Search results for: industrial networks
2612 Understanding Cognitive Fatigue From FMRI Scans With Self-supervised Learning
Authors: Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Fillia Makedon, Glenn Wylie
Abstract:
Functional magnetic resonance imaging (fMRI) is a neuroimaging technique that records neural activations in the brain by capturing the blood oxygen level in different regions based on the task performed by a subject. Given fMRI data, the problem of predicting the state of cognitive fatigue in a person has not been investigated to its full extent. This paper proposes tackling this issue as a multi-class classification problem by dividing the state of cognitive fatigue into six different levels, ranging from no-fatigue to extreme fatigue conditions. We built a spatio-temporal model that uses convolutional neural networks (CNN) for spatial feature extraction and a long short-term memory (LSTM) network for temporal modeling of 4D fMRI scans. We also applied a self-supervised method called MoCo (Momentum Contrast) to pre-train our model on a public dataset BOLD5000 and fine-tuned it on our labeled dataset to predict cognitive fatigue. Our novel dataset contains fMRI scans from Traumatic Brain Injury (TBI) patients and healthy controls (HCs) while performing a series of N-back cognitive tasks. This method establishes a state-of-the-art technique to analyze cognitive fatigue from fMRI data and beats previous approaches to solve this problem.Keywords: fMRI, brain imaging, deep learning, self-supervised learning, contrastive learning, cognitive fatigue
Procedia PDF Downloads 1892611 Satire of Victorian Mores in Charles Dickens’ Great Expectations
Authors: Nagwa Abouserie Soliman
Abstract:
The Victorian era, which started with the reign of Queen Victoria from June 1837 to January 1901, could be considered as one of the most significant eras that had a crucial impact which formed contemporary British life despite the fact that with the rise of the British empire many negative aspects surfaced, namelysocial inequalities such as class differences, child labor, population increase and poverty due to the industrial revolution. Charles Dickens was one of the most prominent writers of the Victorian era who perceived the hypocrisy of the Victorian mores. The appropriate researchstyle that was chosen for this literary analysis is a qualitative research method in which the researcher used the conceptual approach to analyse theDickensian characterisation andwriting style through diction, narrative voice, and images. The aim of this paper is to argue that Charles Dickens inGreat Expectations (1861) was highly satirical of the Victorian mores, as he uses a lot of sharp irony-to satirize various Victorian traditions such as class divisions, the justice system, the poor working class, and the upper-class snobbery that he thought are inhumane and unjust.Keywords: victorian, child labour, poverty, class division, snobbery
Procedia PDF Downloads 1232610 Physicochemical Analysis of Soxhlet Extracted Oils from Selected Northern Nigerian Seeds
Authors: Abdulhamid Abubakar, Sani Ibrahim, Fakai I. Musa
Abstract:
The aim of the present study is to investigate the potential use of the selected seed oils. The oil was extracted using Soxhlet apparatus and the physicochemical characteristics of the oil determined using standard methods. The following results were obtained for the physicochemical parameters analysed: for Egusi seed oil, Oil yield 53.20%, Saponification value 178.03±1.25 mgKOH/g, iodine value 49.10±0.32 g I2/100 g, acid value 4.30±0.86 mgKOH/g, and Peroxide value 5.80±0.27 meq/kg were obtained. For Pawpaw seed oil, Oil yield 40.10%, Saponification value 24.13±3.93 mgKOH/g, iodine value 24.87±0.19 g I2/100g, acid value 9.46±0.40 mgKOH/g, and Peroxide value 3.12±1.22 meq/kg were obtained. For Sweet orange seed oil, oil yield 43.10%, Saponification value 106.30±2.37 mgKOH/g, Iodine value 37.08±0.04 g I2/100g, acid value 7.59±0.77 mgKOH/g, and Peroxide value 2.21±0.46 meq/kg were obtained. From the obtained values of the determined parameters, the oils can be extracted from the three selected seeds in commercial quantities and that the egusi and sweet orange seed oils may be utilized in the industrial soap production.Keywords: Carica papaya, Citrus sinensis, physicochemical, iodine value, peroxide value
Procedia PDF Downloads 4422609 ECOSURF EH3 - A Taq DNA Polymerase Enhancer
Authors: Kimberley Phoena Fan, Yu Zhang
Abstract:
ECOSURF™ EH-3 Surfactant (EH3) is a nonionic surfactant and has superior wetting and excellent oil removal properties. It is biodegradable with low toxicity and meets or exceeds US EPA Design for the Environment Criteria, and is widely used as a home cleaner, commercial and industrial degreaser. We have recently found that EH3 also possesses a special function which is characterized as an enhancer to Taq DNA polymerase and ameliorator to reduce the effects of PCR inhibitors, i.e., blood, urea, Guanidinium thiocyanate, Humic acids, polyphenol, and Polysaccharides. This is a new kind of PCR enhancer that does not work on relieving secondary structures of GC-rich templates. We have compared EH3’s effects on Taq DNA Polymerase along with other well-known enhancers, such as DMSO, betaine, and BSA, using GC rich or deficient template and found that, unlike DMSO and Betaine, the EH3 boosting effect on PCR reaction is not through reducing Tm. The results show the same increase of PCR products regardless of the GC contents or secondary structures. The mechanism of EH3 enhancing PCR is through its direct interaction with or stimulation of the DNA polymerase and making the enzymes more resistant to inhibitors in the presence of EH3. This phenomenon has first been observed for EH3, a new type of PCR enzyme enhancer. Subsequent research also shows that a series of similar surfactants boost Taq DNA polymerase as well.Keywords: EH3, DNA, polymerase, enhancer, raw biological samples
Procedia PDF Downloads 1392608 Develop a Conceptual Data Model of Geotechnical Risk Assessment in Underground Coal Mining Using a Cloud-Based Machine Learning Platform
Authors: Reza Mohammadzadeh
Abstract:
