Search results for: temperature effect
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19667

Search results for: temperature effect

16307 Numerical Study of Natural Convection in a Nanofluid-Filled Vertical Cylinder under an External Magnetic Field

Authors: M. Maache, R. Bessaih

Abstract:

In this study, the effect of the magnetic field direction on the free convection heat transfer in a vertical cylinder filled with an Al₂O₃ nanofluid is investigated numerically. The external magnetic field is applied in either direction axial and radial on a cylinder having an aspect ratio H/R0=5, bounded by the top and the bottom disks at temperatures Tc and Th and by an adiabatic side wall. The equations of continuity, Navier Stocks and energy are non-dimensionalized and then discretized by the finite volume method. A computer program based on the SIMPLER algorithm is developed and compared with the numerical results found in the literature. The numerical investigation is carried out for different governing parameters namely: The Hartmann number (Ha=0, 5, 10, …, 40), nanoparticles volume fraction (ϕ=0, 0.025, …,0.1) and Rayleigh number (Ra=103, Ra=104 and Ra=105). The behavior of average Nusselt number, streamlines and temperature contours are illustrated. The results revel that the average Nusselt number increases with an increase of the Rayleigh number but it decreases with an increase in the Hartmann number. Depending on the magnetic field direction and on the values of Hartmann and Rayleigh numbers, an increase of the solid volume fraction may result enhancement or deterioration of the heat transfer performance in the nanofluid.

Keywords: natural convection, nanofluid, magnetic field, vertical cylinder

Procedia PDF Downloads 314
16306 The Influence of Polysaccharide Isolated from Morinda citrifolia Fruit to the Growth of Vero, He-La and T47D Cell Lines against Doxorubicin in vitro

Authors: Ediati Budi Cahyono, Triana Hertiani, Nauval Arrazy Asawimanda, Wahyu Puji Pratomo

Abstract:

Background: Doxorubicin is widely used as a chemotherapeutic drug despite having many side effects. It may cause macrophage dysfunction and decreasing proliferation of lymphocyte. Noni (Morinda citrifolia) fruit which has rich of polysaccharide content has potential as antitumor and immunostimulant effect. The isolation of polysaccharide from Noni fruit has been optimized according to four different methods based on macrophage and lymphocyte activities. We found the highest polysaccharide content from one of the four methods isolation. A method of polysaccharide isolation which has the highest immunostimulant effect was used for further observation as co-chemotherapy. The aim of the study: was to evaluate the isolated polysaccharide from the method of choice as co-chemotherapy of doxorubicin for the growth of Vero, He-La, and T47D cell lines in vitro. The method: in vitro growth assay of Vero, He-La, and T47D cell lines was done using MTT-reduction method, and apoptosis test was done by double staining method to evaluate the induction apoptotic effect of the combination. Every group was treated with doxorubicin and isolated polysaccharide from method of choice with 4 variances of concentrations (25 µg/ml, 50 µg/ml, 100 µg/ml and 200 µg/ml) a long with negative control (doxorubicin only) and normal control (without doxorubicin or polysaccharide administration). Results: The combination of polysaccharide fraction in the concentration of 100μg/ml with 2μmol of doxorubicin against He-La and T47D cell lines influenced the highest cytotoxic effect by suppressing cell viability comparing with doxorubicin only. The combination of polysaccharide fraction in the concentration of 100μg/ml with 2μmol of doxorubicin-induced apoptotic effect the He-La cell line comparing with doxorubicin only. The result of the study: it can be concluded that the combination of polysaccharide fraction and doxorubicin effect more selective toward He-La and T47D cell lines than to Vero cell line. It can be suggested isolated polysaccharide from the method of choice has co-chemotherapy activity against doxorubicin.

Keywords: polysaccharide, noni fruit, doxorubicin, cancer cell lines, vero cell line

Procedia PDF Downloads 249
16305 Assessing the Effect of Grid Connection of Large-Scale Wind Farms on Power System Small-Signal Angular Stability

Authors: Wenjuan Du, Jingtian Bi, Tong Wang, Haifeng Wang

Abstract:

Grid connection of a large-scale wind farm affects power system small-signal angular stability in two aspects. Firstly, connection of the wind farm brings about the change of load flow and configuration of a power system. Secondly, the dynamic interaction is introduced by the wind farm with the synchronous generators (SGs) in the power system. This paper proposes a method to assess the two aspects of the effect of the wind farm on power system small-signal angular stability. The effect of the change of load flow/system configuration brought about by the wind farm can be examined separately by displacing wind farms with constant power sources, then the effect of the dynamic interaction of the wind farm with the SGs can be also computed individually. Thus, a clearer picture and better understanding on the power system small-signal angular stability as affected by grid connection of the large-scale wind farm are provided. In the paper, an example power system with grid connection of a wind farm is presented to demonstrate the proposed approach.

Keywords: power system small-signal angular stability, power system low-frequency oscillations, electromechanical oscillation modes, wind farms, double fed induction generator (DFIG)

Procedia PDF Downloads 482
16304 The Model Establishment and Analysis of TRACE/FRAPTRAN for Chinshan Nuclear Power Plant Spent Fuel Pool

Authors: J. R. Wang, H. T. Lin, Y. S. Tseng, W. Y. Li, H. C. Chen, S. W. Chen, C. Shih

Abstract:

TRACE is developed by U.S. NRC for the nuclear power plants (NPPs) safety analysis. We focus on the establishment and application of TRACE/FRAPTRAN/SNAP models for Chinshan NPP (BWR/4) spent fuel pool in this research. The geometry is 12.17 m × 7.87 m × 11.61 m for the spent fuel pool. In this study, there are three TRACE/SNAP models: one-channel, two-channel, and multi-channel TRACE/SNAP model. Additionally, the cooling system failure of the spent fuel pool was simulated and analyzed by using the above models. According to the analysis results, the peak cladding temperature response was more accurate in the multi-channel TRACE/SNAP model. The results depicted that the uncovered of the fuels occurred at 2.7 day after the cooling system failed. In order to estimate the detailed fuel rods performance, FRAPTRAN code was used in this research. According to the results of FRAPTRAN, the highest cladding temperature located on the node 21 of the fuel rod (the highest node at node 23) and the cladding burst roughly after 3.7 day.

