesser ones. In this way, the amalgamation of technology and cultural traditions are redefining and re-conceptualising the traditional patterns of motherhood, fatherhood, kinship and family relations within the realm of new ways of reproduction introduced through the use of ARTs.Keywords: reproductive technologies, infertilities, voluntary, involuntary
Procedia PDF Downloads 373278 De novo Transcriptome Assembly of Lumpfish (Cyclopterus lumpus L.) Brain Towards Understanding their Social and Cognitive Behavioural Traits
Authors: Likith Reddy Pinninti, Fredrik Ribsskog Staven, Leslie Robert Noble, Jorge Manuel de Oliveira Fernandes, Deepti Manjari Patel, Torstein Kristensen
Abstract:
Understanding fish behavior is essential to improve animal welfare in aquaculture research. Behavioral traits can have a strong influence on fish health and habituation. To identify the genes and biological pathways responsible for lumpfish behavior, we performed an experiment to understand the interspecies relationship (mutualism) between the lumpfish and salmon. Also, we tested the correlation between the gene expression data vs. observational/physiological data to know the essential genes that trigger stress and swimming behavior in lumpfish. After the de novo assembly of the brain transcriptome, all the samples were individually mapped to the available lumpfish (Cyclopterus lumpus L.) primary genome assembly (fCycLum1.pri, GCF_009769545.1). Out of ~16749 genes expressed in brain samples, we found 267 genes to be statistically significant (P > 0.05) found only in odor and control (1), model and control (41) and salmon and control (225) groups. However, genes with |LogFC| ≥0.5 were found to be only eight; these are considered as differentially expressed genes (DEG’s). Though, we are unable to find the differential genes related to the behavioral traits from RNA-Seq data analysis. From the correlation analysis, between the gene expression data vs. observational/physiological data (serotonin (5HT), dopamine (DA), 3,4-Dihydroxyphenylacetic acid (DOPAC), 5-hydroxy indole acetic acid (5-HIAA), Noradrenaline (NORAD)). We found 2495 genes found to be significant (P > 0.05) and among these, 1587 genes are positively correlated with the Noradrenaline (NORAD) hormone group. This suggests that Noradrenaline is triggering the change in pigmentation and skin color in lumpfish. Genes related to behavioral traits like rhythmic, locomotory, feeding, visual, pigmentation, stress, response to other organisms, taxis, dopamine synthesis and other neurotransmitter synthesis-related genes were obtained from the correlation analysis. In KEGG pathway enrichment analysis, we find important pathways, like the calcium signaling pathway and adrenergic signaling in cardiomyocytes, both involved in cell signaling, behavior, emotion, and stress. Calcium is an essential signaling molecule in the brain cells; it could affect the behavior of fish. Our results suggest that changes in calcium homeostasis and adrenergic receptor binding activity lead to changes in fish behavior during stress.Keywords: behavior, De novo, lumpfish, salmon
Procedia PDF Downloads 173277 Calcium Biochemical Indicators in a Group of Schoolchildren with Low Socioeconomic Status from Barranquilla, Colombia
Authors: Carmiña L. Vargas-Zapata, María A. Conde-Sarmiento, Maria Consuelo Maestre-Vargas
Abstract:
Calcium is an essential element for good growth and development of the organism, and its requirement is increased at school age. Low socio-economic populations of developing countries such as Colombia may have food deficiency of this mineral in schoolchildren that could be reflected in calcium biochemical indicators, bone alterations and anthropometric indicators. The objective of this investigation was to evaluate some calcium biochemical indicators in a group of schoolchildren of low socioeconomic level from Barranquilla city and to correlate with body mass index. 60 schoolchildren aged 7 to 15 years were selected from Jesus’s Heart Educational Institution in Barranquilla-Atlántico, apparently healthy, without suffering from infectious or gastrointestinal diseases, without habits of drinking alcohol or smoking another hallucinogenic substance and without taking supplementation with calcium in the last six months or another substance that compromises bone metabolism. The research was approved by the ethics committee at Universidad del Atlántico. The selected children were invited to donate a blood and urine sample in a fasting time of 12 hours, the serum was separated by centrifugation and frozen at ˗20 ℃ until analyzed and the same was done with the urine sample. On the day of the biological collections, the weight and height of the students were measured to determine the nutritional status by BMI using the WHO tables. Calcium concentrations in serum and urine (SCa, UCa), alkaline phosphatase activity total and of bone origin (SAPT, SBAP) and urinary creatinine (UCr) were determined by spectrophotometric methods using commercial kits. Osteocalcin and Cross-linked N-telopeptides of type I collagen (NTx-1) in serum were measured with an enzyme-linked inmunosorbent assay. For statistical analysis the Statgraphics software Centurium XVII was used. 63% (n = 38) and 37% (n = 22) of the participants were male and female, respectively. 78% (n = 47), 5% (n = 3) and 17% (n = 10) had a normal, malnutrition and high nutritional status, respectively. The averages of evaluated indicators levels were (mean ± SD): 9.50 ± 1.06 mg/dL for SCa; 181.3 ± 64.3 U/L for SAPT, 143.8 ± 73.9 U/L for SBAP; 9.0 ± 3.48 ng/mL for osteocalcin and 101.3 ± 12.8 ng/mL for NTx-1. UCa level was 12.8 ± 7.7 mg/dL that adjusted with creatinine ranged from 0.005 to 0.395 mg/mg. Considering serum calcium values, approximately 7% of school children were hypocalcemic, 16% hypercalcemic and 77% normocalcemic. The indicators evaluated did not correlate with the BMI. Low values were observed in calcium urinary excretion and high in NTx-1, suggesting that mechanisms such as increase in renal retention of calcium and in bone remodeling may be contributing to calcium homeostasis.Keywords: calcium, calcium biochemical, indicators, school children, low socioeconomic status
Procedia PDF Downloads 112276 An Approach to Study the Biodegradation of Low Density Polyethylene Using Microbial Strains of Bacillus subtilus, Aspergillus niger, Pseudomonas fluroscence in Different Media Form and Salt Condition
Authors: Monu Ojha, Rahul Rana, Satywati Sharma, Kavya Dashora
Abstract:
The global production rate of plastics has increased enormously and global demand for polyethylene resins –High-density polyethylene (HDPE), Linear low-density polyethylene (LLDPE) and Low-density polyethylene (LDPE) is expected to rise drastically, with very high value. These get accumulated in the environment, posing a potential ecological threat as they are degrading at a very slow rate and remain in the environment indefinitely. The aim of the present study was to investigate the potential of commonly found soil microbes like Bacillus subtilus, Aspergillus niger, Pseudomonas fluroscence for their ability to biodegrade LDPE in the lab on solid and liquid media conditions as well as in presence of 1% salt in the soil. This study was conducted at Indian Institute of Technology, Delhi, India from July to September where average temperature and RH (Relative Humidity) were 33 degrees Celcius and 80% respectively. It revealed that the weight loss of LDPE strip obtained from market of approximately 4x6 cm dimensions is more in liquid broth media than in solid agar media. The percentage weight loss by P. fluroscence, A. niger and B. subtilus observed after 80 days of incubation was 15.52, 9.24 and 8.99% respectively in broth media and 6.93, 2.18 and 4.76 % in agar media. The LDPE strips from same source and on the same were subjected to soil in presence of above microbes with 1% salt (NaCl: obtained from commercial table salt) with temperature and RH 33 degree Celcius and 80%. It was found that the rate of degradation increased in the soil than under lab conditions. The rate of weight loss of LDPE strips under same conditions given in lab was found to be 32.98, 15.01 and17.09 % by P. fluroscence, A. niger and B. subtilus respectively. The breaking strength was found to be 9.65N, 29N and 23.85 N for P. fluroscence, A. niger and B. subtilus respectively. SEM analysis conducted on Zeiss EVO 50 confirmed that surface of LDPE becomes physically weak after biological treatment. There was the increase in the surface roughness indicating Surface erosion of LDPE film. FTIR (Fourier-transform infrared spectroscopy) analysis of the degraded LDPE films showed stretching of aldehyde group at 3334.92 and 3228.84 cm-1,, C–C=C symmetric of aromatic ring at 1639.49 cm-1.There was also C=O stretching of aldehyde group at 1735.93 cm-1. N=O peak bend was also observed which corresponds to 1365.60 cm-1, C–O stretching of ether group at 1217.08 and 1078.21 cm-1.Keywords: microbial degradation, LDPE, Aspergillus niger, Bacillus subtilus, Peudomonas fluroscence, common salt
Procedia PDF Downloads 165275 Folding of β-Structures via the Polarized Structure-Specific Backbone Charge (PSBC) Model
Authors: Yew Mun Yip, Dawei Zhang
Abstract:
Proteins are the biological machinery that executes specific vital functions in every cell of the human body by folding into their 3D structures. When a protein misfolds from its native structure, the machinery will malfunction and lead to misfolding diseases. Although in vitro experiments are able to conclude that the mutations of the amino acid sequence lead to incorrectly folded protein structures, these experiments are unable to decipher the folding process. Therefore, molecular dynamic (MD) simulations are employed to simulate the folding process so that our improved understanding of the folding process will enable us to contemplate better treatments for misfolding diseases. MD simulations make use of force fields to simulate the folding process of peptides. Secondary structures are formed via the hydrogen bonds formed between the backbone atoms (C, O, N, H). It is important that the hydrogen bond energy computed during the MD simulation is accurate in order to direct the folding process to the native structure. Since the atoms involved in a hydrogen bond possess very dissimilar electronegativities, the more electronegative atom will attract greater electron density from the less electronegative atom towards itself. This is known as the polarization effect. Since the polarization effect changes the electron density of the two atoms in close proximity, the atomic charges of the two atoms should also vary based on the strength of the polarization effect. However, the fixed atomic charge scheme in force fields does not account for the polarization effect. In this study, we introduce the polarized structure-specific backbone charge (PSBC) model. The PSBC model accounts for the polarization effect in MD simulation by updating the atomic charges of the backbone hydrogen bond atoms according to equations derived between the amount of charge transferred to the atom and the length of the hydrogen bond, which are calculated from quantum-mechanical calculations. Compared to other polarizable models, the PSBC model does not require quantum-mechanical calculations of the peptide simulated at every time-step of the simulation and maintains the dynamic update of atomic charges, thereby reducing the computational cost and time while accounting for the polarization effect dynamically at the same time. The PSBC model is applied to two different β-peptides, namely the Beta3s/GS peptide, a de novo designed three-stranded β-sheet whose structure is folded in vitro and studied by NMR, and the trpzip peptides, a double-stranded β-sheet where a correlation is found between the type of amino acids that constitute the β-turn and the β-propensity.Keywords: hydrogen bond, polarization effect, protein folding, PSBC
Procedia PDF Downloads 270274 Depressive-Like Behavior in a Murine Model of Colorectal Cancer Associated with Altered Cytokine Levels in Stress-Related Brain Regions
Authors: D. O. Miranda, L. R. Azevedo, J. F. C. Cordeiro, A. H. Dos Santos, S. F. Lisboa, F. S. Guimarães, G. S. Bisson
Abstract:
Background: The Colorectal cancer (CRC) is one of the most common cancers and the fourth leading cause of cancer death in the world. The prevalence of psychiatric-disorders among CRC patients, mainly depression, is high, resulting in impaired quality of life and side effects of primary treatment. High levels of proinflammatory cytokines at tumor microenvironment is a feature of CRC and the literature suggests that those mediators could contribute to the development of psychiatric disorders. Nevertheless, the ability of tumor-associated biological processes to affect the central nervous system (CNS) has only recently been explored in the context of symptoms of depression and is still not well understood. Therefore, the aim of the present study was to test the hypothesis that depressive-like behavior in an experimental model of CCR induced by N-methyl-N-nitro-N-nitrosoguanidine (MNNG) was correlated to proinflammatory profile in the periphery and in the brain. Methods: Colorectal carcinogenesis was induced in adult C57BL/6 mice (n=12) by administration of MNNG (5mg/kg, 0.1ml/intrarectal instillation) 2 times a week, for 2 week. Control group (n=12) received saline (0.1ml/intrarectal instillation). Eight weeks after beginning of MNNG administration animals were submitted to the forced swim test (FST) and the sucrose preference test for evaluation, respectively, of depressive- and anhedonia-like behaviors. After behavioral evaluation, the colon was collected and brain regions dissected (cortex-C, striatum-ST and hippocampus-HIP) for posterior evaluation of cytokine levels (IL-1β, IL-10, IL-17, and CX3CL1) by ELISA. Results: MNNG induced depressive-like behavior, represented by increased immobility time in the FST (Student t test, p < 0.05) and lower sucrose preference (Student t test, p < 0.05). Moreover, there were increased levels of IL-1β, IL-17 and CX3CL1 in the colonic tissue (Student t test, p < 0.05) and in the brain (IL-1 β in the ST and HIP, Student t test, p < 0.05; IL-17 and CX3CL1 in the C and HIP, p < 0.05). IL-10 levels, in contrast, were decreased in both the colon (p < 0.05) and the brain (C and HIP, p < 0.05). Conclusions: The results obtained in the present work support the notion that tumor growth induces neuroinflammation in stress-related brain regions and depressive-like behavior, which could be related to the high incidence of depression in colorectal carcinogenesis. This work have important clinical and research implications, taken into account that cytokine levels may be a marker promissory for the developing depression in CRC patients. New therapeutic strategies to assist in alleviating mental suffering in cancer patients might result from a better understanding of the role of cytokines in the pathophysiology of depression in these subjects.Keywords: cytokines, brain, depression, colorectal cancer
Procedia PDF Downloads 270273 Synthesized Doped TiO2 Photocatalysts for Mineralization of Quinalphos from Aqueous Streams
Authors: Nidhi Sharotri, Dhiraj Sud
Abstract:
Water pollution by pesticides constitutes a serious ecological problem due to their potential toxicity and bioaccumulation. The widespread use of pesticides in industry and agriculture along with their resistance to natural decomposition, biodegradation, chemical and photochemical degradation under typical environmental conditions has resulted in the emergence of these chemicals and their transformed products in natural water. Among AOP’s, heterogeneous photocatalysis using TiO2 as photocatalyst appears as the most emerging destructive technology for mineralization of the pollutant in aquatic streams. Among the various semiconductors (TiO2, ZnO, CdS, FeTiO3, MnTiO3, SrTiO2 and SnO2), TiO2 has proven to be the most efficient photocatalyst for environmental applications due to its biological and chemical inertness, high photo reactivity, non-toxicity, and photo stability. Semiconductor photocatalysts are characterized by an electronic band structure in which valence band and conduction band are separated by a band gap, i.e. a region of forbidden energy. Semiconductor based photocatalysts produces e-/h+ pairs which have been employed for degradation of organic pollutants. The present paper focuses on modification of TiO2 photocatalyst in order to shift its absorption edge towards longer wavelength to make it active under natural light. Semiconductor TiO2 photocatalysts was prepared by doping with anion (N), cation (Mn) and double doped (Mn, N) using greener approach. Titanium isopropoxide is used as titania precursor and ethanedithiol, hydroxyl amine hydrochloride, manganous chloride as sulphur, nitrogen and manganese precursors respectively. Synthesized doped TiO2 nanomaterials are characterized for surface morphology (SEM, TEM), crystallinity (XRD) and optical properties (absorption spectra and band gap). EPR data confirms the substitutional incorporation of Mn2+ in TiO2 lattice. The doping influences the phase transformation of rutile and anatase phase crystal and thereby the absorption spectrum changes were observed. The effect of variation of reaction parameters such as solvent, reaction time and calcination temperature on the yield, surface morphology and optical properties was also investigated. The TEM studies show the particle size of nanomaterials varies from 10-50 nm. The calculated band gap of nanomaterials varies from 2.30-2.60 eV. The photocatalytic degradation of organic pollutant organophosphate pesticide (Quinalphos) has been investigated by studying the changes in UV absorption spectrum and the promising results were obtained under visible light. The complete mineralization of quinalphos has occurred as no intermediates were recorded after 8 hrs of degradation confirmed from the HPLC studies.Keywords: quinalphos, doped-TiO2, mineralization, EPR
Procedia PDF Downloads 328272 Association of Copy Number Variation of the CHKB, KLF6, GPC1, and CHRM3 Genes with Growth Traits of Datong Yak (Bos grunniens)
Authors: Habtamu Abera Goshu, Ping Yan
Abstract:
Copy number variation (CNV) is a significant marker of the genetic and phenotypic diversity among individuals that accounts for complex quantitative traits of phenotype and diseases via modulating gene dosage, position effects, alteration of downstream pathways, modification of chromosome structure, and position within the nucleus and disrupting coding regions in the genome. Associating copy number variations (CNVs) with growth and gene expression are a powerful approach for identifying genomic characteristics that contribute to phenotypic and genotypic variation. A previous study using next-generation sequencing illustrated that the choline kinase beta (CHKB), Krüpple-like factor 6 (KLF6), glypican 1(GPC1), and cholinergic receptor muscarinic 3 (CHRM3) genes reside within copy number variable regions (CNVRs) of yak populations that overlap with quantitative trait loci (QTLs) of meat quality and growth. As a result, this research aimed to determine the association of CNVs of the KLF6, CHKB, GPC1, and CHRM3 genes with growth traits in the Datong yak breed. The association between the CNV types of the KLF6, CHKB, GPC1, and CHRM3 genes and the growth traits in the Datong yak breed was determined by one-way analysis of variance (ANOVA) using SPSS software. The CNV types were classified as a loss (a copy number of 0 or 1), gain (a copy number >2), and normal (a copy number of 2) relative to the reference gene, BTF3 in the 387 individuals of Datong yak. These results indicated that the normal CNV types of the CHKB and GPC1 genes were significantly (P<0.05) associated with high body length, height and weight, and chest girth in six-month-old and five-year-old Datong yaks. On the other hand, the loss CNV types of the KLF6 gene is significantly (P<0.05) associated with body weight and length and chest girth at six-month-old and five-year-old Datong yaks. In the contrary, the gain CNV type of the CHRM3 gene is highly (P<0.05) associated with body weight, length, height, and chest girth in six-month-old and five-year-old. This work provides the first observation of the biological role of CNVs of the CHKB, KLF6, GPC1, and CHRM3 genes in the Datong yak breed and might, therefore, provide a novel opportunity to utilize data on CNVs in designing molecular markers for the selection of animal breeding programs for larger populations of various yak breeds. Therefore, we hypothesized that this study provided inclusive information on the application of CNVs of the CHKB, KLF6, GPC1, and CHRM3 genes in growth traits in Datong yaks and its possible function in bovine species.Keywords: Copy number variation, growth traits, yak, genes