The major challenges in geotechnical engineering in underground spaces arise from uncertainties and different probabilities. The collection, collation, and collaboration of existing data to incorporate them in analysis and design for given prospect evaluation would be a reliable, practical problem solving method under uncertainty. Machine learning (ML) is a subfield of artificial intelligence in statistical science which applies different techniques (e.g., Regression, neural networks, support vector machines, decision trees, random forests, genetic programming, etc.) on data to automatically learn and improve from them without being explicitly programmed and make decisions and predictions. In this paper, a conceptual database schema of geotechnical risks in underground coal mining based on a cloud system architecture has been designed. A new approach of risk assessment using a three-dimensional risk matrix supported by the level of knowledge (LoK) has been proposed in this model. Subsequently, the model workflow methodology stages have been described. In order to train data and LoK models deployment, an ML platform has been implemented. IBM Watson Studio, as a leading data science tool and data-driven cloud integration ML platform, is employed in this study. As a Use case, a data set of geotechnical hazards and risk assessment in underground coal mining were prepared to demonstrate the performance of the model, and accordingly, the results have been outlined.Keywords: data model, geotechnical risks, machine learning, underground coal mining
Procedia PDF Downloads 2742607 Novel Numerical Technique for Dusty Plasma Dynamics (Yukawa Liquids): Microfluidic and Role of Heat Transport
Authors: Aamir Shahzad, Mao-Gang He
Abstract:
Currently, dusty plasmas motivated the researchers' widespread interest. Since the last two decades, substantial efforts have been made by the scientific and technological community to investigate the transport properties and their nonlinear behavior of three-dimensional and two-dimensional nonideal complex (dusty plasma) liquids (NICDPLs). Different calculations have been made to sustain and utilize strongly coupled NICDPLs because of their remarkable scientific and industrial applications. Understanding of the thermophysical properties of complex liquids under various conditions is of practical interest in the field of science and technology. The determination of thermal conductivity is also a demanding question for thermophysical researchers, due to some reasons; very few results are offered for this significant property. Lack of information of the thermal conductivity of dense and complex liquids at different parameters related to the industrial developments is a major barrier to quantitative knowledge of the heat flux flow from one medium to another medium or surface. The exact numerical investigation of transport properties of complex liquids is a fundamental research task in the field of thermophysics, as various transport data are closely related with the setup and confirmation of equations of state. A reliable knowledge of transport data is also important for an optimized design of processes and apparatus in various engineering and science fields (thermoelectric devices), and, in particular, the provision of precise data for the parameters of heat, mass, and momentum transport is required. One of the promising computational techniques, the homogenous nonequilibrium molecular dynamics (HNEMD) simulation, is over viewed with a special importance on the application to transport problems of complex liquids. This proposed work is particularly motivated by the FIRST TIME to modify the problem of heat conduction equations leads to polynomial velocity and temperature profiles algorithm for the investigation of transport properties with their nonlinear behaviors in the NICDPLs. The aim of proposed work is to implement a NEMDS algorithm (Poiseuille flow) and to delve the understanding of thermal conductivity behaviors in Yukawa liquids. The Yukawa system is equilibrated through the Gaussian thermostat in order to maintain the constant system temperature (canonical ensemble ≡ NVT)). The output steps will be developed between 3.0×105/ωp and 1.5×105/ωp simulation time steps for the computation of λ data. The HNEMD algorithm shows that the thermal conductivity is dependent on plasma parameters and the minimum value of lmin shifts toward higher G with an increase in k, as expected. New investigations give more reliable simulated data for the plasma conductivity than earlier known simulation data and generally the plasma λ0 by 2%-20%, depending on Γ and κ. It has been shown that the obtained results at normalized force field are in satisfactory agreement with various earlier simulation results. This algorithm shows that the new technique provides more accurate results with fast convergence and small size effects over a wide range of plasma states.Keywords: molecular dynamics simulation, thermal conductivity, nonideal complex plasma, Poiseuille flow
Procedia PDF Downloads 2742606 Enhancement of Underwater Haze Image with Edge Reveal Using Pixel Normalization
Authors: M. Dhana Lakshmi, S. Sakthivel Murugan
Abstract:
As light passes from source to observer in the water medium, it is scattered by the suspended particulate matter. This scattering effect will plague the captured images with non-uniform illumination, blurring details, halo artefacts, weak edges, etc. To overcome this, pixel normalization with an Amended Unsharp Mask (AUM) filter is proposed to enhance the degraded image. To validate the robustness of the proposed technique irrespective of atmospheric light, the considered datasets are collected on dual locations. For those images, the maxima and minima pixel intensity value is computed and normalized; then the AUM filter is applied to strengthen the blurred edges. Finally, the enhanced image is obtained with good illumination and contrast. Thus, the proposed technique removes the effect of scattering called de-hazing and restores the perceptual information with enhanced edge detail. Both qualitative and quantitative analyses are done on considering the standard non-reference metric called underwater image sharpness measure (UISM), and underwater image quality measure (UIQM) is used to measure color, sharpness, and contrast for both of the location images. It is observed that the proposed technique has shown overwhelming performance compared to other deep-based enhancement networks and traditional techniques in an adaptive manner.Keywords: underwater drone imagery, pixel normalization, thresholding, masking, unsharp mask filter
