Search results for: soil microbial biomass
1243 Evaluation of Drained Shear Strength of Bentonite-Sand Mixtures
Authors: Navid Khayat
Abstract:
Drained shear strength of saturated soils is fully understood. Shear strength of unsaturated soils is usually expressed in terms of soil suction. Evaluation of shear strength of compacted mixtures of sand-bentonite at optimum water content is main purpose of this research. To prepare the required samples, first, bentonite and sand are mixed in 10, 30, 50 and 70 percent by dry weight and then compacted at the proper optimum water content according to the standard proctor test. The samples were sheared in direct shear machine. Stress-strain relationship of samples indicated a ductile behavior. Most of the samples showed a dilatancy behavior during the shear and the tendency for dilatancy increased with the increase in sand proportion. The results show that with the increase in percentage of sand a decrease in cohesion intercept c' for mixtures and an increase in the angle of internal friction Φ’is observed.Keywords: bentonite, sand, drained shear strength, cohesion intercept
Procedia PDF Downloads 3191242 A GIS Based Composite Land Degradation Assessment and Mapping of Tarkwa Mining Area
Authors: Bernard Kumi-Boateng, Kofi Bonsu
Abstract:
The clearing of vegetation in the Tarkwa Mining Area (TMA) for the purposes of mining, lumbering and development of settlement for the increasing population has caused a large scale denudation of the forest cover and erosion of the top soil thereby degrading the agriculture land. It is, therefore, essential to know the current status of land degradation in TMA so as to facilitate land conservation policy-making. The types of degradation, the extents of the degradations and their various degrees were combined to develop a composite land degradation index to assess the current status of land degradation in TMA using GIS based techniques. The assessment revealed that the most significant types of degradation in TMA were open pit and quarry mining; urbanisation and other construction projects; and surface scraping during land clearing. It was found that 21.62 % of the total area of TMA (353.07 km2) had high degradation index rating. It is recommended that decision makers use this assessment as a reference point for future initiatives that will be taken in order to develop land conservation policy.Keywords: degradation, GIS, land, mining
Procedia PDF Downloads 3541241 The Role of the Gut Microbiome of Marine Invertebrates in the Degradation of Complex Algal Substrates
Authors: Yuchen LI, Martyn Kurr, Peter Golyshin
Abstract:
Biological invasion is a global problem. Invasive species can threaten local ecosystems by competing for resources, consuming local species, and reproducing faster than natives. Sargassum muticum is an invasive algae in the UK. It negatively impacts local algae through overshading and can cause reductions in local biodiversity. One possibility for its success is herbivore release. According to the Enemy Release Hypothesis, invasives are less impacted by local herbivores than natives. In many species, gastrointestinal (GI) tract microbes have been found as a key factor in food preference and similar mechanisms may exist in the relationship between local consumers and S. muticum. Some populations of native Littorina snails accept S. muticum as a food source, while others avoid it. This project aims to establish the relationship between GI tract microbes and the feeding preferences of L. littorea, when offered both native algae and S. muticum. Individuals of L. littorea from a site invaded by S. muticum around 18 years ago were compared to those from an un-invaded site nearby. Sargassum-experienced snails are more likely to consume it than those naïve, and pronounced differences were found in the GI-tract microbial communities through 16S (prokaryote) and 18S (eukaryote) sequencing. Sargassum-naïve snails were then exposed to a faecal pellets from experienced snails to ‘inoculate’ them with microbes from the exposed snails. Preliminary results suggest these faecal-pellet-exposed but otherwise Sargassum-naïve snails subsequently begun consuming S. muticum. It is unclear if these results are due to genuine changes in GI-tract microbes or through some other mechanism, such as behavioural responses to chemical cues in the faecal pellets, but these results are nevertheless of significance for invasive ecology, suggesting that foraging preferences for an invasive prey type are malleable and possibly programmable in laboratory settings.Keywords: invasive algae, sea snails, gut microbiome, biocontrol