Procedia PDF Downloads 172271 Studies of Heavy Metal Ions Removal Efficiency in the Presence of Anionic Surfactant Using Ion Exchangers
Authors: Anna Wolowicz, Katarzyna Staszak, Zbigniew Hubicki
Abstract:
Nowadays heavy metal ions as well as surfactants are widely used throughout the world due to their useful properties. The consequence of such widespread use is their significant production. On the other hand, the increasing demand for surfactants and heavy metal ions results in production of large amounts of wastewaters which are discharged to the environment from mining, metal plating, pharmaceutical, cosmetic, fertilizer, paper, pesticide and electronic industries, pigments producing, petroleum refining and from autocatalyst, fibers, food, polymer industries etc. Heavy metal ions are non-biodegradable in the environment, cable of accumulation in living organisms and organs, toxic and carcinogenic. On the other hand, not only heavy metal ions but also surfactants affect the purity of water and soils. Some of surfactants are also toxic, harmful and dangerous because they are able to penetrate into surface waters causing foaming, blocked diffusion of oxygen from the atmosphere and act as emulsifiers of hydrophobic substances and increase solubility of many the dangerous pollutants. Among surfactants the anionic ones dominate and their share in the global production of surfactants is around 50 ÷ 60%. Due to the negative impact of heavy metals and surfactants on aquatic ecosystems and living organisms, removal and monitoring of their concentration in the environment is extremely important. Surfactants and heavy metal ions removal can be achieved by different biological and physicochemical methods. The adsorption as well as the ion-exchange methods play here a significant role. The aim of this study was heavy metal ions removal from aqueous solutions using different types of ion exchangers in the presence of anionic surfactants. Preliminary studies of copper(II), nickel(II), zinc(II) and cobalt(II) removal from acidic solutions using ion exchangers (Lewatit MonoPlus TP 220, Lewatit MonoPlus SR 7, Purolite A 400 TL, Purolite A 830, Purolite S 984, Dowex PSR 2, Dowex PSR3, Lewatit AF-5) allowed to select the most effective ones for the above mentioned sorbates and then to checking their removal efficiency in the presence of anionic surfactants. As it was found out Lewatit MonoPlus TP 220 of the chelating type, show the highest sorption capacities for copper(II) ions in comparison with the other ion exchangers under discussion, e.g. 9.98 mg/g (0.1 M HCl); 9.12 mg/g (6 M HCl). Moreover, cobalt(II) removal efficiency was the highest in 0.1 M HCl using also Lewatit MonoPlus TP 220 (6.9 mg/g) similar to zinc(II) (9.1 mg/g) and nickiel(II) (6.2 mg/g). As the anionic surfactant sodium dodecyl sulphate (SDS) was used and surfactant parameters such as viscosity (η), density (ρ) and critical micelle concentration (CMC) were obtained: η = 1.13 ± 0,01 mPa·s; ρ = 999.76 mg/cm3; CMC = 2.26 g/cm3. The studies of copper(II) removal from acidic solutions in the presence of SDS of different concentration show negligible effects on copper(II) removal efficiency. The sorption capacity of Cu(II) from 0.1 M acidic solution of 500 mg/L initial concentration was equal to 46.8 mg/g whereas in the presence of SDS 45.3 mg/g (0.1 mg SDS/L), 47.1 mg/g (0.5 mg SDS/L), 46.6 mg/g (1 mg SDS/L).Keywords: anionic surfactant, heavy metal ions, ion exchanger, removal
Procedia PDF Downloads 142270 Relationship between Structure of Some Nitroaromatic Pollutants and Their Degradation Kinetic Parameters in UV-VIS/TIO2 System
Authors: I. Nitoi, P. Oancea, M. Raileanu, M. Crisan, L. Constantin, I. Cristea
Abstract:
Hazardous organic compounds like nitroaromatics are frequently found in chemical and petroleum industries discharged effluents. Due to their bio-refractory character and high chemical stability cannot be efficiently removed by classical biological or physical-chemical treatment processes. In the past decades, semiconductor photocatalysis has been frequently applied for the advanced degradation of toxic pollutants. Among various semiconductors titania was a widely studied photocatalyst, due to its chemical inertness, low cost, photostability and nontoxicity. In order to improve optical absorption and photocatalytic activity of TiO2 many attempts have been made, one feasible approach consists of doping oxide semiconductor with metal. The degradation of dinitrobenzene (DNB) and dinitrotoluene (DNT) from aqueous solution under UVA-VIS irradiation using heavy metal (0.5% Fe, 1%Co, 1%Ni ) doped titania was investigated. The photodegradation experiments were carried out using a Heraeus laboratory scale UV-VIS reactor equipped with a medium-pressure mercury lamp which emits in the range: 320-500 nm. Solutions with (0.34-3.14) x 10-4 M pollutant content were photo-oxidized in the following working conditions: pH = 5-9; photocatalyst dose = 200 mg/L; irradiation time = 30 – 240 minutes. Prior to irradiation, the photocatalyst powder was added to the samples, and solutions were bubbled with air (50 L/hour), in the dark, for 30 min. Dopant type, pH, structure and initial pollutant concentration influence on the degradation efficiency were evaluated in order to set up the optimal working conditions which assure substrate advanced degradation. The kinetics of nitroaromatics degradation and organic nitrogen mineralization was assessed and pseudo-first order rate constants were calculated. Fe doped photocatalyst with lowest metal content (0.5 wt.%) showed a considerable better behaviour in respect to pollutant degradation than Co and Ni (1wt.%) doped titania catalysts. For the same working conditions, degradation efficiency was higher for DNT than DNB in accordance with their calculated adsobance constants (Kad), taking into account that degradation process occurs on catalyst surface following a Langmuir-Hinshalwood model. The presence of methyl group in the structure of DNT allows its degradation by oxidative and reductive pathways, while DNB is converted only by reductive route, which also explain the highest DNT degradation efficiency. For highest pollutant concentration tested (3 x 10-4 M), optimum working conditions (0.5 wt.% Fe doped –TiO2 loading of 200 mg/L, pH=7 and 240 min. irradiation time) assures advanced nitroaromatics degradation (ηDNB=89%, ηDNT=94%) and organic nitrogen mineralization (ηDNB=44%, ηDNT=47%).Keywords: hazardous organic compounds, irradiation, nitroaromatics, photocatalysis
Procedia PDF Downloads 317269 Stochastic Pi Calculus in Financial Markets: An Alternate Approach to High Frequency Trading
Authors: Jerome Joshi
Abstract:
The paper presents the modelling of financial markets using the Stochastic Pi Calculus model. The Stochastic Pi Calculus model is mainly used for biological applications; however, the feature of this model promotes its use in financial markets, more prominently in high frequency trading. The trading system can be broadly classified into exchange, market makers or intermediary traders and fundamental traders. The exchange is where the action of the trade is executed, and the two types of traders act as market participants in the exchange. High frequency trading, with its complex networks and numerous market participants (intermediary and fundamental traders) poses a difficulty while modelling. It involves the participants to seek the advantage of complex trading algorithms and high execution speeds to carry out large volumes of trades. To earn profits from each trade, the trader must be at the top of the order book quite frequently by executing or processing multiple trades simultaneously. This would require highly automated systems as well as the right sentiment to outperform other traders. However, always being at the top of the book is also not best for the trader, since it was the reason for the outbreak of the ‘Hot – Potato Effect,’ which in turn demands for a better and more efficient model. The characteristics of the model should be such that it should be flexible and have diverse applications. Therefore, a model which has its application in a similar field characterized by such difficulty should be chosen. It should also be flexible in its simulation so that it can be further extended and adapted for future research as well as be equipped with certain tools so that it can be perfectly used in the field of finance. In this case, the Stochastic Pi Calculus model seems to be an ideal fit for financial applications, owing to its expertise in the field of biology. It is an extension of the original Pi Calculus model and acts as a solution and an alternative to the previously flawed algorithm, provided the application of this model is further extended. This model would focus on solving the problem which led to the ‘Flash Crash’ which is the ‘Hot –Potato Effect.’ The model consists of small sub-systems, which can be integrated to form a large system. It is designed in way such that the behavior of ‘noise traders’ is considered as a random process or noise in the system. While modelling, to get a better understanding of the problem, a broader picture is taken into consideration with the trader, the system, and the market participants. The paper goes on to explain trading in exchanges, types of traders, high frequency trading, ‘Flash Crash,’ ‘Hot-Potato Effect,’ evaluation of orders and time delay in further detail. For the future, there is a need to focus on the calibration of the module so that they would interact perfectly with other modules. This model, with its application extended, would provide a basis for researchers for further research in the field of finance and computing.Keywords: concurrent computing, high frequency trading, financial markets, stochastic pi calculus