Procedia PDF Downloads 1942605 Risk Tolerance and Individual Worthiness Based on Simultaneous Analysis of the Cognitive Performance and Emotional Response to a Multivariate Situational Risk Assessment
Authors: Frederic Jumelle, Kelvin So, Didan Deng
Abstract:
A method and system for neuropsychological performance test, comprising a mobile terminal, used to interact with a cloud server which stores user information and is logged into by the user through the terminal device; the user information is directly accessed through the terminal device and is processed by artificial neural network, and the user information comprises user facial emotions information, performance test answers information and user chronometrics. This assessment is used to evaluate the cognitive performance and emotional response of the subject to a series of dichotomous questions describing various situations of daily life and challenging the users' knowledge, values, ethics, and principles. In industrial applications, the timing of this assessment will depend on the users' need to obtain a service from a provider, such as opening a bank account, getting a mortgage or an insurance policy, authenticating clearance at work, or securing online payments.Keywords: artificial intelligence, neurofinance, neuropsychology, risk management
Procedia PDF Downloads 1382604 Urban Heat Island Effects on Human Health in Birmingham and Its Mitigation
Authors: N. A. Parvin, E. B. Ferranti, L. A. Chapman, C. A. Pfrang
Abstract:
This study intends to investigate the effects of the Urban Heat Island on public health in Birmingham. Birmingham is located at the center of the West Midlands and its weather is Highly variable due to geographical factors. Residential developments, road networks and infrastructure often replace open spaces and vegetation. This transformation causes the temperature of urban areas to increase and creates an "island" of higher temperatures in the urban landscape. Extreme heat in the urban area is influencing public health in the UK as well as in the world. Birmingham is a densely built-up area with skyscrapers and congested buildings in the city center, which is a barrier to air circulation. We will investigate the city regarding heat and cold-related human mortality and other impacts. We are using primary and secondary datasets to examine the effect of population shift and land-use change on the UHI in Birmingham. We will also use freely available weather data from the Birmingham Urban Observatory and will incorporate satellite data to determine urban spatial expansion and its effect on the UHI. We have produced a temperature map based on summer datasets of 2020, which has covered 25 weather stations in Birmingham to show the differences between diurnal and nocturnal summer and annual temperature trends. Some impacts of the UHI may be beneficial, such as the lengthening of the plant growing season, but most of them are highly negative. We are looking for various effects of urban heat which is impacting human health and investigating mitigation options.Keywords: urban heat, public health, climate change
Procedia PDF Downloads 962603 Optimization of Process Parameters for Peroxidase Production by Ensifer Species
Authors: Ayodeji O. Falade, Leonard V. Mabinya, Uchechukwu U. Nwodo, Anthony I. Okoh
Abstract:
Given the high utility of peroxidase in several industrial processes, the search for novel microorganisms with enhanced peroxidase production capacity is of keen interest. This study investigated the process conditions for optimum peroxidase production by Ensifer sp, new ligninolytic proteobacteria with peroxidase production potential. Also, some agricultural residues were valorized for peroxidase production under solid state fermentation. Peroxidase production was optimum at an initial medium pH 7, incubation temperature of 30 °C and agitation speed of 100 rpm using alkali lignin fermentation medium supplemented with guaiacol as the most effective inducer and ammonium sulphate as the best inorganic nitrogen. Optimum peroxidase production by Ensifer sp. was attained at 48 h with specific productivity of 12.76 ± 1.09 U mg⁻¹. Interestingly, probable laccase production was observed with optimum specific productivity of 12.76 ± 0.45 U mg⁻¹ at 72 h. The highest peroxidase yield was observed with sawdust as solid substrate under solid state fermentation. In conclusion, Ensifer sp. possesses the capacity for enhanced peroxidase production that can be exploited for various biotechnological applications.Keywords: catalase-peroxidase, enzyme production, peroxidase, polymerase chain reaction, proteobacteria
Procedia PDF Downloads 3072602 R-Killer: An Email-Based Ransomware Protection Tool
Authors: B. Lokuketagoda, M. Weerakoon, U. Madushan, A. N. Senaratne, K. Y. Abeywardena
Abstract:
Ransomware has become a common threat in past few years and the recent threat reports show an increase of growth in Ransomware infections. Researchers have identified different variants of Ransomware families since 2015. Lack of knowledge of the user about the threat is a major concern. Ransomware detection methodologies are still growing through the industry. Email is the easiest method to send Ransomware to its victims. Uninformed users tend to click on links and attachments without much consideration assuming the emails are genuine. As a solution to this in this paper R-Killer Ransomware detection tool is introduced. Tool can be integrated with existing email services. The core detection Engine (CDE) discussed in the paper focuses on separating suspicious samples from emails and handling them until a decision is made regarding the suspicious mail. It has the capability of preventing execution of identified ransomware processes. On the other hand, Sandboxing and URL analyzing system has the capability of communication with public threat intelligence services to gather known threat intelligence. The R-Killer has its own mechanism developed in its Proactive Monitoring System (PMS) which can monitor the processes created by downloaded email attachments and identify potential Ransomware activities. R-killer is capable of gathering threat intelligence without exposing the user’s data to public threat intelligence services, hence protecting the confidentiality of user data.Keywords: ransomware, deep learning, recurrent neural networks, email, core detection engine