Procedia PDF Downloads 851240 Prospects of Milk Protein as a Potential Alternative of Natural Antibiotic
Authors: Syeda Fahria Hoque Mimmi
Abstract:
Many new and promising treatments for reducing or diminishing the adverse effects of microorganisms are being discovered day by day. On the other hand, the dairy industry is accelerating the economic wheel of Bangladesh. Considering all these facts, new thoughts were developed to isolate milk proteins by the present experiment for opening up a new era of developing natural antibiotics from milk. Lactoferrin, an iron-binding glycoprotein with multifunctional properties, is crucial to strengthening the immune system and also useful for commercial applications. The protein’s iron-binding capacity makes it undoubtedly advantageous to immune system modulation and different bacterial strains. For fulfilling the purpose, 4 of raw and 17 of commercially available milk samples were collected from different farms and stores in Bangladesh (Dhaka, Chittagong, and Cox’s Bazar). Protein quantification by nanodrop technology has confirmed that raw milk samples have better quantities of protein than the commercial ones. All the samples were tested for their antimicrobial activity against 18 pathogens, where raw milk samples showed a higher percentage of antibacterial activity. In addition to this, SDS-PAGE (Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis) was performed to identify lactoferrin in the milk samples. Lactoferrin was detected in 9 samples from which 4 were raw milk samples. Interestingly, Streptococcus pyogenes, Klebsiella pneumoniae, Bacillus cereus, Pseudomonas aeruginosa, Vibrio cholera, Staphylococcus aureus, and enterotoxigenic E. coli significantly displayed sensitivity against lactoferrin collected from raw milk. Only Bacillus cereus, Pseudomonas aeruginosa, Streptococcus pneumonia, Enterococcus faecalis, and ETEC (Enterotoxigenic Escherichia coli) were susceptible to lactoferrin obtained from a commercial one. This study suggested that lactoferrin might be used as the potential alternative of antibiotics for many diseases and also can be used to reduce microbial deterioration in the food and feed industry.Keywords: alternative of antibiotics, commercially available milk, lactoferrin, nanodrop technology, pathogens, raw milk
Procedia PDF Downloads 1801239 Evaluation of Chitin Filled Epoxy Coating for Corrosion Protection of Q235 Steel in Saline Environment
Authors: Innocent O. Arukalam, Emeka E. Oguzie
Abstract:
Interest in the development of eco-friendly anti-corrosion coatings using bio-based renewable materials is gaining momentum recently. To this effect, chitin biopolymer, which is non-toxic, biodegradable, and inherently possesses anti-microbial property, was successfully synthesized from snail shells and used as a filler in the preparation of epoxy coating. The chitin particles were characterized with contact angle goniometer, scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectrophotometer, and X-ray diffractometer (XRD). The performance of the coatings was evaluated by immersion and electrochemical impedance spectroscopy (EIS) tests. Electronic structure properties of the coating ingredients and molecular level interaction of the corrodent and coated Q235 steel were appraised by quantum chemical computations (QCC) and molecular dynamics (MD) simulation techniques, respectively. The water contact angle (WCA) measurement of chitin particles was found to be 129.3o while that of chitin particles modified with amino trimethoxy silane (ATMS) was 149.6o, suggesting it is highly hydrophobic. Immersion and EIS analyses revealed that epoxy coating containing silane-modified chitin exhibited lowest water absorption and highest barrier as well as anti-corrosion performances. The QCC showed that quantum parameters for the coating containing silane-modified chitin are optimum and therefore corresponds to high corrosion protection. The high negative value of adsorption energies (Eads) for the coating containing silane-modified chitin indicates the coating molecules interacted and adsorbed strongly on the steel surface. The observed results have shown that silane-modified epoxy-chitin coating would perform satisfactorily for surface protection of metal structures in saline environment.Keywords: chitin, EIS, epoxy coating, hydrophobic, molecular dynamics simulation, quantum chemical computation
Procedia PDF Downloads 991238 Thermo-Hydro-Mechanical Modeling of Landfill Behavior
Authors: Mahtab Delfan Azari, Ali Noorzad, Ahmadreza Mahboubi Ardakani