Procedia PDF Downloads 77268 Role of Indigenous Peoples in Climate Change
Authors: Neelam Kadyan, Pratima Ranga, Yogender
Abstract:
Indigenous people are the One who are affected by the climate change the most, although there have contributed little to its causes. This is largely a result of their historic dependence on local biological diversity, ecosystem services and cultural landscapes as a source of their sustenance and well-being. Comprising only four percent of the world’s population they utilize 22 percent of the world’s land surface. Despite their high exposure-sensitivity indigenous peoples and local communities are actively responding to changing climatic conditions and have demonstrated their resourcefulness and resilience in the face of climate change. Traditional Indigenous territories encompass up to 22 percent of the world’s land surface and they coincide with areas that hold 80 percent of the planet’s biodiversity. Also, the greatest diversity of indigenous groups coincides with the world’s largest tropical forest wilderness areas in the Americas (including Amazon), Africa, and Asia, and 11 percent of world forest lands are legally owned by Indigenous Peoples and communities. This convergence of biodiversity-significant areas and indigenous territories presents an enormous opportunity to expand efforts to conserve biodiversity beyond parks, which tend to benefit from most of the funding for biodiversity conservation. Tapping on Ancestral Knowledge Indigenous Peoples are carriers of ancestral knowledge and wisdom about this biodiversity. Their effective participation in biodiversity conservation programs as experts in protecting and managing biodiversity and natural resources would result in more comprehensive and cost effective conservation and management of biodiversity worldwide. Addressing the Climate Change Agenda Indigenous Peoples has played a key role in climate change mitigation and adaptation. The territories of indigenous groups who have been given the rights to their lands have been better conserved than the adjacent lands (i.e., Brazil, Colombia, Nicaragua, etc.). Preserving large extensions of forests would not only support the climate change objectives, but it would respect the rights of Indigenous Peoples and conserve biodiversity as well. A climate change agenda fully involving Indigenous Peoples has many more benefits than if only government and/or the private sector are involved. Indigenous peoples are some of the most vulnerable groups to the negative effects of climate change. Also, they are a source of knowledge to the many solutions that will be needed to avoid or ameliorate those effects. For example, ancestral territories often provide excellent examples of a landscape design that can resist the negatives effects of climate change. Over the millennia, Indigenous Peoples have developed adaptation models to climate change. They have also developed genetic varieties of medicinal and useful plants and animal breeds with a wider natural range of resistance to climatic and ecological variability.Keywords: ancestral knowledge, cost effective conservation, management, indigenous peoples, climate change
Procedia PDF Downloads 677267 Degradation Kinetics of Cardiovascular Implants Employing Full Blood and Extra-Corporeal Circulation Principles: Mimicking the Human Circulation In vitro
Authors: Sara R. Knigge, Sugat R. Tuladhar, Hans-Klaus HöFfler, Tobias Schilling, Tim Kaufeld, Axel Haverich
Abstract:
Tissue engineered (TE) heart valves based on degradable electrospun fiber scaffold represent a promising approach to overcome the known limitations of mechanical or biological prostheses. But the mechanical stress in the high-pressure system of the human circulation is a severe challenge for the delicate materials. Hence, the prediction of the scaffolds` in vivo degradation kinetics must be as accurate as possible to prevent fatal events in future animal or even clinical trials. Therefore, this study investigates whether long-term testing in full blood provides more meaningful results regarding the degradation behavior than conventional tests in simulated body fluids (SBF) or Phosphate Buffered Saline (PBS). Fiber mats were produced from a polycaprolactone (PCL)/tetrafluoroethylene solution by electrospinning. The morphology of the fiber mats was characterized via scanning electron microscopy (SEM). A maximum physiological degradation environment utilizing a test set-up with porcine full blood was established. The set-up consists of a reaction vessel, an oxygenator unit, and a roller pump. The blood parameters (pO2, pCO2, temperature, and pH) were monitored with an online test system. All tests were also carried out in the test circuit with SBF and PBS to compare conventional degradation media with the novel full blood setting. The polymer's degradation is quantified by SEM picture analysis, differential scanning calorimetry (DSC), and Raman spectroscopy. Tensile and cyclic loading tests were performed to evaluate the mechanical integrity of the scaffold. Preliminary results indicate that PCL degraded slower in full blood than in SBF and PBS. The uptake of water is more pronounced in the full blood group. Also, PCL preserved its mechanical integrity longer when degraded in full blood. Protein absorption increased during the degradation process. Red blood cells, platelets, and their aggregates adhered on the PCL. Presumably, the degradation led to a more hydrophilic polymeric surface which promoted the protein adsorption and the blood cell adhesion. Testing degradable implants in full blood allows for developing more reliable scaffold materials in the future. Material tests in small and large animal trials thereby can be focused on testing candidates that have proven to function well in an in-vivo-like setting.Keywords: Electrospun scaffold, full blood degradation test, long-term polymer degradation, tissue engineered aortic heart valve
Procedia PDF Downloads 150266 Controlling the Release of Cyt C and L- Dopa from pNIPAM-AAc Nanogel Based Systems
Authors: Sulalit Bandyopadhyay, Muhammad Awais Ashfaq Alvi, Anuvansh Sharma, Wilhelm R. Glomm
Abstract:
Release of drugs from nanogels and nanogel-based systems can occur under the influence of external stimuli like temperature, pH, magnetic fields and so on. pNIPAm-AAc nanogels respond to the combined action of both temperature and pH, the former being mostly determined by hydrophilic-to-hydrophobic transitions above the volume phase transition temperature (VPTT), while the latter is controlled by the degree of protonation of the carboxylic acid groups. These nanogels based systems are promising candidates in the field of drug delivery. Combining nanogels with magneto-plasmonic nanoparticles (NPs) introduce imaging and targeting modalities along with stimuli-response in one hybrid system, thereby incorporating multifunctionality. Fe@Au core-shell NPs possess optical signature in the visible spectrum owing to localized surface plasmon resonance (LSPR) of the Au shell, and superparamagnetic properties stemming from the Fe core. Although there exist several synthesis methods to control the size and physico-chemical properties of pNIPAm-AAc nanogels, yet, there is no comprehensive study that highlights the dependence of incorporation of one or more layers of NPs to these nanogels. In addition, effective determination of volume phase transition temperature (VPTT) of the nanogels is a challenge which complicates their uses in biological applications. Here, we have modified the swelling-collapse properties of pNIPAm-AAc nanogels, by combining with Fe@Au NPs using different solution based methods. The hydrophilic-hydrophobic transition of the nanogels above the VPTT has been confirmed to be reversible. Further, an analytical method has been developed to deduce the average VPTT which is found to be 37.3°C for the nanogels and 39.3°C for nanogel coated Fe@Au NPs. An opposite swelling –collapse behaviour is observed for the latter where the Fe@Au NPs act as bridge molecules pulling together the gelling units. Thereafter, Cyt C, a model protein drug and L-Dopa, a drug used in the clinical treatment of Parkinson’s disease were loaded separately into the nanogels and nanogel coated Fe@Au NPs, using a modified breathing-in mechanism. This gave high loading and encapsulation efficiencies (L Dopa: ~9% and 70µg/mg of nanogels, Cyt C: ~30% and 10µg/mg of nanogels respectively for both the drugs. The release kinetics of L-Dopa, monitored using UV-vis spectrophotometry was observed to be rather slow (over several hours) with highest release happening under a combination of high temperature (above VPTT) and acidic conditions. However, the release of L-Dopa from nanogel coated Fe@Au NPs was the fastest, accounting for release of almost 87% of the initially loaded drug in ~30 hours. The chemical structure of the drug, drug incorporation method, location of the drug and presence of Fe@Au NPs largely alter the drug release mechanism and the kinetics of these nanogels and Fe@Au NPs coated with nanogels.Keywords: controlled release, nanogels, volume phase transition temperature, l-dopa
Procedia PDF Downloads 331265 STR and SNP Markers of Y-Chromosome Unveil Similarity between the Gene Pool of Kurds and Yezidis