Keywords: TRACE, FRAPTRAN, BWR, spent fuel pool

Procedia PDF Downloads 355
16303 Modeling of Conjugate Heat Transfer including Radiation in a Kerosene/Air Certification Burner

Authors: Lancelot Boulet, Pierre Benard, Ghislain Lartigue, Vincent Moureau, Nicolas Chauvet, Sheddia Didorally

Abstract:

International aeronautic standards demand a fire certification for engines that demonstrate their resistance. This demonstration relies on tests performed with prototype engines in the late stages of the development. Hardest tests require to place a kerosene standardized flame in front of the engine casing during a given time with imposed temperature and heat flux. The purpose of this work is to provide a better characterization of a kerosene/air certification burner in order to minimize the risks of test failure. A first Large-Eddy Simulation (LES) study of the certification burner permitted to model and simulate this burner, including both adiabatic and Conjugate Heat Transfer (CHT) computations. Carried out on unstructured grids with 40 million tetrahedral cells, using the finite-volume YALES2 code, spray combustion, forced convection on walls and conduction in the solid parts of the burner were coupled to achieve a detailed description of heat transfer. It highlighted the fact that conduction inside the solid has a real impact on the flame topology and the combustion regime. However, in the absence of radiative heat transfer, unrealistic temperature of the equipment was obtained. The aim of the present study is to include the radiative heat transfer in order to reach the same temperature given by experimental measurements. First, various test-cases are conducted to validate the coupling between the different heat solvers. Then, adiabatic case, CHT case, as well as CHT including radiative transfer are studied and compared. The LES model is finally applied to investigate the heat transfer in a flame impaction configuration. The aim is to progress on fire test modeling so as to reach a good confidence level as far as success of the certification test is concerned.

Keywords: conjugate heat transfer, fire resistance test, large-eddy simulation, radiative transfer, turbulent combustion

Procedia PDF Downloads 220
16302 Effect of Soil and Material Characteristics on Safety of Concrete Structures Including SSI

Authors: A. E. Kurtoglu, A. Cevik, M. Bilgehan

Abstract:

In this parametric study, effect of soil and material characteristics on safety of structures is investigated. The soil parameters such as shear strength, unit weight; geometrical parameters of the structure such as foundation depth and height of building; and material properties such as weight of concrete were selected as input parameters. A real accelerogram of 1989 El-Centro earthquake recorded by the USGS in Imperial Valley is used for this study. It is contained in the standard Strong Motion CD-ROM (SMC) format, which can be recognized and interpreted by FEM software used. The soil-structure interaction model subjected to above-mentioned earthquake was analyzed for 729 cases. Effect of input parameters on safety factor of the soil-structure system was then investigated and the interaction between the input and output parameters is presented in graphical form. Findings showed that all input parameters have significant effects on factor of safety results.

Keywords: factor of safety, finite element method, safety of structures, soil structure interaction

Procedia PDF Downloads 504
16301 Process Integration of Natural Gas Hydrate Production by CH₄-CO₂/H₂ Replacement Coupling Steam Methane Reforming

Authors: Mengying Wang, Xiaohui Wang, Chun Deng, Bei Liu, Changyu Sun, Guangjin Chen, Mahmoud El-Halwagi

Abstract:

Significant amounts of natural gas hydrates (NGHs) are considered potential new sustainable energy resources in the future. However, common used methods for methane gas recovery from hydrate sediments require high investment but with low gas production efficiency, and may cause potential environment and security problems. Therefore, there is a need for effective gas production from hydrates. The natural gas hydrate production method by CO₂/H₂ replacement coupling steam methane reforming can improve the replacement effect and reduce the cost of gas separation. This paper develops a simulation model of the gas production process integrated with steam reforming and membrane separation. The process parameters (i.e., reactor temperature, pressure, H₂O/CH₄ ratio) and the composition of CO₂ and H₂ in the feed gas are analyzed. Energy analysis is also conducted. Two design scenarios with different composition of CO₂ and H₂ in the feed gas are proposed and evaluated to assess the energy efficiency of the novel system. Results show that when the composition of CO₂ in the feed gas is between 43 % and 72 %, there is a certain composition that can meet the requirement that the flow rate of recycled gas is equal to that of feed gas, so as to ensure that the subsequent production process does not need to add feed gas or discharge recycled gas. The energy efficiency of the CO₂ in feed gas at 43 % and 72 % is greater than 1, and the energy efficiency is relatively higher when the CO₂ mole fraction in feed gas is 72 %.