Abstract:
Municipal solid waste landfills have relatively high temperature which is caused by anaerobic and aerobic degradation. The temperature that is produced is almost 40-70°C. Since this temperature will remain for many years, considering it for studying landfill behavior and its soil is so important. By considering the temperature of landfill, the obtained results will become more logical and more realistic. Vertical displacement and differential settlement are two important values which are studied here. Differential displacements could expand cracks in liner and cover. If cracks appear in the liner, the leachate and gases will propagate to media and hence should be noticed carefully. The present research is focused on the thermo-hydro-mechanical modeling of landfill with finite element method. First, the heat transfer of the landfill is modeled and the temperature is estimated. Then, the results of thermo-hydro-mechanical results are presented to investigate landfill behavior more accurately.Keywords: finite element method, heat transfer, landfill behavior, thermo-hydro-mechanical modeling
Procedia PDF Downloads 3481237 Response of Post-harvest Treatments on Shelf Life, Biochemical and Microbial Quality of Banana Variety Red Banana
Authors: Karishma Sebastian, Pavethra A., Manjula B. S., K. N. Satheeshan, Jenita Thinakaran
Abstract:
Red Banana is a popular variety of banana with strong market demand. Its ripe fruits are less resistant to transportation, complicating logistics. Moreover, as it is a climacteric fruit, its post-harvest shelf life is limited. The current study aimed to increase the postharvest shelf life of Red Banana fruits by adopting different postharvest treatments. Fruit bunches of Red Banana were harvested at the mature green stage, separated into hands, precooled, subjected to 12 treatments, and stored in Corrugated Fibre Board boxes till the end of shelf life under ambient conditions. Fruits coated with 10% bee wax + 0.5% clove oil (T₄), fruits subjected to coating with 10% bee wax and packaging with potassium permanganate (T₉), and fruits dipped in hot water at 50°C for 10 minutes and packaging with potassium permanganate (T₁₁) registered the highest shelf life of 18.67 days. The highest TSS of 26.33°Brix was noticed in fruits stored with potassium permanganate (T₈) after 12.67 days of storage, and lowest titratable acidity of 0.19%, and the highest sugar-acid ratio of 79.76 was noticed in control (T₁₂) after 11.33 days of storage. Moreover, the highest vitamin C content (7.74 mg 100 g⁻¹), total sugar content (18.47%), reducing sugar content (15.49%), total carotenoid content (24.13 µg 100 g-¹) was noticed in treatments T₇ (hot water dipping at 50 °C for 10 minutes) after 17.67 days, T₁₀ (coating with 40% aloe vera extract and packaged with potassium permanganate) after 13.33 days, T₄ (coating with 10% bee wax + 0.5% clove oil) after 18.67 days and T₉ (coating with 10% bee wax + potassium permanganate) after 18.67 days of storage respectively. Furthermore, the lowest fungal and bacterial counts were observed in treatments T₂ (dipping in 30ppm sodium hypochlorite solution), T₇ (hot water dipping at 50 °C for 10 minutes), T₉ (coating with 10% bee wax + potassium permanganate), and T₁₀ (coating with 40% aloe vera extract + potassium permanganate).Keywords: bee wax, post-harvest treatments, potassium permanganate, Red Banana, shelf life
Procedia PDF Downloads 491236 Rapid Assessment the Ability of Forest Vegetation in Kulonprogo to Store Carbon Using Multispectral Satellite Imagery and Vegetation Index
Authors: Ima Rahmawati, Nur Hafizul Kalam
Abstract:
Development of industrial and economic sectors in various countries very rapidly caused raising the greenhouse gas (GHG) emissions. Greenhouse gases are dominated by carbon dioxide (CO2) and methane (CH4) in the atmosphere that make the surface temperature of the earth always increase. The increasing gases caused by incomplete combustion of fossil fuels such as petroleum and coals and also high rate of deforestation. Yogyakarta Special Province which every year always become tourist destination, has a great potency in increasing of greenhouse gas emissions mainly from the incomplete combustion. One of effort to reduce the concentration of gases in the atmosphere is keeping and empowering the existing forests in the Province of Yogyakarta, especially forest in Kulonprogro is to be maintained the greenness so that it can absorb and store carbon maximally. Remote sensing technology can be used to determine the ability of forests to absorb carbon and it is