Authors: M. Chukhryaeva, R. Skhalyakho, J. Kagazegeva, E. Pocheshkhova, L. Yepiskopossyan, O. Balanovsky, E. Balanovska
Abstract:
The Middle East is crossroad of different populations at different times. The Kurds are of particular interest in this region. Historical sources suggested that the origin of the Kurds is associated with Medes. Therefore, it was especially interesting to compare gene pool of Kurds with other supposed descendants of Medes-Tats. Yezidis are ethno confessional group of Kurds. Yezidism as a confessional teaching was formed in the XI-XIII centuries in Iraq. Yezidism has caused reproductively isolation of Yezidis from neighboring populations for centuries. Also, isolation helps to retain Yezidian caste system. It is unknown how the history of Yezidis affected its genу pool because it has never been the object of researching. We have examined the Y-chromosome variation in Yezidis and Kurdish males to understand their gene pool. We collected DNA samples from 90 Yezidi males and 24 Kurdish males together with their pedigrees. We performed Y-STR analysis of 17 loci in the samples collected (Yfiler system from Applied Biosystems) and analysis of 42 Y-SNPs by real-time PCR. We compared our data with published data from other Kurdish groups and from European, Caucasian, and West Asian populations. We found that gene pool of Yezidis contains haplogroups common in the Middle East (J-M172(xM67,M12)- 24%, E-M35(xM78)- 9%) and in South Western Asia (R-M124- 8%) and variant with wide distribution area - R-M198(xM458- 9%). The gene pool of Kurdish has higher genetic diversity than Yezidis. Their dominants haplogroups are R-M198- 20,3 %, E-M35- 9%, J-M172- 9%. Multidimensional scaling also shows that the Kurds and Yezidis are part of the same frontier Asian cluster, which, in addition, included Armenians, Iranians, Turks, and Greeks. At the same time, the peoples of the Caucasus and Europe form isolated clusters that do not overlap with the Asian clusters. It is noteworthy that Kurds from our study gravitate towards Tats, which indicates that most likely these two populations are descendants of ancient Medes population. Multidimensional scaling also reveals similarity between gene pool of Yezidis, Kurds with Armenians and Iranians. The analysis of Yezidis pedigrees and their STR variability did not reveal a reliable connection between genetic diversity and caste system. This indicates that the Yezidis caste system is a social division and not a biological one. Thus, we showed that, despite many years of isolation, the gene pool of Yezidis retained a common layer with the gene pool of Kurds, these populations have common spectrum of haplogroups, but Yezidis have lower genetic diversity than Kurds. This study received primary support from the RSF grant No. 16-36-00122 to MC and grant No. 16-06-00364 to EP.Keywords: gene pool, haplogroup, Kurds, SNP and STR markers, Yezidis
Procedia PDF Downloads 205264 Developing Methodology of Constructing the Unified Action Plan for External and Internal Risks in University
Authors: Keiko Tamura, Munenari Inoguchi, Michiyo Tsuji
Abstract:
When disasters occur, in order to raise the speed of each decision making and response, it is common that delegation of authority is carried out. This tendency is particularly evident when the department or branch of the organization are separated by the physical distance from the main body; however, there are some issues to think about. If the department or branch is too dependent on the head office in the usual condition, they might feel lost in the disaster response operation when they are face to the situation. Avoiding this problem, an organization should decide how to delegate the authority and also who accept the responsibility for what before the disaster. This paper will discuss about the method which presents an approach for executing the delegation of authority process, implementing authorities, management by objectives, and preparedness plans and agreement. The paper will introduce the examples of efforts for the three research centers of Niigata University, Japan to arrange organizations capable of taking necessary actions for disaster response. Each center has a quality all its own. One is the center for carrying out the research in order to conserve the crested ibis (or Toki birds in Japanese), the endangered species. The another is the marine biological laboratory. The third one is very unique because of the old growth forests maintained as the experimental field. Those research centers are in the Sado Island, located off the coast of Niigata Prefecture, is Japan's second largest island after Okinawa and is known for possessing a rich history and culture. It takes 65 minutes jetfoil (high-speed ferry) ride to get to Sado Island from the mainland. The three centers are expected to be easily isolated at the time of a disaster. A sense of urgency encourages 3 centers in the process of organizational restructuring for enhancing resilience. The research team from the risk management headquarters offer those procedures; Step 1: Offer the hazard scenario based on the scientific evidence, Step 2: Design a risk management organization for disaster response function, Step 3: Conduct the participatory approach to make consensus about the overarching objectives, Step 4: Construct the unified operational action plan for 3 centers, Step 5: Simulate how to respond in each phase based on the understanding the various phases of the timeline of a disaster. Step 6: Document results to measure performance and facilitate corrective action. This paper shows the result of verifying the output and effects.Keywords: delegation of authority, disaster response, risk management, unified command
Procedia PDF Downloads 125263 Effect of Chronic Exposure to Diazinon on Glucose Homeostasis and Oxidative Stress in Pancreas of Rats and the Potential Role of Mesna in Ameliorating This Effect
Authors: Azza El-Medany, Jamila El-Medany
Abstract:
Residential and agricultural pesticide use is widespread in the world. Their extensive and indiscriminative use, in addition with their ability to interact with biological systems other than their primary targets constitute a health hazards to both humans and animals. The toxic effects of pesticides include alterations in metabolism; there is a lack of knowledge that organophosphates can cause pancreatic toxicity. The primary goal of this work is to study the effects of chronic exposure to Diazinon an organophosphate used in agriculture on pancreatic tissues and evaluate the ameliorating effect of Mesna as antioxidant on the toxicity of Diazinon on pancreatic tissues.40 adult male rats, their weight ranged between 300-350 g. The rats were classified into three groups; control (10 rats) was received corn oil at a dose of 1 0 mg/kg/day by gavage once a day for 2 months. Diazinon (15 rats) was received Diazinon at a dose of 10 mg/kg/day dissolved in corn oil by gavage once a day for 2 months. Treated group (15 rats), were received Mesna 180mg/kg once a week by gavage 15 minutes before administration of Diazinon for 2 months. At the end of the experiment, animals were anesthetized, blood samples were taken by cardiac puncture for glucose and insulin assays and pancreas was removed and divided into 3 portions; first portion for histopathological study; second portion for ultrastructural study; third portion for biochemical study using Elisa Kits including determination of malondialdehyde (MDA), tumor necrosis factor α (TNF-α), myeloperoxidase activity (MPO), interleukin 1β (IL-1β). A significant increase in the levels of MDA, TNF-α, MPO activity, IL-1β, serum glucose levels in the toxicated group with Diazinon were observed, while a significant reduction was noticed in GSH in serum insulin levels. After treatment with Mesna a significant reduction was observed in the previously mentioned parameters except that there was a significant rise in GSH in insulin levels. Histopathological and ultra-structural studies showed destruction in pancreatic tissues and β cells were the most affected cells among the injured islets as compared with the control group. The current study try to spot light about the effects of chronic exposure to pesticides on vital organs as pancreas also the role of oxidative stress that may be induced by them in evoking their toxicity. This study shows the role of antioxidant drugs in ameliorating or preventing the toxicity. This appears to be a promising approach that may be considered as a complementary treatment of pesticide toxicity.Keywords: Diazinon, reduced glutathione, myeloperoxidase activity, tumor necrosis factor α, Mesna
Procedia PDF Downloads 242262 Bioinformatic Strategies for the Production of Glycoproteins in Algae
Authors: Fadi Saleh, Çığdem Sezer Zhmurov
Abstract:
Biopharmaceuticals represent one of the wildest developing fields within biotechnology, and the biological macromolecules being produced inside cells have a variety of applications for therapies. In the past, mammalian cells, especially CHO cells, have been employed in the production of biopharmaceuticals. This is because these cells can achieve human-like completion of PTM. These systems, however, carry apparent disadvantages like high production costs, vulnerability to contamination, and limitations in scalability. This research is focused on the utilization of microalgae as a bioreactor system for the synthesis of biopharmaceutical glycoproteins in relation to PTMs, particularly N-glycosylation. The research points to a growing interest in microalgae as a potential substitute for more conventional expression systems. A number of advantages exist in the use of microalgae, including rapid growth rates, the lack of common human pathogens, controlled scalability in bioreactors, and the ability of some PTMs to take place. Thus, the potential of microalgae to produce recombinant proteins with favorable characteristics makes this a promising platform in order to produce biopharmaceuticals. The study focuses on the examination of the N-glycosylation pathways across different species of microalgae. This investigation is important as N-glycosylation—the process by which carbohydrate groups are linked to proteins—profoundly influences the stability, activity, and general performance of glycoproteins. Additionally, bioinformatics methodologies are employed to explain the genetic pathways implicated in N-glycosylation within microalgae, with the intention of modifying these organisms to produce glycoproteins suitable for human consumption. In this way, the present comparative analysis of the N-glycosylation pathway in humans and microalgae can be used to bridge both systems in order to produce biopharmaceuticals with humanized glycosylation profiles within the microalgal organisms. The results of the research underline microalgae's potential to help improve some of the limitations associated with traditional biopharmaceutical production systems. The study may help in the creation of a cost-effective and scale-up means of producing quality biopharmaceuticals by modifying microalgae genetically to produce glycoproteins with N-glycosylation that is compatible with humans. Improvements in effectiveness will benefit biopharmaceutical production and the biopharmaceutical sector with this novel, green, and efficient expression platform. This thesis, therefore, is thorough research into the viability of microalgae as an efficient platform for producing biopharmaceutical glycoproteins. Based on the in-depth bioinformatic analysis of microalgal N-glycosylation pathways, a platform for their engineering to produce human-compatible glycoproteins is set out in this work. The findings obtained in this research will have significant implications for the biopharmaceutical industry by opening up a new way of developing safer, more efficient, and economically more feasible biopharmaceutical manufacturing platforms.Keywords: microalgae, glycoproteins, post-translational modification, genome
Procedia PDF Downloads 24261 Identifying Protein-Coding and Non-Coding Regions in Transcriptomes
Authors: Angela U. Makolo
Abstract:
Protein-coding and Non-coding regions determine the biology of a sequenced transcriptome. Research advances have shown that Non-coding regions are important in disease progression and clinical diagnosis. Existing bioinformatics tools have been targeted towards Protein-coding regions alone. Therefore, there are challenges associated with gaining biological insights from transcriptome sequence data. These tools are also limited to computationally intensive sequence alignment, which is inadequate and less accurate to identify both Protein-coding and Non-coding regions. Alignment-free techniques can overcome the limitation of identifying both regions. Therefore, this study was designed to develop an efficient sequence alignment-free model for identifying both Protein-coding and Non-coding regions in sequenced transcriptomes. Feature grouping and randomization procedures were applied to the input transcriptomes (37,503 data points). Successive iterations were carried out to compute the gradient vector that converged the developed Protein-coding and Non-coding Region Identifier (PNRI) model to the approximate coefficient vector. The logistic regression algorithm was used with a sigmoid activation function. A parameter vector was estimated for every sample in 37,503 data points in a bid to reduce the generalization error and cost. Maximum Likelihood Estimation (MLE) was used for parameter estimation by taking the log-likelihood of six features and combining them into a summation function. Dynamic thresholding was used to classify the Protein-coding and Non-coding regions, and the Receiver Operating Characteristic (ROC) curve was determined. The generalization performance of PNRI was determined in terms of F1 score, accuracy, sensitivity, and specificity. The average generalization performance of PNRI was determined using a benchmark of multi-species organisms. The generalization error for identifying Protein-coding and Non-coding regions decreased from 0.514 to 0.508 and to 0.378, respectively, after three iterations. The cost (difference between the predicted and the actual outcome) also decreased from 1.446 to 0.842 and to 0.718, respectively, for the first, second and third iterations. The iterations terminated at the 390th epoch, having an error of 0.036 and a cost of 0.316. The computed elements of the parameter vector that maximized the objective function were 0.043, 0.519, 0.715, 0.878, 1.157, and 2.575. The PNRI gave an ROC of 0.97, indicating an improved predictive ability. The PNRI identified both Protein-coding and Non-coding regions with an F1 score of 0.970, accuracy (0.969), sensitivity (0.966), and specificity of 0.973. Using 13 non-human multi-species model organisms, the average generalization performance of the traditional method was 74.4%, while that of the developed model was 85.2%, thereby making the developed model better in the identification of Protein-coding and Non-coding regions in transcriptomes. The developed Protein-coding and Non-coding region identifier model efficiently identified the Protein-coding and Non-coding transcriptomic regions. It could be used in genome annotation and in the analysis of transcriptomes.Keywords: sequence alignment-free model, dynamic thresholding classification, input randomization, genome annotation
Procedia PDF Downloads 68260 Comparison between Conventional Bacterial and Algal-Bacterial Aerobic Granular Sludge Systems in the Treatment of Saline Wastewater
Authors: Philip Semaha, Zhongfang Lei, Ziwen Zhao, Sen Liu, Zhenya Zhang, Kazuya Shimizu
Abstract:
The increasing generation of saline wastewater through various industrial activities is becoming a global concern for activated sludge (AS) based biological treatment which is widely applied in wastewater treatment plants (WWTPs). As for the AS process, an increase in wastewater salinity has negative impact on its overall performance. The advent of conventional aerobic granular sludge (AGS) or bacterial AGS biotechnology has gained much attention because of its superior performance. The development of algal-bacterial AGS could enhance better nutrients removal, potentially reduce aeration cost through symbiotic algae-bacterial activity, and thus, can also reduce overall treatment cost. Nonetheless, the potential of salt stress to decrease biomass growth, microbial activity and nutrient removal exist. Up to the present, little information is available on saline wastewater treatment by algal-bacterial AGS. To the authors’ best knowledge, a comparison of the two AGS systems has not been done to evaluate nutrients removal capacity in the context of salinity increase. This study sought to figure out the impact of salinity on the algal-bacterial AGS system in comparison to bacterial AGS one, contributing to the application of AGS technology in the real world of saline wastewater treatment. In this study, the salt concentrations tested were 0 g/L, 1 g/L, 5 g/L, 10 g/L and 15 g/L of NaCl with 24-hr artificial illuminance of approximately 97.2 µmol m¯²s¯¹, and mature bacterial and algal-bacterial AGS were used for the operation of two identical sequencing batch reactors (SBRs) with a working volume of 0.9 L each, respectively. The results showed that salinity increase caused no apparent change in the color of bacterial AGS; while for algal-bacterial AGS, its color was progressively changed from green to dark green. A consequent increase in granule diameter and fluffiness was observed in the bacterial AGS reactor with the increase of salinity in comparison to a decrease in algal-bacterial AGS diameter. However, nitrite accumulation peaked from 1.0 mg/L and 0.4 mg/L at 1 g/L NaCl in the bacterial and algal-bacterial AGS systems, respectively to 9.8 mg/L in both systems when NaCl concentration varied from 5 g/L to 15 g/L. Almost no ammonia nitrogen was detected in the effluent except at 10 g/L NaCl concentration, where it averaged 4.2 mg/L and 2.4 mg/L, respectively, in the bacterial and algal-bacterial AGS systems. Nutrients removal in the algal-bacterial system was relatively higher than the bacterial AGS in terms of nitrogen and phosphorus removals. Nonetheless, the nutrient removal rate was almost 50% or lower. Results show that algal-bacterial AGS is more adaptable to salinity increase and could be more suitable for saline wastewater treatment. Optimization of operation conditions for algal-bacterial AGS system would be important to ensure its stably high efficiency in practice.Keywords: algal-bacterial aerobic granular sludge, bacterial aerobic granular sludge, Nutrients removal, saline wastewater, sequencing batch reactor
Procedia PDF Downloads 148259 Change of Substrate in Solid State Fermentation Can Produce Proteases and Phytases with Extremely Distinct Biochemical Characteristics and Promising Applications for Animal Nutrition
Authors: Paula K. Novelli, Margarida M. Barros, Luciana F. Flueri
Abstract:
Utilization of agricultural by-products, wheat ban and soybean bran, as substrate for solid state fermentation (SSF) was studied, aiming the achievement of different enzymes from Aspergillus sp. with distinct biological characteristics and its application and improvement on animal nutrition. Aspergillus niger and Aspergillus oryzea were studied as they showed very high yield of phytase and protease production, respectively. Phytase activity was measure using p-nitrophenilphosphate as substrate and a standard curve of p-nitrophenol, as the enzymatic activity unit was the quantity of enzyme necessary to release one μmol of p-nitrophenol. Protease activity was measure using azocasein as substrate. Activity for phytase and protease substantially increased when the different biochemical characteristics were considered in the study. Optimum pH and stability of the phytase produced by A. niger with wheat bran as substrate was between 4.0 - 5.0 and optimum temperature of activity was 37oC. Phytase fermented in soybean bran showed constant values at all pHs studied, for optimal and stability, but low production. Phytase with both substrates showed stable activity for temperatures higher than 80oC. Protease from A. niger showed very distinct behavior of optimum pH, acid for wheat bran and basic for soybean bran, respectively and optimal values of temperature and stability at 50oC. Phytase produced by A. oryzae in wheat bran had optimum pH and temperature of 9 and 37oC, respectively, but it was very unstable. On the other hand, proteases were stable at high temperatures, all pH’s studied and showed very high yield when fermented in wheat bran, however when it was fermented in soybean bran the production was very low. Subsequently the upscale production of phytase from A. niger and proteases from A. oryzae were applied as an enzyme additive in fish fed for digestibility studies. Phytases and proteases were produced with stable enzyme activity of 7,000 U.g-1 and 2,500 U.g-1, respectively. When those enzymes were applied in a plant protein based fish diet for digestibility studies, they increased protein, mineral, energy and lipids availability, showing that these new enzymes can improve animal production and performance. In conclusion, the substrate, as well as, the microorganism species can affect the biochemical character of the enzyme produced. Moreover, the production of these enzymes by SSF can be up to 90% cheaper than commercial ones produced with the same fungi species but submerged fermentation. Add to that these cheap enzymes can be easily applied as animal diet additives to improve production and performance.Keywords: agricultural by-products, animal nutrition, enzymes production, solid state fermentation
Procedia PDF Downloads 326258 Effect of Climate Changing Pattern on Aquatic Biodiversity of Bhimtal Lake at Kumaun Himalaya (India)
Authors: Davendra S. Malik
Abstract:
Bhimtal lake is located between 290 21’ N latitude and 790 24’ E longitude, at an elevation of 1332m above mean sea level in the Kumaun region of Uttarakhand of Indian subcontinent. The lake surface area is decreasing in water area, depth level in relation to ecological and biological characteristics due to climatic variations, invasive land use pattern, degraded forest zones and changed agriculture pattern in lake catchment basin. The present study is focused on long and short term effects of climate change on aquatic biodiversity and productivity of Bhimtal lake. The meteorological data of last fifteen years of Bhimtal lake catchment basin revealed that air temperature has been increased 1.5 to 2.1oC in summer, 0.2 to 0.8 C in winter, relative humidity increased 4 to 6% in summer and rainfall pattern changed erratically in rainy seasons. The surface water temperature of Bhimtal lake showed an increasing pattern as 0.8 to 2.6 C, pH value decreased 0.5 to 0.2 in winter and increased 0.4 to 0.6 in summer. Dissolved oxygen level in lake showed a decreasing trend as 0.7 to 0.4mg/l in winter months. The mesotrophic nature of Bhimtal lake is changing towards eutrophic conditions and contributed for decreasing biodiversity. The aquatic biodiversity of Bhimtal lake consisted mainly phytoplankton, zooplankton, benthos and fish species. In the present study, a total of 5 groups of phytoplankton, 3 groups of zooplankton, 11 groups of benthos and 15 fish species were recorded from Bhimtal lake. The comparative data of biodiversity of Bhimtal lake since January, 2000 indicated the changing pattern of phytoplankton biomass were decreasing as 1.99 and 1.08% of Chlorophyceae and Bacilleriophyceae families respectively. The biomass of Cynophyceae was increasing as 0.45% and contributing the algal blooms during summer season in lake. The biomass of zooplankton and benthos were found decreasing in winter season and increasing during summer season. The endemic fish species (18 no.) were found in year 2000-05, as while the fish species (15 no.) were recorded in present study. The relative fecundity of major fish species were observed decreasing trends during their breeding periods in lake. The natural and anthropogenic factors were identified as ecological threats for existing aquatic biodiversity of Bhimtal lake. The present research paper emphasized on the effect of changing pattern of different climatic variables on species composition, biomass of phytoplankton, zooplankton, benthos, and fishes in Bhimtal lake of Kumaun region. The present research data will be contributed significantly to assess the changing pattern of aquatic biodiversity and productivity of Bhimtal lake with different time scale.Keywords: aquatic biodiversity, Bhimtal lake, climate change, lake ecology
Procedia PDF Downloads 221257 The Correspondence between Self-regulated Learning, Learning Efficiency and Frequency of ICT Use
Authors: Maria David, Tunde A. Tasko, Katalin Hejja-Nagy, Laszlo Dorner
Abstract:
The authors have been concerned with research on learning since 1998. Recently, the focus of our interest is how prevalent use of information and communication technology (ICT) influences students' learning abilities, skills of self-regulated learning and learning efficiency. Nowadays, there are three dominant theories about the psychic effects of ICT use: According to social optimists, modern ICT devices have a positive effect on thinking. As to social pessimists, this effect is rather negative. And, regarding the views of biological optimists, the change is obvious, but these changes can fit into the mankind's evolved neurological system as did writing long ago. Mentality of 'digital natives' differ from that of elder people. They process information coming from the outside world in an other way, and different experiences result in different cerebral conformation. In this regard, researchers report about both positive and negative effects of ICT use. According to several studies, it has a positive effect on cognitive skills, intelligence, school efficiency, development of self-regulated learning, and self-esteem regarding learning. It is also proven, that computers improve skills of visual intelligence such as spacial orientation, iconic skills and visual attention. Among negative effects of frequent ICT use, researchers mention the decrease of critical thinking, as permanent flow of information does not give scope for deeper cognitive processing. Aims of our present study were to uncover developmental characteristics of self-regulated learning in different age groups and to study correlations of learning efficiency, the level of self-regulated learning and frequency of use of computers. Our subjects (N=1600) were primary and secondary school students and university students. We studied four age groups (age 10, 14, 18, 22), 400 subjects of each. We used the following methods: the research team developed a questionnaire for measuring level of self-regulated learning and a questionnaire for measuring ICT use, and we used documentary analysis to gain information about grade point average (GPA) and results of competence-measures. Finally, we used computer tasks to measure cognitive abilities. Data is currently under analysis, but as to our preliminary results, frequent use of computers results in shorter response time regarding every age groups. Our results show that an ordinary extent of ICT use tend to increase reading competence, and had a positive effect on students' abilities, though it didn't show relationship with school marks (GPA). As time passes, GPA gets worse along with the learning material getting more and more difficult. This phenomenon draws attention to the fact that students are unable to switch from guided to independent learning, so it is important to consciously develop skills of self-regulated learning.Keywords: digital natives, ICT, learning efficiency, reading competence, self-regulated learning
Procedia PDF Downloads 361256 Effect of Fermented Orange Juice Intake on Urinary 6‑Sulfatoxymelatonin in Healthy Volunteers
Authors: I. Cerrillo, A. Carrillo-Vico, M. A. Ortega, B. Escudero-López, N. Álvarez-Sánchez, F. Martín, M. S. Fernández-Pachón
Abstract:
Melatonin is a bioactive compound involved in multiple biological activities such as glucose tolerance, circadian rhythm regulation, antioxidant defense or immune system action. In elderly subjects the intake of foods and drinks rich in melatonin is very important due to its endogenous level decreases with age. Alcoholic fermentation is a process carried out in fruits, vegetables and legumes to obtain new products with improved bioactive compounds profile in relation to original substrates. Alcoholic fermentation process carried out by Saccharomycetaceae var. Pichia kluyveri induces an important synthesis of melatonin in orange juice. A novel beverage derived of fermented orange juice could be a promising source of this bioactive compound. The aim of the present study was to determine whether the acute intake of fermented orange juice increase the levels of urinary 6-sulfatoxymelatonin in healthy humans. Nine healthy volunteers (7 women and 2 men), aged between 20 and 25 years old and BMI of 21.1 2.4 kg/m2, were recruited. On the study day, participants ingested 500 mL of fermented orange juice. The first urine collection was made before fermented orange juice consumption (basal). The rest of urine collections were made in the following time intervals after fermented orange juice consumption: 0-2, 2-5, 5-10, 10- 15 and 15-24 hours. During the experimental period only the consumption of water was allowed. At lunch time a meal was provided (60 g of white bread, two slices of ham, a slice of cheese, 125 g of sweetened natural yoghurt and water). The subjects repeated the protocol with orange juice following a 2-wk washout period between both types of beverages. The levels of 6-sulfatoxymelatonin (6-SMT) were measured in urine recollected at different time points using the Melatonin-Sulfate Urine ELISA (IBL International GMBH, Hamburg, Germany). Levels of 6-SMT were corrected to those of creatinine for each sample. A significant (p < 0.05) increase in urinary 6-SMT levels was observed between 2-5 hours after fermented orange juice ingestion with respect to basal values (increase of 67,8 %). The consumption of orange juice did not induce any significant change in urinary 6-SMT levels. In addition, urinary 6-SMT levels obtained between 2-5 hours after fermented orange juice ingestion (115,6 ng/mg) were significantly different (p < 0.05) from those of orange juice (42,4 ng/mg). The enhancement of urinary 6-SMT after the ingestion of 500 mL of fermented orange juice in healthy humans compared to orange juice could be an important advantage of this novel product as an excellent source of melatonin. Fermented orange juice could be a new functional food, and its consumption could exert a potentially positive effect on health in both the maintenance of health status and the prevention of chronic diseases.Keywords: fermented orange juice, functional beverage, healthy human, melatonin