Keywords: Gas production, hydrate, process integration, steam reforming

Procedia PDF Downloads 182
16300 Consumers Attitude toward the Latest Trends in Decreasing Energy Consumption of Washing Machine

Authors: Farnaz Alborzi, Angelika Schmitz, Rainer Stamminger

Abstract:

Reducing water temperatures in the wash phase of a washing programme and increasing the overall cycle durations are the latest trends in decreasing energy consumption of washing programmes. Since the implementation of the new energy efficiency classes in 2010, manufacturers seem to apply the aforementioned washing strategy with lower temperatures combined with longer programme durations extensively to realise energy-savings needed to meet the requirements of the highest energy efficiency class possible. A semi-representative on-line survey in eleven European countries (Czech Republic, Finland, France, Germany, Hungary, Italy, Poland, Romania, Spain, Sweden and the United Kingdom) was conducted by Bonn University in 2015 to shed light on consumer opinion and behaviour regarding the effects of the lower washing temperature and longer cycle duration in laundry washing on consumers’ acceptance of the programme. The risk of the long wash cycle is that consumers might not use the energy efficient Standard programmes and will think of this option as inconvenient and therefore switch to shorter, but more energy consuming programmes. Furthermore, washing in a lower temperature may lead to the problem of cross-contamination. Washing behaviour of over 5,000 households was studied in this survey to provide support and guidance for manufacturers and policy designers. Qualified households were chosen following a predefined quota: -Involvement in laundry washing: substantial, -Distribution of gender: more than 50 % female , -Selected age groups: -20–39 years, -40–59 years, -60–74 years, -Household size: 1, 2, 3, 4 and more than 4 people. Furthermore, Eurostat data for each country were used to calculate the population distribution in the respective age class and household size as quotas for the consumer survey distribution in each country. Before starting the analyses, the validity of each dataset was controlled with the aid of control questions. After excluding the outlier data, the number of the panel diminished from 5,100 to 4,843. The primary outcome of the study is European consumers are willing to save water and energy in a laundry washing but reluctant to use long programme cycles since they don’t believe that the long cycles could be energy-saving. However, the results of our survey don’t confirm that there is a relation between frequency of using Standard cotton (Eco) or Energy-saving programmes and the duration of the programmes. It might be explained by the fact that the majority of washing programmes used by consumers do not take so long, perhaps consumers just choose some additional time reduction option when selecting those programmes and this finding might be changed if the Energy-saving programmes take longer. Therefore, it may be assumed that introducing the programme duration as a new measure on a revised energy label would strongly influence the consumer at the point of sale. Furthermore, results of the survey confirm that consumers are more willing to use lower temperature programmes in order to save energy than accepting longer programme cycles and majority of them accept deviation from the nominal temperature of the programme as long as the results are good.

Keywords: duration, energy-saving, standard programmes, washing temperature

Procedia PDF Downloads 221
16299 Characteristics of Oak Mushroom Cultivar, Bambithyang Developed by Golden Seed Project

Authors: Yeongseon Jang, Rhim Ryoo, Young-Ae Park, Kang-Hyeon Ka, Donha Choi, Sung-Suk Lee

Abstract:

Lentinula edodes (Berk.) Pegler, oak mushroom, is one of the most largely produced mushrooms in the world. To increase the competitiveness of Korean oak mushroom, golden seed project is ongoing. In this project, we develop new oak mushroom varieties to increase its productivity, quality, disease resistance, and so on. Through the project, new oak mushroom cultivar, Bambithyang was developed by mono-mono hybridization method. The optimum temperature for mycelial growth was at 25°C on potato dextrose agar (PDA) media. For the mass production test, it was cultivated using sawdust media with sawdust block type for 100 days. The temperature for primordia formation and fruit body production was broad (between 11°C and 20°C) which is good for spring and fall. Each flush period lasted for 6-7 days and the highest fruit body production was recorded in the first flush. The fruiting is sporadic. The pileus was deep brown. Its diameter was 69.2 mm and width was 17.8 mm. The stipe was ivory. It was 14.7 mm thick and 54.7 mm long. We would continue to develop new varieties while increasing the market share of domestic spawn with this variety.

Keywords: Lentinula edodes, mono-mono hybridization, new cultivar, oak mushroom

Procedia PDF Downloads 345
16298 Conduction Accompanied With Transient Radiative Heat Transfer Using Finite Volume Method

Authors: A. Ashok, K.Satapathy, B. Prerana Nashine

Abstract:

The objective of this research work is to investigate for one dimensional transient radiative transfer equations with conduction using finite volume method. Within the infrastructure of finite-volume, we obtain the conservative discretization of the terms in order to preserve the overall conservative property of finitevolume schemes. Coupling of conductive and radiative equation resulting in fluxes is governed by the magnitude of emissivity, extinction coefficient, and temperature of the medium as well as geometry of the problem. The problem under consideration has been solved, for a slab dominating radiation coupled with transient conduction based on finite volume method. The boundary conditions are also chosen so as to give a good model of the discretized form of radiation transfer equation. The important feature of the present method is flexibility in specifying the control angles in the FVM, while keeping the simplicity in the solution procedure. Effects of various model parameters are examined on the distributions of temperature, radiative and conductive heat fluxes and incident radiation energy etc. The finite volume method is considered to effectively evaluate the propagation of radiation intensity through a participating medium.

Keywords: participating media, finite volume method, radiation coupled with conduction, transient radiative heat transfer

Procedia PDF Downloads 387
16297 The Effect of Organizational Factors on Knowledge Sharing in the Jordanian Commercial Banks

Authors: Nadera Al Hourani

Abstract:

The study aimed at testing the effect of the organizational factors on reinforcing the knowledge sharing competence in the Jordanian commercial banks. The study population consisted of all the commercial banks working in Jordan according to the statistics of the Jordanian Banks Association by the end of 2010 (n=12). The researchers took a sample of the branch managers (n=240), and constructed a questionnaire to achieve the objective of the study. 235 questionnaires were returned and 16 were discarded due to incompleteness of their data, thus accepting 219 questionnaires. The results of the study indicated statistically significant effect of the organizational factors with their elements: (organizational structure, organizational culture, and human resources policy) in knowledge sharing. The study recommended that the Jordanian commercial banks have to continue attention to the organizational factors through supporting the less important variables and lowest means within the independent variable (organizational factors). The organizational structure came lowest, which urges the management of the commercial banks to adopt a flexible organizational structure capable to reinforce the knowledge sharing competence.