connected to the density of vegetation. The purpose of this study is to determine the density of the biomass of forest vegetation and determine the ability of forests to store carbon through Photo-interpretation and Geographic Information System approach. Remote sensing imagery that used in this study is LANDSAT 8 OLI year 2015 recording. LANDSAT 8 OLI imagery has 30 meters spatial resolution for multispectral bands and it can give general overview the condition of the carbon stored from every density of existing vegetation. The method is the transformation of vegetation index combined with allometric calculation of field data then doing regression analysis. The results are model maps of density and capability level of forest vegetation in Kulonprogro, Yogyakarta in storing carbon.Keywords: remote sensing, carbon, kulonprogo, forest vegetation, vegetation index
Procedia PDF Downloads 3971235 Subcritical and Supercritical Water Gasification of Xylose
Authors: Shyh-Ming Chern, Te-Hsiu Tang
Abstract:
Hemicellulose is one of the major constituents of all plant cell walls, making up 15-25% of dry wood. It is a biopolymer from many different sugar monomers, including pentoses, like xylose, and hexoses, like mannose. In an effort to gasify real biomass in subcritical and supercritical water in a single process, it is necessary to understand the gasification of hemicellulose, in addition to cellulose and lignin, in subcritical and supercritical water. In the present study, xylose is chosen as the model compound for hemicellulose, since it has the largest amount in most hardwoods. Xylose is gasified in subcritical and supercritical water for the production of higher-valued gaseous products. Experiments were conducted with a 16-ml autoclave batch-type reactor. Hydrogen peroxide is adopted as the oxidant in an attempt to promote the gasification yield. The major operating parameters for the gasification include reaction temperature (400 - 600°C), reaction pressure (5 - 25 MPa), the concentration of xylose (0.05 and 0.30 M), and level of oxidant added (0 and 0.25 chemical oxygen demand). 102 experimental runs were completed out of 46 different set of experimental conditions. Product gases were analyzed with a GC-TCD and determined to be mainly composed of H₂ (10 – 74 mol. %), CO (1 – 56 mol. %), CH₄ (1 – 27 mol. %), CO₂ (10 – 50 mol. %), and C₂H₆ (0 – 8 mol. %). It has been found that the gas yield (amount of gas produced per gram of xylose gasified), higher heating value (HHV) of the dry product gas, and energy yield (energy stored in the product gas divided by the energy stored in xylose) all increase significantly with rising temperature and moderately with reducing pressure. The overall best operating condition occurred at 873 K and 10 MPa, with a gas yield of 54 mmol/g of xylose, a gas HHV of 440 kJ/mol, and an energy yield of 1.3. A seemingly unreasonably energy yield of greater than unity resulted from the external heating employed in the experiments to drive the gasification process. It is concluded that xylose can be completely gasified in subcritical and supercritical water under proper operating conditions. The addition of oxidant does not promote the gasification of xylose.Keywords: gasification, subcritical water, supercritical water, xylose
Procedia PDF Downloads 2391234 Raising Awareness among Residents about the Exact Fate of Dirt in the Neighborhood of Porto Belo
Authors: Marie Oslène Honorat
Abstract:
Porto Belo is a neighborhood in the city of Foz do Iguaçu / PR, located in the Vila C region of Brazil. It is a project that addresses the question of the dirt generated by the neighborhood community about how they dispose and recycle domestic waste. This project aimed at raising awareness among residents, on how important it is to preserve the environment and take care, especially of the space in which we are located. Living this way manages to minimize the exploitation of natural resources, soil and water pollution. After collecting information about what one saw, we questioned some people in the neighborhood to find out about selective collection, recycling, and the separation and final destination of garbage. From the study, it was possible to verify the importance of placing more trash cans on neighborhood streets, where garbage is discarded, and the importance of promoting environmental education to improve the environment and quality of life. The methodology used in this research was a qualitative methodology that seeks the principle of transforming reality through investigation.Keywords: awareness, recycling, selective collection, waste disposal