Procedia PDF Downloads 2152601 Optimal and Critical Path Analysis of State Transportation Network Using Neo4J
Authors: Pallavi Bhogaram, Xiaolong Wu, Min He, Onyedikachi Okenwa
Abstract:
A transportation network is a realization of a spatial network, describing a structure which permits either vehicular movement or flow of some commodity. Examples include road networks, railways, air routes, pipelines, and many more. The transportation network plays a vital role in maintaining the vigor of the nation’s economy. Hence, ensuring the network stays resilient all the time, especially in the face of challenges such as heavy traffic loads and large scale natural disasters, is of utmost importance. In this paper, we used the Neo4j application to develop the graph. Neo4j is the world's leading open-source, NoSQL, a native graph database that implements an ACID-compliant transactional backend to applications. The Southern California network model is developed using the Neo4j application and obtained the most critical and optimal nodes and paths in the network using centrality algorithms. The edge betweenness centrality algorithm calculates the critical or optimal paths using Yen's k-shortest paths algorithm, and the node betweenness centrality algorithm calculates the amount of influence a node has over the network. The preliminary study results confirm that the Neo4j application can be a suitable tool to study the important nodes and the critical paths for the major congested metropolitan area.Keywords: critical path, transportation network, connectivity reliability, network model, Neo4j application, edge betweenness centrality index
Procedia PDF Downloads 1342600 Low-Cost IoT System for Monitoring Ground Propagation Waves due to Construction and Traffic Activities to Nearby Construction
Authors: Lan Nguyen, Kien Le Tan, Bao Nguyen Pham Gia
Abstract:
Due to the high cost, specialized dynamic measurement devices for industrial lands are difficult for many colleges to equip for hands-on teaching. This study connects a dynamic measurement sensor and receiver utilizing an inexpensive Raspberry Pi 4 board, some 24-bit ADC circuits, a geophone vibration sensor, and embedded Python open-source programming. Gather and analyze signals for dynamic measuring, ground vibration monitoring, and structure vibration monitoring. The system may wirelessly communicate data to the computer and is set up as a communication node network, enabling real-time monitoring of background vibrations at various locations. The device can be utilized for a variety of dynamic measurement and monitoring tasks, including monitoring earthquake vibrations, ground vibrations from construction operations, traffic, and vibrations of building structures.Keywords: sensors, FFT, signal processing, real-time data monitoring, ground propagation wave, python, raspberry Pi 4
Procedia PDF Downloads 1032599 Optimization of High Flux Density Design for Permanent Magnet Motor
Authors: Dong-Woo Kang
Abstract:
This paper presents an optimal magnet shape of a spoke-shaped interior permanent magnet synchronous motor by using ferrite magnets. Generally, the permanent magnet motor used the ferrite magnets has lower output power and efficiency than a rare-earth magnet motor, because the ferrite magnet has lower magnetic energy than the rare-earth magnet. Nevertheless, the ferrite magnet motor is used to many industrial products owing to cost effectiveness. In this paper, the authors propose a high power density design of the ferrite permanent magnet synchronous motor. Furthermore, because the motor design has to be taken a manufacturing process into account, the design is simulated by using the finite element method for analyzing the demagnetization, the magnetizing, and the structure stiffness. Especially, the magnet shape and dimensions are decided for satisfying these properties. Finally, the authors design an optimal motor for applying our system. That final design is manufactured and evaluated from experimentations.Keywords: demagnetization, design optimization, magnetic analysis, permanent magnet motors
Procedia PDF Downloads 3772598 A Bibliometric Analysis on Filter Bubble
Authors: Misbah Fatma, Anam Saiyeda
Abstract:
This analysis charts the introduction and expansion of research into the filter bubble phenomena over the last 10 years using a large dataset of academic publications. This bibliometric study demonstrates how interdisciplinary filter bubble research is. The identification of key authors and organizations leading the filter bubble study sheds information on collaborative networks and knowledge transfer. Relevant papers are organized based on themes including algorithmic bias, polarisation, social media, and ethical implications through a systematic examination of the literature. In order to shed light on how these patterns have changed over time, the study plots their historical history. The study also looks at how research is distributed globally, showing geographic patterns and discrepancies in scholarly output. The results of this bibliometric analysis let us fully comprehend the development and reach of filter bubble research. This study offers insights into the ongoing discussion surrounding information personalization and its implications for societal discourse, democratic participation, and the potential risks to an informed citizenry by exposing dominant themes, interdisciplinary collaborations, and geographic patterns. In order to solve the problems caused by filter bubbles and to advance a more diverse and inclusive information environment, this analysis is essential for scholars and researchers.Keywords: bibliometric analysis, social media, social networking, algorithmic personalization, self-selection, content moderation policies and limited access to information, recommender system and polarization
Procedia PDF Downloads 1182597 Effectiveness of Participatory Ergonomic Education on Pain Due to Work Related Musculoskeletal Disorders in Food Processing Industrial Workers
Authors: Salima Bijapuri, Shweta Bhatbolan, Sejalben Patel
Abstract:
Ergonomics concerns the fitting of the environment and the equipment to the worker. Ergonomic principles can be employed in different dimensions of the industrial sector. Participation of all the stakeholders is the key to the formulation of a multifaceted and comprehensive approach to lessen the burden of occupational hazards. Taking responsibility for one’s own work activities by acquiring sufficient knowledge and potential to influence the practices and outcomes is the basis of participatory ergonomics and even hastens the process to identify workplace hazards. The study was aimed to check how participatory ergonomics can be effective in the management of work-related musculoskeletal disorders. Method: A mega kitchen was identified in a twin city of Karnataka, India. Consent was taken, and the screening of workers was done using observation methods. Kitchen work was structured to include different tasks, which included preparation, cooking, distributing, and serving food, packing food to be delivered to schools, dishwashing, cleaning and maintenance of kitchen and equipment, and receiving and storing raw material. Total 100 workers attended the education session on participatory ergonomics and its role in implementing the correct ergonomic practices, thus preventing WRMSDs. Demographic details and baseline data on related musculoskeletal pain and discomfort were collected using the Nordic pain questionnaire and VAS score pre- and post-study. Monthly visits were made, and the education sessions were reiterated on each visit, thus reminding, correcting, and problem-solving of each worker. After 9 months with a total of 4 such education session, the post education data was collected. The software SPSS 20 was used to analyse the collected data. Results: The majority of them (78%), depending on the availability and feasibility, participated in the intervention workshops were arranged four times. The average age of the participants was 39 years. The percentage of female participants was 79.49%, and 20.51% of participants comprised of males. The Nordic Musculoskeletal Questionnaire (NMQ) showed that knee pain was the most commonly reported complaint (62%) from the last 12 months with a mean VAS of 6.27, followed by low back pain. Post intervention, the mean VAS Score was reduced significantly to 2.38. The comparison of pre-post scores was made using Wilcoxon matched pairs test. Upon enquiring, it was found that, the participants learned the importance of applying ergonomics at their workplace which inturn was beneficial for them to handle any problems arising at their workplace on their own with self confidence. Conclusion: The participatory ergonomics proved effective with workers of mega kitchen, and it is a feasible and practical approach. The advantage of the given study area was that it had a sophisticated and ergonomically designed workstation; thus it was the lack of education and practical knowledge to use these stations was of utmost need. There was a significant reduction in VAS scores with the implementation of changes in the working style, and the knowledge of ergonomics helped to decrease physical load and improve musculoskeletal health.Keywords: ergonomic awareness session, mega kitchen, participatory ergonomics, work related musculoskeletal disorders
Procedia PDF Downloads 1382596 Adoption of Big Data by Global Chemical Industries
Authors: Ashiff Khan, A. Seetharaman, Abhijit Dasgupta
Abstract:
The new era of big data (BD) is influencing chemical industries tremendously, providing several opportunities to reshape the way they operate and help them shift towards intelligent manufacturing. Given the availability of free software and the large amount of real-time data generated and stored in process plants, chemical industries are still in the early stages of big data adoption. The industry is just starting to realize the importance of the large amount of data it owns to make the right decisions and support its strategies. This article explores the importance of professional competencies and data science that influence BD in chemical industries to help it move towards intelligent manufacturing fast and reliable. This article utilizes a literature review and identifies potential applications in the chemical industry to move from conventional methods to a data-driven approach. The scope of this document is limited to the adoption of BD in chemical industries and the variables identified in this article. To achieve this objective, government, academia, and industry must work together to overcome all present and future challenges.Keywords: chemical engineering, big data analytics, industrial revolution, professional competence, data science
Procedia PDF Downloads 852595 Navigating Urban Childcare Challenges: Perspectives of Dhaka City Parents
Authors: Md. Shafiullah
Abstract:
This study delves into the evolving landscape of urban childcare in Bangladesh, focusing on the experiences and challenges faced by parents in Dhaka city. This paper argues that the traditional childcare arrangement of city families is inadequate to meet the development needs of children. The study aims to explore the childcare challenges faced by urban parents as they transition from traditional family-based childcare networks to alternative caregiving arrangements amidst urbanization, economic shifts, and social transformations. Utilizing a mixed-method research approach, combining quantitative surveys (n = 200) and four qualitative interviews, the research examines the parental viewpoints on childcare practices and the role of societal norms and values. The study finds childcare crises in both the family and daycare settings. In family care, caregiving suffers from the less availability of grandparents, a lack of skills of caregivers, and a lack of child interaction. As for the daycare, it is affected by the absence of appropriate policies, a lack of quality, health and safety concerns, affordability issues, and cultural concerns. Additionally, the study highlights inadequacies in childcare policies and regulatory frameworks, calling for comprehensive reforms to address the childcare vacuum in urban areas. By shifting the focus from developed to developing countries, this study contributes to the literature and suggests policy implications for Bangladesh and beyond.Keywords: childcare, child development, childcare policy, daycare, Bangladesh
Procedia PDF Downloads 562594 Blockchain in Saudi E-Government: A Systematic Literature Review