Keywords: banks, Jordan, knowledge, organizational factors, sharing

Procedia PDF Downloads 328
16296 Study of Energy Dissipation in Shape Memory Alloys: A Comparison between Austenite and Martensite Phase of SMAs

Authors: Amirmozafar Benshams, Khatere Kashmari, Farzad Hatami, Mesbah Saybani

Abstract:

Shape memory alloys with high capability of energy dissipation and large deformation bearing with return ability to their original shape without too much hysteresis strain have opened their place among the other damping systems as smart materials. Ninitol which is the most well-known and most used alloy material from the shape memory alloys family, has high resistance and fatigue and is coverage for large deformations. Shape memory effect and super-elasticity by shape alloys like Nitinol, are the reasons of the high power of these materials in energy depreciation. Thus, these materials are suitable for use in reciprocating dynamic loading conditions. The experiments results showed that Nitinol wires with small diameter have greater energy dissipation capability and by increase of diameter and thickness the damping capability and energy dissipation increase.

Keywords: shape memory alloys, shape memory effect, super elastic effect, nitinol, energy dissipation

Procedia PDF Downloads 510
16295 Effect of Nitrogen Gaseous Plasma on Cotton Fabric Dyed with Reactive Yellow105

Authors: Mohammad Mirjalili, Hamid Akbarpour

Abstract:

In this work, a bleached well cotton sample was dyed with reactive yellow105 dye and subsequently, the dyed sample was exposed to the plasma condition containing Nitrogen gas at 1 and 5 minutes of plasma exposure time, respectively. The effect of plasma on surface morphology fabric was studied by Scanning Electronic Microscope (SEM). CIELab, K/S, and %R of samples (treated and untreated samples) were measured by a reflective spectrophotometer, and consequently, the experiments show that the sample dyed with Reactive yellow 105 after being washed, with the increase in the operation time of plasma, its dye fastness decreases. In addition, the increase in plasma operation time at constant pressure would increase the destructing effect on the surface morphology of samples dyed with reactive yellow105.

Keywords: cotton fabric, nitrogen cold plasma, reflective spectrophotometer, scanning electronic microscope (SEM), reactive yellow105 dye

Procedia PDF Downloads 256
16294 Effect of Blast Loads on the Seismically Designed Reinforced Concrete Buildings

Authors: Jhuma Debnath, Hrishikesh Sharma

Abstract:

The work done here in this paper is dedicated to studying the effect of high blast explosives over the seismically designed buildings. Buildings are seismically designed in SAP 2000 software to simulate seismic designs of buildings using response spectrum method. Later these buildings have been studied applying blast loads with the same amount of the blast explosives. This involved varying the standoff distances of the buildings from the blast explosion. The study found out that, for a seismically designed building, the minimum standoff distance is to be at least 120m from the place of explosion for an average blast explosive weight of 20kg TNT. This has shown that the building does not fail due to this huge explosive weight of TNT but resists immediate collapse of the building. The results also show that the adverse effect of the column failure due to blasting is reduced to 73.75% from 22.5% due to the increase of the standoff distance from the blast loads. The maximum affected locations due to the blast loads are also detected in this study.

Keywords: blast loads, seismically designed buildings, standoff distance, reinforced concrete buildings

Procedia PDF Downloads 233
16293 Field Evaluation of Different Aubergine Cultivars against Infestation of Brinjal Shoot and Fruit Borer

Authors: Ajmal Khan Kassi, Humayun Javed, Muhammad Asif Aziz

Abstract:

Response of different aubergine cultivars against Brinjal shoot and fruit borer (Leucinodes orbonalis Guenee.) was evaluated at research farm of PMAS, Arid Agriculture University, Rawalpindi, during 2013. Field trials were conducted in randomized completed block design with four replications for the screening of five cultivars of Brinjal (Solanum melongena L) (Short Purpal, Singhnath 666, Brinjal long 6275, Round Brinjal 86602, Round Egg Plant White). Cultivar Round White Brinjal showed maximum fruit infestation (54.44%) followed by Singhnath 666 (53.19%), while minimum fruit infestation was observed in Round Brinjal 86602 (42.39%). Cultivar Short Purpal showed maximum larval population (0.43) followed by Round White Brinjal (0.39), while the minimum larval population was observed in Round Brinjal 86602 with (0.27). It was observed that Round Brinjal 86602 cultivar showed comparatively minimum (L. orbonalis) larval population per leaf. The correlation of Brinjal fruit infestation and larval population of (L. orbonalis) with the different environmental factors showed that, the average relative humidity was positively and significantly correlated with fruit infestation on cultivars average precipitation showed positive but non- significant correlation on all the cultivars except Singhnath 666 with the value of (0.79) which was positive and significant. The average temperature showed non-significant and negative correlation with Brinjal long 6275, Round Brinjal 86602 and Singhnath 666, but significant negative correlation with Short Purpal and Round White Brinjal. Maximum temperature also showed the significant and negative correlation on all the five Brinjal cultivars which were significant and highly significant. Minimum temperature showed negative correlation and not significant correlation with all the cultivars. Consequently, based on the (L. orbonalis) larval density and Brinjal fruit infestation, the Round Brinjal 86602 proved least susceptible and Short Purpal highly susceptible cultivar.