Procedia PDF Downloads 405255 Ultrasound Assisted Alkaline Potassium Permanganate Pre-Treatment of Spent Coffee Waste
Authors: Rajeev Ravindran, Amit K. Jaiswal
Abstract:
Lignocellulose is the largest reservoir of inexpensive, renewable source of carbon. It is composed of lignin, cellulose and hemicellulose. Cellulose and hemicellulose is composed of reducing sugars glucose, xylose and several other monosaccharides which can be metabolised by microorganisms to produce several value added products such as biofuels, enzymes, aminoacids etc. Enzymatic treatment of lignocellulose leads to the release of monosaccharides such as glucose and xylose. However, factors such as the presence of lignin, crystalline cellulose, acetyl groups, pectin etc. contributes to recalcitrance restricting the effective enzymatic hydrolysis of cellulose and hemicellulose. In order to overcome these problems, pre-treatment of lignocellulose is generally carried out which essentially facilitate better degradation of lignocellulose. A range of pre-treatment strategy is commonly employed based on its mode of action viz. physical, chemical, biological and physico-chemical. However, existing pretreatment strategies result in lower sugar yield and formation of inhibitory compounds. In order to overcome these problems, we proposes a novel pre-treatment, which utilises the superior oxidising capacity of alkaline potassium permanganate assisted by ultra-sonication to break the covalent bonds in spent coffee waste to remove recalcitrant compounds such as lignin. The pre-treatment was conducted for 30 minutes using 2% (w/v) potassium permanganate at room temperature with solid to liquid ratio of 1:10. The pre-treated spent coffee waste (SCW) was subjected to enzymatic hydrolysis using enzymes cellulase and hemicellulase. Shake flask experiments were conducted with a working volume of 50mL buffer containing 1% substrate. The results showed that the novel pre-treatment strategy yielded 7 g/L of reducing sugar as compared to 3.71 g/L obtained from biomass that had undergone dilute acid hydrolysis after 24 hours. From the results obtained it is fairly certain that ultrasonication assists the oxidation of recalcitrant components in lignocellulose by potassium permanganate. Enzyme hydrolysis studies suggest that ultrasound assisted alkaline potassium permanganate pre-treatment is far superior over treatment by dilute acid. Furthermore, SEM, XRD and FTIR were carried out to analyse the effect of the new pre-treatment strategy on structure and crystallinity of pre-treated spent coffee wastes. This novel one-step pre-treatment strategy was implemented under mild conditions and exhibited high efficiency in the enzymatic hydrolysis of spent coffee waste. Further study and scale up is in progress in order to realise future industrial applications.Keywords: spent coffee waste, alkaline potassium permanganate, ultra-sonication, physical characterisation
Procedia PDF Downloads 357254 The Renewed Constitutional Roots of Agricultural Law in Hungary in Line with Sustainability
Authors: Gergely Horvath
Abstract:
The study analyzes the special provisions of the highest level of national agricultural legislation in the Fundamental Law of Hungary (25 April 2011) with descriptive, analytic and comparative methods. The agriculturally relevant articles of the constitution are very important, because –in spite of their high level of abstraction– they can determine and serve the practice comprehensively and effectively. That is why the objective of the research is to interpret the concrete sentences and phrases in connection with agriculture compared with the methods of some other relevant constitutions (historical-grammatical interpretation). The major findings of the study focus on searching for the appropriate provisions and approach capable of solving the problems of sustainable food production. The real challenge agricultural law must face with in the future is protecting or conserving its background and subjects: the environment, the ecosystem services and all the 'roots' of food production. In effect, agricultural law is the legal aspect of the production of 'our daily bread' from farm to table. However, it also must guarantee the safe daily food for our children and for all our descendants. In connection with sustainability, this unique, value-oriented constitution of an agrarian country even deals with uncustomary questions in this level of legislation like GMOs (by banning the production of genetically modified crops). The starting point is that the principle of public good (principium boni communis) must be the leading notion of the norm, which is an idea partly outside the law. The public interest is reflected by the agricultural law mainly in the concept of public health (in connection with food security) and the security of supply with healthy food. The construed Article P claims the general protection of our natural resources as a requirement. The enumeration of the specific natural resources 'which all form part of the common national heritage' also means the conservation of the grounds of sustainable agriculture. The reference of the arable land represents the subfield of law of the protection of land (and soil conservation), that of the water resources represents the subfield of water protection, the reference of forests and the biological diversity visualize the specialty of nature conservation, which is an essential support for agrobiodiversity. The mentioned protected objects constituting the nation's common heritage metonymically melt with their protective regimes, strengthening them and forming constitutional references of law. This regimes also mean the protection of the natural foundations of the life of the living and also the future generations, in the name of intra- and intergenerational equity.Keywords: agricultural law, constitutional values, natural resources, sustainability
Procedia PDF Downloads 166253 Enumerating Insect Biodiversity in the Himalayan Mountains of India in Context to Species Richness, Biogeographic Distribution, and Possible Gap Areas in Taxonomic Research
Authors: Kailash Chandra, Devanshu Gupta
Abstract:
The Himalayan Mountains of India fall under two biogeographic zones Trans Himalaya (TH) and Himalaya and seven biotic provinces (TH-Ladakh Mountains, TH-Tibetan Plateau, TH-Sikkim, North-West Himalaya, West Himalaya, Central Himalaya, and East Himalaya). Because of the extreme environment and altitudinal variations, unique physiography, varied ecological conditions, and different vegetations, the Himalaya exhibit a rich assemblage of life, both flora, and fauna, further subjected to the impacts of climate change. To the authors’ best knowledge, there is no comprehensive account except for sporadic faunal investigations, to assess or interpret the insect diversity and their biogeographic distribution in Indian Himalaya (IH), one of the biodiversity hotspots. Therefore, in this paper, a compelling review of the extensive knowledge of insect diversity of IH is presented for the first time to the best of our knowledge. The inventory of the known insect species of IH was compiled from the exploration cum faunal-study data ready with the zoological survey of India, Kolkata as well as from the information published in the scientific literature till date. The species were listed with their valid names with their distribution in seven biotic provinces of IH. The insect fauna of IH represents about 38% of the identified insect diversity of India. The interpretation of data provided significant information in detecting possible gap areas in the taxonomic representation of different insect orders. Archaeognatha, Zygentoma, Ephemeroptera, Phasmida, Embioptera, Psocoptera, Phthiraptera, Strepsiptera, Megaloptera, Raphidioptera, Siphonaptera, and Mecoptera need revisions, and it is required to collect more samples from remote areas of the region. Scope for finding new taxa even in the most diverse orders, Coleoptera, Lepidoptera, Hymenoptera, Diptera, and Hemiptera cannot be overlooked. Exploration of cold deserts of Trans Himalaya and East Himalaya (Arunachal Pradesh) may result in a good number of new species from these regions. The most notable data was that many of the species recorded from Himalaya are still known from their type localities only, so there is an urgency to revisit and resurvey those collection localities for the evaluation of the status of those species. It is also required to assess and monitor the impact of climate change on the diversity of insects inhabiting in the fragile Himalayan ecosystem. DNA barcoding especially pests and biological control agents to solve the problems of identification in species complexes is also the need of the hour. In a nutshell, it can be concluded that the inventory of insects of this region is extensive but is far from final as every year hundreds of new species are described.Keywords: catalog, climate change, diversity, DNA barcoding
Procedia PDF Downloads 215