Authors: Haitham Assiri, Priyadarsi Nanda
Abstract:
The world is gradually entering the fourth industrial revolution. E-Government services are scaling government operations across the globe. However, as promising as an e-Government system would be, it is also susceptible to malicious attacks if not properly secured. This study found out that, in Saudi Arabia, the e-Government website, Yesser is vulnerable to external attacks. Obviously, this can lead to a breach of data integrity and privacy. In this paper, a Systematic Literature Review was conducted to explore possible ways the Kingdom of Saudi Arabia can take necessary measures to strengthen its e-Government system using Blockchain. Blockchain is one of the emerging technologies shaping the world through its applications in finance, elections, healthcare, etc. It secures systems and brings more transparency. A total of 28 papers were selected for this SLR, and 19 of the papers significantly showed that blockchain could enhance the security and privacy of Saudi’s e-government system. Other papers also concluded that blockchain is effective, albeit with the integration of other technologies like IoT, AI and big data. These papers have been analysed to sieve out the findings and set the stage for future research into the subject.Keywords: blockchain, data integrity, e-government, security threats
Procedia PDF Downloads 2502593 Process Data-Driven Representation of Abnormalities for Efficient Process Control
Authors: Hyun-Woo Cho
Abstract:
Unexpected operational events or abnormalities of industrial processes have a serious impact on the quality of final product of interest. In terms of statistical process control, fault detection and diagnosis of processes is one of the essential tasks needed to run the process safely. In this work, nonlinear representation of process measurement data is presented and evaluated using a simulation process. The effect of using different representation methods on the diagnosis performance is tested in terms of computational efficiency and data handling. The results have shown that the nonlinear representation technique produced more reliable diagnosis results and outperforms linear methods. The use of data filtering step improved computational speed and diagnosis performance for test data sets. The presented scheme is different from existing ones in that it attempts to extract the fault pattern in the reduced space, not in the original process variable space. Thus this scheme helps to reduce the sensitivity of empirical models to noise.Keywords: fault diagnosis, nonlinear technique, process data, reduced spaces
Procedia PDF Downloads 2472592 Managing City Pipe Leaks through Community Participation Using a Web and Mobile Application in South Africa
Authors: Mpai Mokoena, Nsenda Lukumwena
Abstract:
South Africa is one of the driest countries in the world and is facing a water crisis. In addition to inadequate infrastructure and poor planning, the country is experiencing high rates of water wastage due to pipe leaks. This study outlines the level of water wastage and develops a smart solution to efficiently manage and reduce the effects of pipe leaks, while monitoring the situation before and after fixing the pipe leaks. To understand the issue in depth, a literature review of journal papers and government reports was conducted. A questionnaire was designed and distributed to the general public. Additionally, the municipality office was contacted from a managerial perspective. The analysis from the study indicated that the majority of the citizens are aware of the water crisis and are willing to participate positively to decrease the level of water wasted. Furthermore, the response from the municipality acknowledged that more practical solutions are needed to reduce water wastage, and resources to attend to pipe leaks swiftly. Therefore, this paper proposes a specific solution for municipalities, local plumbers and citizens to minimize the effects of pipe leaks. The solution provides web and mobile application platforms to report and manage leaks swiftly. The solution is beneficial to the country in achieving water security and would promote a culture of responsibility toward water usage.Keywords: urban distribution networks, leak management, mobile application, responsible citizens, water crisis, water security
Procedia PDF Downloads 1452591 Network Connectivity Knowledge Graph Using Dwave Quantum Hybrid Solvers
Authors: Nivedha Rajaram
Abstract:
Hybrid Quantum solvers have been given prime focus in recent days by computation problem-solving domain industrial applications. D’Wave Quantum Computers are one such paragon of systems built using quantum annealing mechanism. Discrete Quadratic Models is a hybrid quantum computing model class supplied by D’Wave Ocean SDK - a real-time software platform for hybrid quantum solvers. These hybrid quantum computing modellers can be employed to solve classic problems. One such problem that we consider in this paper is finding a network connectivity knowledge hub in a huge network of systems. Using this quantum solver, we try to find out the prime system hub, which acts as a supreme connection point for the set of connected computers in a large network. This paper establishes an innovative problem approach to generate a connectivity system hub plot for a set of systems using DWave ocean SDK hybrid quantum solvers.Keywords: quantum computing, hybrid quantum solver, DWave annealing, network knowledge graph
Procedia PDF Downloads 1272590 Wolof Voice Response Recognition System: A Deep Learning Model for Wolof Audio Classification
Authors: Krishna Mohan Bathula, Fatou Bintou Loucoubar, FNU Kaleemunnisa, Christelle Scharff, Mark Anthony De Castro
Abstract:
Voice recognition algorithms such as automatic speech recognition and text-to-speech systems with African languages can play an important role in bridging the digital divide of Artificial Intelligence in Africa, contributing to the establishment of a fully inclusive information society. This paper proposes a Deep Learning model that can classify the user responses as inputs for an interactive voice response system. A dataset with Wolof language words ‘yes’ and ‘no’ is collected as audio recordings. A two stage Data Augmentation approach is adopted for enhancing the dataset size required by the deep neural network. Data preprocessing and feature engineering with Mel-Frequency Cepstral Coefficients are implemented. Convolutional Neural Networks (CNNs) have proven to be very powerful in image classification and are promising for audio processing when sounds are transformed into spectra. For performing voice response classification, the recordings are transformed into sound frequency feature spectra and then applied image classification methodology using a deep CNN model. The inference model of this trained and reusable Wolof voice response recognition system can be integrated with many applications associated with both web and mobile platforms.Keywords: automatic speech recognition, interactive voice response, voice response recognition, wolof word classification
Procedia PDF Downloads 1162589 Load-Enabled Deployment and Sensing Range Optimization for Lifetime Enhancement of WSNs
Authors: Krishan P. Sharma, T. P. Sharma
Abstract:
Wireless sensor nodes are resource constrained battery powered devices usually deployed in hostile and ill-disposed areas to cooperatively monitor physical or environmental conditions. Due to their limited power supply, the major challenge for researchers is to utilize their battery power for enhancing the lifetime of whole network. Communication and sensing are two major sources of energy consumption in sensor networks. In this paper, we propose a deployment strategy for enhancing the average lifetime of a sensor network by effectively utilizing communication and sensing energy to provide full coverage. The proposed scheme is based on the fact that due to heavy relaying load, sensor nodes near to the sink drain energy at much faster rate than other nodes in the network and consequently die much earlier. To cover this imbalance, proposed scheme finds optimal communication and sensing ranges according to effective load at each node and uses a non-uniform deployment strategy where there is a comparatively high density of nodes near to the sink. Probable relaying load factor at particular node is calculated and accordingly optimal communication distance and sensing range for each sensor node is adjusted. Thus, sensor nodes are placed at locations that optimize energy during network operation. Formal mathematical analysis for calculating optimized locations is reported in present work.Keywords: load factor, network lifetime, non-uniform deployment, sensing range
Procedia PDF Downloads 3832588 Hydrological Evaluation of Satellite Precipitation Products Using IHACRES Rainfall-Runoff Model over a Basin in Iran
Authors: Mahmoud Zakeri Niri, Saber Moazami, Arman Abdollahipour, Hossein Ghalkhani
Abstract:
The objective of this research is to hydrological evaluation of four widely-used satellite precipitation products named PERSIANN, TMPA-3B42V7, TMPA-3B42RT, and CMORPH over Zarinehrood basin in Iran. For this aim, at first, daily streamflow of Sarough-cahy river of Zarinehrood basin was simulated using IHACRES rainfall-runoff model with daily rain gauge and temperature as input data from 1988 to 2008. Then, the model was calibrated in two different periods through comparison the simulated discharge with the observed one at hydrometric stations. Moreover, in order to evaluate the performance of satellite precipitation products in streamflow simulation, the calibrated model was validated using daily satellite rainfall estimates from the period of 2003 to 2008. The obtained results indicated that TMPA-3B42V7 with CC of 0.69, RMSE of 5.93 mm/day, MAE of 4.76 mm/day, and RBias of -5.39% performs better simulation of streamflow than those PERSIANN and CMORPH over the study area. It is noteworthy that in Iran, the availability of ground measuring station data is very limited because of the sparse density of hydro-meteorological networks. On the other hand, large spatial and temporal variability of precipitations and lack of a reliable and extensive observing system are the most important challenges to rainfall analysis, flood prediction, and other hydrological applications in this country.Keywords: hydrological evaluation, IHACRES, satellite precipitation product, streamflow simulation
Procedia PDF Downloads 2412587 Assessing Climate-Induced Species Range Shifts and Their Impacts on the Protected Seascape on Canada’s East Coast Using Species Distribution Models and Future Projections
Authors: Amy L. Irvine, Gabriel Reygondeau, Derek P. Tittensor
Abstract:
Marine protected areas (MPAs) within Canada’s exclusive economic zone help ensure the conservation and sustainability of marine ecosystems and the continued provision of ecosystem services to society (e.g., food, carbon sequestration). With ongoing and accelerating climate change, however, MPAs may become undermined in terms of their effectiveness at fulfilling these outcomes. Many populations of species, especially those at their thermal range limits, may shift to cooler waters or become extirpated due to climate change, resulting in new species compositions and ecological interactions within static MPA boundaries. While Canadian MPA management follows international guidelines for marine conservation, no consistent approach exists for adapting MPA networks to climate change and the resulting altered ecosystem conditions. To fill this gap, projected climate-driven shifts in species distributions on Canada’s east coast were analyzed to identify when native species emigrate and novel species immigrate within the network and how high mitigation and carbon emission scenarios influence these timelines. Indicators of the ecological changes caused by these species' shifts in the biological community were also developed. Overall, our research provides projections of climate change impacts and helps to guide adaptive management responses within the Canadian east coast MPA network.Keywords: climate change, ecosystem modeling, marine protected areas, management
Procedia PDF Downloads 1002586 A BERT-Based Model for Financial Social Media Sentiment Analysis
Authors: Josiel Delgadillo, Johnson Kinyua, Charles Mutigwe
Abstract:
The purpose of sentiment analysis is to determine the sentiment strength (e.g., positive, negative, neutral) from a textual source for good decision-making. Natural language processing in domains such as financial markets requires knowledge of domain ontology, and pre-trained language models, such as BERT, have made significant breakthroughs in various NLP tasks by training on large-scale un-labeled generic corpora such as Wikipedia. However, sentiment analysis is a strong domain-dependent task. The rapid growth of social media has given users a platform to share their experiences and views about products, services, and processes, including financial markets. StockTwits and Twitter are social networks that allow the public to express their sentiments in real time. Hence, leveraging the success of unsupervised pre-training and a large amount of financial text available on social media platforms could potentially benefit a wide range of financial applications. This work is focused on sentiment analysis using social media text on platforms such as StockTwits and Twitter. To meet this need, SkyBERT, a domain-specific language model pre-trained and fine-tuned on financial corpora, has been developed. The results show that SkyBERT outperforms current state-of-the-art models in financial sentiment analysis. Extensive experimental results demonstrate the effectiveness and robustness of SkyBERT.Keywords: BERT, financial markets, Twitter, sentiment analysis
Procedia PDF Downloads 1522585 Hybrid Sol-Gel Coatings for Corrosion Protection of AA6111-T4 Aluminium Alloy
Authors: Shadatul Hanom Rashid, Xiaorong Zhou
Abstract:
Hybrid sol-gel coatings are the blend of both advantages of inorganic and organic networks have been reported as environmentally friendly anti-corrosion surface pre-treatment for several metals, including aluminum alloys. In this current study, Si-Zr hybrid sol-gel coatings were synthesized from (3-glycidoxypropyl)trimethoxysilane (GPTMS), tetraethyl orthosilicate (TEOS) and zirconium(IV) propoxide (TPOZ) precursors and applied on AA6111 aluminum alloy by dip coating technique. The hybrid sol-gel coatings doped with different concentrations of cerium nitrate (Ce(NO3)3) as a corrosion inhibitor were also prepared and the effect of Ce(NO3)3 concentrations on the morphology and corrosion resistance of the coatings were examined. The surface chemistry and morphology of the hybrid sol-gel coatings were analyzed by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The corrosion behavior of the coated aluminum alloy samples was evaluated by electrochemical impedance spectroscopy (EIS). Results revealed that good corrosion resistance of hybrid sol-gel coatings were prepared from hydrolysis and condensation reactions of GPTMS, TEOS and TPOZ precursors deposited on AA6111 aluminum alloy. When the coating doped with cerium nitrate, the properties were improved significantly. The hybrid sol-gel coatings containing lower concentration of cerium nitrate offer the best inhibition performance. A proper doping concentration of Ce(NO3)3 can effectively improve the corrosion resistance of the alloy, while an excessive concentration of Ce(NO3)3 would reduce the corrosion protection properties, which is associated with defective morphology and instability of the sol-gel coatings.Keywords: AA6111, Ce(NO3)3, corrosion, hybrid sol-gel coatings
Procedia PDF Downloads 1582584 Phytoremediation Potential of Hibiscus Cannabinus L. Grown on Different Soil Cadmium Concentration
Authors: Sarra Arbaoui, Taoufik Bettaieb
Abstract:
Contaminated soils and problems related to them have increasingly become a matter of concern. The most common the contaminants generated by industrial urban emissions and agricultural practices are trace metals). Remediation of trace metals which pollute soils can be carried out using physico-chemical processes. Nevertheless, these techniques damage the soil’s biological activity and require expensive equipment. Phytoremediation is a relatively low-cost technology based on the use of selected plants to remove, degrades or contains pollutants. The potential of kenaf for phytoremediation on Cd-contaminated soil was investigated. kenaf plants have been grown in pots containing different concentrations of cadmium. The observations made were for biomass production and cadmium content in different organs determinate by atomic emission spectrometry. Cadmium transfer from a contaminated soil to plants and into plant tissues are discussed in terms of the Bioconcentration Factor (BCF) and the Transfer Factor (TF). Results showed that Cd was found in kenaf plants at different levels. Tolerance and accumulation potential and biomass productivity indicated that kenaf could be used in phytoremediation.Keywords: kenaf, cadmium, phytoremediation, contaminated soil
Procedia PDF Downloads 5252583 Estimation of Time Loss and Costs of Traffic Congestion: The Contingent Valuation Method
Authors: Amira Mabrouk, Chokri Abdennadher
Abstract:
The reduction of road congestion which is inherent to the use of vehicles is an obvious priority to public authority. Therefore, assessing the willingness to pay of an individual in order to save trip-time is akin to estimating the change in price which was the result of setting up a new transport policy to increase the networks fluidity and improving the level of social welfare. This study holds an innovative perspective. In fact, it initiates an economic calculation that has the objective of giving an estimation of the monetized time value during the trips made in Sfax. This research is founded on a double-objective approach. The aim of this study is to i) give an estimation of the monetized value of time; an hour dedicated to trips, ii) determine whether or not the consumer considers the environmental variables to be significant, iii) analyze the impact of applying a public management of the congestion via imposing taxation of city tolls on urban dwellers. This article is built upon a rich field survey led in the city of Sfax. With the use of the contingent valuation method, we analyze the “declared time preferences” of 450 drivers during rush hours. Based on the fond consideration of attributed bias of the applied method, we bring to light the delicacy of this approach with regards to the revelation mode and the interrogative techniques by following the NOAA panel recommendations bearing the exception of the valorization point and other similar studies about the estimation of transportation externality.Keywords: willingness to pay, contingent valuation, time value, city toll
Procedia PDF Downloads 434