Keywords: evaluation, Brinjal (Solanum melongena L), Cultivars, L. orbonalis

Procedia PDF Downloads 195
16292 Microwave-Assisted Torrefaction of Teakwood Biomass Residues: The Effect of Power Level and Fluid Flows

Authors: Lukas Kano Mangalla, Raden Rinova Sisworo, Luther Pagiling

Abstract:

Torrefaction is an emerging thermo-chemical treatment process that aims to improve the quality of biomass fuels. This study focused on upgrading the waste teakwood through microwave torrefaction processes and investigating the key operating parameters to improve energy density for the quality of biochar production. The experiments were carried out in a 250 mL reactor placed in a microwave cavity on two different media, inert and non-inert. The microwave was operated at a frequency of 2.45GHz with power level variations of 540W, 720W, and 900W, respectively. During torrefaction processes, the nitrogen gas flows into the reactor at a rate of 0.125 mL/min, and the air flows naturally. The temperature inside the reactor was observed every 0.5 minutes for 20 minutes using a K-Type thermocouple. Changes in the mass and the properties of the torrefied products were analyzed to predict the correlation between calorific value, mass yield, and level power of the microwave. The results showed that with the increase in the operating power of microwave torrefaction, the calorific value and energy density of the product increased significantly, while mass and energy yield tended to decrease. Air can be a great potential media for substituting the expensive nitrogen to perform the microwave torrefaction for teakwood biomass.

Keywords: torrefaction, microwave heating, energy enhancement, mass and energy yield

Procedia PDF Downloads 90
16291 The Response of Adaptive Mechanism of Fluorescent Proteins from Coral Species and Target Cell Properties on Signalling Capacity as Biosensor

Authors: Elif Tugce Aksun Tumerkan

Abstract:

Fluorescent proteins (FPs) have become very popular since green fluorescent protein discovered from crystal jellyfish. It is known that Anthozoa species have a wide range of chromophore organisms, and the initial crystal structure for non-fluorescent chromophores obtained from the reef-building coral has been determined. There are also differently coloured pigments in non-bioluminescent Anthozoa zooxanthellate and azooxanthellate which are frequently members of the GFP-like protein family. The development of fluorescent proteins (FPs) and their applications is an outstanding example of basic science leading to practical biotechnological and medical applications. Fluorescent proteins have several applications in science and are used as important indicators in molecular biology and cell-based research. With rising interest in cell biology, FPs have used as biosensor indicators and probes in pharmacology and cell biology. Using fluorescent proteins in genetically encoded metabolite sensors has many advantages than chemical probes for metabolites such as easily introduced into any cell or organism in any sub-cellular localization and giving chance to fixing to fluoresce of different colours or characteristics. There are different factors effects to signalling mechanism when they used as a biosensor. While there are wide ranges of research have been done on the significance and applications of fluorescent proteins, the cell signalling response of FPs and target cell are less well understood. In this study, it was aimed to clarify the response of adaptive mechanisms of coral species such as pH, temperature and symbiotic relationship and target cells properties on the signalling capacity. Corals are a rich natural source of fluorescent proteins that change with environmental conditions such as light, heat stress and injury. Adaptation mechanism of coral species to these types of environmental variations is important factor due to FPs properties have affected by this mechanism. Since fluorescent proteins obtained from nature, their own ecological property like the symbiotic relationship is observed very commonly in coral species and living conditions have the impact on FPs efficiency. Target cell properties also have an effect on signalling and visualization. The dynamicity of detector that used for reading fluorescence and the level of background fluorescence are key parameters for the quality of the fluorescent signal. Among the factors, it can be concluded that coral species adaptive characteristics have the strongest effect on FPs signalling capacity.

Keywords: biosensor, cell biology, environmental conditions, fluorescent protein, sea anemone

Procedia PDF Downloads 167
16290 The Effect of Global Warming on Water Resources

Authors: Ehsan Soltanzadeh, Hassan Zare

Abstract:

This paper introduces examples of the influences of global warming on water resources and means of adaptation. The contributing causes of shortage in water resources are sophisticated and have interactions with each other. The world-scale phenomena like global warming have led to an increase in air and ocean’s mean temperature, and this has already caused adverse effects on water resources. Other factors that exacerbated this situation such as population increase, changes in farming habits, rise in city dwellers, unbalanced request for energy and aquatic resources, improved living standards, new eating habits, increasing economic growth and consequently flourishing industrial activities, and different types of pollution such as air, water, etc., are compelling more pressure on our limited water resources. The report will briefly discuss climate change and its detrimental impacts on the water resources and finally will introduce two effective solutions to mitigate the consequences or even reverse them in the near to mid-term future: utilization of molten salt technology for storing huge amounts of generated electricity in solar power plants to accommodate power grid demands, and implementing fuel cell CHPs to reduce carbon emission, and consequently, mitigate the global warming phenomenon as the major root cause of threatening water resources.

Keywords: climate change, global warming, water resources, GHG emissions, fuel cell-CHP, solar power plant, molten salt storage

Procedia PDF Downloads 112
16289 Characterization and Effect of Using Pumpkin Seeds Oil Methyl Ester (PSME) as Fuel in a LHR Diesel Engine

Authors: Hanbey Hazar, Hakan Gul, Ugur Ozturk

Abstract:

In order to decrease the hazardous emissions of the internal combustion engines and to improve the combustion and thermal efficiency, thermal barrier coatings are applied. In this experimental study, cylinder, piston, exhaust, and inlet valves which are combustion chamber components have been coated with a ceramic material, and this earned the engine LHR feature. Cylinder, exhaust and inlet valves of the diesel engine used in the tests were coated with ekabor-2 commercial powder, which is a ceramic material, to a thickness of 50 µm, by using the boriding method. The piston of a diesel engine was coated in 300 µm thickness with bor-based powder by using plasma coating method. Pumpkin seeds oil methyl ester (PSME) was produced by the transesterification method. In addition, dimethoxymethane additive materials were used to improve the properties of diesel fuel, pumpkin seeds oil methyl ester (PSME) and its mixture. Dimethoxymethane was blended with test fuels, which was used as a pilot fuel, at the volumetric ratios of 4% and 8%. Due to thermal barrier coating, the diesel engine's CO, HC, and smoke density values decreased; but, NOx and exhaust gas temperature (EGT) increased.

Keywords: boriding, diesel engine, exhaust emission, thermal barrier coating

Procedia PDF Downloads 477
16288 Exploration of Artificial Neural Network and Response Surface Methodology in Removal of Industrial Effluents

Authors: Rakesh Namdeti

Abstract:

Toxic dyes found in industrial effluent must be treated before being disposed of due to their harmful impact on human health and aquatic life. Thus, Musa acuminata (Banana Leaves) was employed in the role of a biosorbent in this work to get rid of methylene blue derived from a synthetic solution. The effects of five process parameters, such as temperature, pH, biosorbent dosage, and initial methylene blue concentration, using a central composite design (CCD), and the percentage of dye clearance were investigated. The response was modelled using a quadratic model based on the CCD. The analysis of variance revealed the most influential element on experimental design response (ANOVA). The temperature of 44.30C, pH of 7.1, biosorbent dose of 0.3 g, starting methylene blue concentration of 48.4 mg/L, and 84.26 percent dye removal were the best conditions for Musa acuminata (Banana leave powder). At these ideal conditions, the experimental percentage of biosorption was 76.93. The link between the estimated results of the developed ANN model and the experimental results defined the success of ANN modeling. As a result, the study's experimental results were found to be quite close to the model's predicted outcomes.

Keywords: Musa acuminata, central composite design, methylene blue, artificial neural network

Procedia PDF Downloads 75
16287 Structural Morphing on High Performance Composite Hydrofoil to Postpone Cavitation

Authors: Fatiha Mohammed Arab, Benoit Augier, Francois Deniset, Pascal Casari, Jacques Andre Astolfi

Abstract:

For the top high performance foiling yachts, cavitation is often a limiting factor for take-off and top speed. This work investigates solutions to delay the onset of cavitation thanks to structural morphing. The structural morphing is based on compliant leading and trailing edge, with effect similar to flaps. It is shown here that the commonly accepted effect of flaps regarding the control of lift and drag forces can also be used to postpone the inception of cavitation. A numerical and experimental study is conducted in order to assess the effect of the geometric parameters of hydrofoil on their hydrodynamic performances and in cavitation inception. The effect of a 70% trailing edge and a 30% leading edge of NACA 0012 is investigated using Xfoil software at a constant Reynolds number 106. The simulations carried out for a range flaps deflections and various angles of attack. So, the result showed that the lift coefficient increase with the increase of flap deflection, but also with the increase of angle of attack and enlarged the bucket cavitation. To evaluate the efficiency of the Xfoil software, a 2D analysis flow over a NACA 0012 with leading and trailing edge flap was studied using Fluent software. The results of the two methods are in a good agreement. To validate the numerical approach, a passive adaptive composite model is built and tested in the hydrodynamic tunnel at the Research Institute of French Naval Academy. The model shows the ability to simulate the effect of flap by a LE and TE structural morphing due to hydrodynamic loading.

Keywords: cavitation, flaps, hydrofoil, panel method, xfoil

Procedia PDF Downloads 172
16286 Evaluation of the Effect Rare Earth Metal on the Microstructure and Properties of Zn-ZnO-Y2O3 Coating of Mild Steel

Authors: A. P. I. Popoola, O. S. I. Fayomi, V. S. Aigbodion

Abstract:

Mild steel has found many engineering applications due to its great formability, availability, low cost and good mechanical properties among others. However its functionality and durability is subject of concern due to corrosion deterioration. Based on these Yttrium is selected as reinforcing particles using electroplating process in this work to enhance the corrosion resistance. Bath formulation of zinc-yttrium was prepared at moderated temperature and pH, to coat mild steel sample. Corrosion and wear behaviour were analyzed using electrochemical potentiostat and abrasive test rig. The composition and microstructure of coated films were investigated standard method. The microstructure of the deposited plate obtained from optimum (10%Yttrium) bath revealed fine-grained deposit of the alloy in the presence of condensation product and hence modified the morphology of zinc–yttrium alloy deposit. It is demonstrated that by adding yttria particles, mild steel can be strengthened with improved polarization behaviour and higher resistance to corrosive in sodium chloride solutions. Microhardness of the coating compared to plain mild steel have increased before and after heat treatment, and an increased wear resistance was also obtained from the modified coating of zinc-yttrium.

Keywords: microhardness, zinc-yttrium, coating, mild steel, microstructure, wear, corrosion

Procedia PDF Downloads 287
16285 Multi-Scale Damage Modelling for Microstructure Dependent Short Fiber Reinforced Composite Structure Design

Authors: Joseph Fitoussi, Mohammadali Shirinbayan, Abbas Tcharkhtchi

Abstract:

Due to material flow during processing, short fiber reinforced composites structures obtained by injection or compression molding generally present strong spatial microstructure variation. On the other hand, quasi-static, dynamic, and fatigue behavior of these materials are highly dependent on microstructure parameters such as fiber orientation distribution. Indeed, because of complex damage mechanisms, SFRC structures design is a key challenge for safety and reliability. In this paper, we propose a micromechanical model allowing prediction of damage behavior of real structures as a function of microstructure spatial distribution. To this aim, a statistical damage criterion including strain rate and fatigue effect at the local scale is introduced into a Mori and Tanaka model. A critical local damage state is identified, allowing fatigue life prediction. Moreover, the multi-scale model is coupled with an experimental intrinsic link between damage under monotonic loading and fatigue life in order to build an abacus giving Tsai-Wu failure criterion parameters as a function of microstructure and targeted fatigue life. On the other hand, the micromechanical damage model gives access to the evolution of the anisotropic stiffness tensor of SFRC submitted to complex thermomechanical loading, including quasi-static, dynamic, and cyclic loading with temperature and amplitude variations. Then, the latter is used to fill out microstructure dependent material cards in finite element analysis for design optimization in the case of complex loading history. The proposed methodology is illustrated in the case of a real automotive component made of sheet molding compound (PSA 3008 tailgate). The obtained results emphasize how the proposed micromechanical methodology opens a new path for the automotive industry to lighten vehicle bodies and thereby save energy and reduce gas emission.

Keywords: short fiber reinforced composite, structural design, damage, micromechanical modelling, fatigue, strain rate effect

Procedia PDF Downloads 107
16284 Model Based Design and Development of Horticultural Produce Crate from Bamboo

Authors: Sisay Wondmagegn Molla, Mulugeta Admasu Delele, Tadelle Nigusu Mekonen

Abstract:

It is common to observe quality deterioration and mechanical injury of horticulture products as a result of suboptimal design and handling of the packaging systems. Society uses the old and primitive way of handling horticulture products, which is produced through trial and error This method is known to have many limitations on quality, environmental pollution, labor and cost. Ethiopia stands first in bamboo resources in Africa, which is 67 % of the African and 7 % of the world's bamboo resources. The purpose of this project was to design and develop bamboo-based ventilated horticultural produce crates using validated computational fluid dynamics (CFD). The model was used to predict the airflow and temperature distribution inside the loaded crate. The study included: sizing, collection of the thermo-physical properties, and designing and developing a CFD model of the bamboo-based ventilated horticultural crate. The designed crate (40×30×25cm) had a capacity of about 18 kg, and cold air temperature (130C) was used for cooling the fruit. Airflow in the loaded crate is far from uniform. There is a relatively high-velocity flow at the top, near inlet and near outlet sections, and a relatively low airflow near the center of the loaded crate. The predicted velocity variation within the bulk of the produce was relatively large, it was in the range of 0.04-7m/s. The vented produce package contributed the highest cooling airflow resistance. Similar to the airflow, the cooling characteristics of the product were not uniform. There was a difference in the cooling rate of the produce in the airflow direction and from the top to the bottom section of the loaded crate. The products that were located near the inlet side and top of the bulk showed a faster cooling rate than the rest of the bulk. The result showed that the produced volume average temperature was 17.9°C after a cooling period of 3 hr. It was reduced by 12.05°C. The result showed the potential of the CFD modeling approach in developing the bamboo-based design of horticultural produce crates in terms of airflow and heat transfer characteristics.

Keywords: bamboo, modeling, cooling, horticultural, packaging

Procedia PDF Downloads 22
16283 Study of Ion Density Distribution and Sheath Thickness in Warm Electronegative Plasma

Authors: Rajat Dhawan, Hitendra K. Malik

Abstract:

Electronegative plasmas comprising electrons, positive ions, and negative ions are advantageous for their expanding applications in industries. In plasma cleaning, plasma etching, and plasma deposition process, electronegative plasmas are preferred because of relatively less potential developed on the surface of the material under investigation. Also, the presence of negative ions avoid the irregularity in etching shapes and also enhance the material working during the fabrication process. The interaction of metallic conducting surface with plasma becomes mandatory to understand these applications. A metallic conducting probe immersed in a plasma results in the formation of a thin layer of charged species around the probe called as a sheath. The density of the ions embedded on the surface of the material and the sheath thickness are the important parameters for the surface-plasma interaction. Sheath thickness will give rise to the information of affected plasma region due to conducting surface/probe. The knowledge of the density of ions in the sheath region is advantageous in plasma nitriding, and their temperature is equally important as it strongly influences the thickness of the modified layer during surface plasma interaction. In the present work, we considered a negatively biased metallic probe immersed in a warm electronegative plasma. For this system, we adopted the continuity equation and momentum transfer equation for both the positive and negative ions, whereas electrons are described by Boltzmann distribution. Finally, we use the Poisson’s equation. Here, we assumed the spherical geometry for small probe radius. Poisson’s equation reveals the behaviour of potential surrounding a conducting metallic probe along with the use of the continuity and momentum transfer equations, with the help of proper boundary conditions. In turn, it gives rise to the information about the density profile of charged species and most importantly the thickness of the sheath. By keeping in mind, the well-known Bohm-Sheath criterion, all calculations are done. We found that positive ion density decreases with an increase in positive ion temperature, whereas it increases with the higher temperature of the negative ions. Positive ion density decreases as we move away from the center of the probe and is found to show a discontinuity at a particular distance from the center of the probe. The distance where discontinuity occurs is designated as sheath edge, i.e., the point where sheath ends. These results are beneficial for industrial applications, as the density of ions embedded on material surface is strongly affected by the temperature of plasma species. It has a drastic influence on the surface properties, i.e., the hardness, corrosion resistance, etc. of the materials.

Keywords: electronegative plasmas, plasma surface interaction positive ion density, sheath thickness

Procedia PDF Downloads 130
16282 Effect of Halloysite on Heavy Metals Fate during Solid Waste Pyrolysis: A Combinatorial Experimental/Computational Study

Authors: Tengfei He, Mengjie Zhang, Baosheng Jin

Abstract:

In this study, the low-cost halloysite (Hal) was utilized for the first time to enhance the solid-phase enrichment and stability of heavy metals (HMs) during solid waste pyrolysis through experimental and theoretical methods, and compared with kaolinite (Kao). Experimental results demonstrated that Hal was superior to Kao in improving the solid-phase enrichment of HMs. Adding Hal reduced the proportion of HMs in the unstable fraction (F1+F2), consequently lowering the environmental risk of biochar and the extractable state of HMs. Through Grand canonical Monte Carlo and Density Functional Theory (DFT) simulations, the adsorption amounts and adsorption mechanisms of Cd/Pb compound on Hal/Kao surfaces were analyzed. The adsorption amounts of HMs by Hal were significantly higher than Kao and decreased with increasing temperature, and the difference in adsorption performance caused by structural bending was negligible. The DFT results indicated that Cd/Pb monomers were stabilized by establishing covalent bonds with OH or reactive O atoms on the Al-(0 0 1) surface, whereas the covalent bonds with ionic bonding properties formed between Cl atoms and unsaturated Al atoms played a crucial role in stabilizing HM chlorides. This study highlights the potential of Hal in stabilizing HMs during pyrolysis without requiring any modifications.

Keywords: heavy metals, halloysite, density functional theory, grand canonical Monte Carlo

Procedia PDF Downloads 71
16281 UV-Cured Coatings Based on Acrylated Epoxidized Soybean Oil and Epoxy Carboxylate

Authors: Alaaddin Cerit, Suheyla Kocaman, Ulku Soydal

Abstract:

During the past two decades, photoinitiated polymerization has been attracting a great interest in terms of scientific and industrial activity. The wide recognition of UV treatment in the polymer industry results not only from its many practical applications but also from its advantage for low-cost processes. Unlike most thermal curing systems, radiation-curable systems can polymerize at room temperature without additional heat, and the curing is completed in a very short time. The advantage of cationic UV technology is that post-cure can continue in the ‘dark’ after radiation. In this study, bio-based acrylated epoxidized soybean oil (AESO) was cured with UV radiation using radicalic photoinitiator Irgacure 184. Triarylsulphonium hexafluoroantimonate was used as cationic photoinitiator for curing of 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate. The effect of curing time and the amount of initiators on the curing degree and thermal properties were investigated. The thermal properties of the coating were analyzed after crosslinking UV irradiation. The level of crosslinking in the coating was evaluated by FTIR analysis. Cationic UV-cured coatings demonstrated excellent adhesion and corrosion resistance properties. Therefore, our study holds a great potential with its simple and low-cost applications.

Keywords: acrylated epoxidized soybean oil, epoxy carboxylate, thermal properties, uv-curing

Procedia PDF Downloads 257
16280 Standard Gibbs Energy of Formation and Entropy of Lanthanide-Iron Oxides of Garnet Crystal Structure

Authors: Vera Varazashvili, Murman Tsarakhov, Tamar Mirianashvili, Teimuraz Pavlenishvili, Tengiz Machaladze, Mzia Khundadze

Abstract:

Standard Gibbs energy of formation ΔGfor(298.15) of lanthanide-iron double oxides of garnet-type crystal structure R3Fe5O12 - RIG (R – are rare earth ions) from initial oxides are evaluated. The calculation is based on the data of standard entropies S298.15 and standard enthalpies ΔH298.15 of formation of compounds which are involved in the process of garnets synthesis. Gibbs energy of formation is presented as temperature function ΔGfor(T) for the range 300-1600K. The necessary starting thermodynamic data were obtained from calorimetric study of heat capacity and by using the semi-empirical method for calculation of ΔH298.15 (formation). Thermodynamic functions for standard temperature – enthalpy, entropy and Gibbs energy - are recommended as reference data for technological evaluations. Through the isostructural series of rare earth-iron garnets the correlation between thermodynamic properties and characteristics of lanthanide ions are elucidated.

Keywords: calorimetry, entropy, heat capacity, Gibbs energy of formation, rare earth iron garnets

Procedia PDF Downloads 353
16279 The Importance of Industrial Work Experience, Career Information, and Work Motivation to Increase Work Readiness

Authors: Nyaris Pambudiyatno, Asto Buditjahjanto, Eppy Yundra, Arie Wardhono, Eko Hariadi

Abstract:

Vocational education is part of the national education system that is prepared to produce graduates who have the skills and knowledge according to the needs and requirements required by the job. Vocational Education is a secondary education that prepares students to work in a particular field. The purpose of this study was to analyze and find out the effect of industrial work practice experience and career information on work readiness through work motivation. This type of research is causal research with a quantitative approach. The population in this study was 359 cadets of Aviation Polytechnic Surabaya. While the number of samples calculates using slovin calculations obtained by 189 cadets of Surabaya Aviation Polytechnic. The type of data used is quantitative data with the primary data source. Data collection techniques are by distributing questionnaires. Analysis of this study is with Lisrel. The findings prove that: (1) Industrial Work Experience experience has a positive and significant effect on work motivation; (2) Industrial Work Experience has a positive and significant impact on work readiness; (3) Career information has a positive and significant effect on job readiness; (4) Career information has a positive and significant impact on job readiness; Dan (5) Work motivation has a positive and significant effect on work readiness.

Keywords: career information, increase work readiness, industrial work experience, work motivation

Procedia PDF Downloads 136
16278 Prevelance of Green Peach Aphid (Myzus persicae) in District Jacobabad, Sindh, Pakistran

Authors: Kamal Khan Abro, Nasreen Memon, Attaullah Ansari, Mahpara Pirzada, Saima Pathan

Abstract:

Jacobabad district has a hot desert climate with very hot summers and insignificant winters. The highest recorded temperature is 53.8 °C (127.0 °F), and the lowest recorded temperature is −4.9 °C (25.0 °F). Rainfall is short and mostly occurs in the monsoon season (July–September). Agriculture point of view Jacobabad district is very important district of Sindh Pakistan in which many types of crop and vegetables are cultivated annually such as Wheat, Rice, and Brassica, Cabbage, Spinach, Chili etc. which are badly attacked by many crops pest. Insects are very tiny, sensitive and most attractive mortal and most important collection of animal wildlife they play important role in biological control agent, biodiversity & agroecosystem. The brassica crop extremely infested by many different types of pest such as Aphids, Whitefly, Jassids, Thrips, Mealybug, scale insect pink worm, bollworm and borers Mealy bug, scale insect etc. These pests destroy many crops. The present study was carried out from Jacobabad district from January 2017 to April 2017.

Keywords: prevelance, green peach aphid, Jacobabad, Sindh Pakistan

Procedia PDF Downloads 289