Procedia PDF Downloads 641233 Use of Dendrochronology in Estimation of Creep Velocity and Its Dependence on the Bulk Density of Soils
Authors: Mohammad Amjad Sabir, Ishtiaq Khan, Shahid Ali, Umar Shabbir, Aneel Ahmad
Abstract:
Creep, being the main silt contributor to the rivers, is a slow, downhill flow of soils. The creep velocity is measured in millimeters to a couple of centimeters per year and is determined with the help of tilt caused by creep in the vertical objects and needs at least ten years to get a reliable creep velocity. This project was devised to calculate creep velocity using dendrochronology and looking for the difference of creep velocity registered by different trees on the same slope. It was concluded that dendrochronology provides a very reliable procedure of creep velocity estimation if ‘J’ shaped trees are studied for their horizontal movement and age. The age of these trees was measured using tree coring, and the horizontal movement was measured with a conventional tape. Using this procedure it does not require decades and additionally the data reveals the creep velocity for up to 150 years and even more instead of just a decade. It was also concluded that the creep velocity does not only depend on bulk density of soil hence no pronounced effect of bulk density was detected.Keywords: creep velocity, Galiyat, Pakistan, dendrochronology, Nagri Bala
Procedia PDF Downloads 3151232 Bacteriological Quality and Physicochemical Water Beaches of the City of Annaba (Mediterranean Sea)
Authors: Wahiba Boudraa, Farah Chettibbi, Meriem Aberkane, Fatma Djamaa, Moussa Houhamdi
Abstract:
The intensity of human activities in regions surrounding the Mediterranean Sea always has a strong long-term environmental impact resulting in coastal and marine degradation, as well as an aggravated risk of more serious damage. The available data on water quality show that most water resources in Algeria are polluted by uncontrolled discharges from municipal sewage and untreated industrial effluents. Annaba is a coastal town in Algeria; The Gulf of Annaba, responds to these changes as it receives the continental inputs and urban waste, industrial without prior treatment of a highly industrialized and urbanized city, subject to the same environmental problems that know the rest of the Algerian coast. In later year, the beaches of bacterial enumeration process waters showed relatively high levels of bacterial indicators of fecal contamination (group D streptococci, total and fecal coliforms), which reflect the risks to people attending these beaches. During the twelve months of our study, we isolated from three beaches in the city of Annaba (St. Cloud, El-Kettara, and Djenane El Bey) a number of pathogenic microorganisms considered, namely: Salmonella, Aeromonas, Citrobacter, Yersinia, Enterococcus, and E.coli. The microbial count revealed elevated levels of coliform bacteria, fecal coliforms and fecal streptococci quite high especially in urban beaches (St. Cloud and El-Kettara). They are widely popular during the summer by many vacationers. For the physico-chemical parameters, there exist some weak values which increase during the pluvial period, hivernal and festival saison. These values remain, nevertheless, weak to be able to cause an organic or metallic pollution.Keywords: quality microbiology, pollution of water, fecal contamination, physico-chemistry, beaches of Annaba city, Algeria.
Procedia PDF Downloads 3451231 Somatic Hybridization of between Citrus and Murraya paniculata Cells Applied by Electro-Fusion
Authors: Hasan Basri Jumin
Abstract:
Protoplasts isolated from embryogenic callus of Citrus sinensis were electrically used with mesophyll protoplasts isolated from seedless Citrus relatives. Hybrid of somatic embryos plantlets was obtained after 7 months of culture. Somatic hybrid plants were regenerated into normal seedlings and successfully transferred to soil after strictly acclimatization in the glass pot. The somatic hybrid plants were obtained by screening on the basis of chromosomes count. The number of chromosome of root tip counting revealed plantlets tetraploids (2n = 4x = 36) and the other were diploids (2n = 2x = 18) morphologically resembling the mesophyll parent. This somatic hybrid will be utilized as a possible pollen parent for improving the Citrus sinensis. A complete protoplast-to-plant system of somatic hybrid was developed for Citrus sinensis and Citrus relatives which could facilitate the transfer of nuclear and cytoplasmic genes from this species into cultivated Citrus through protoplast fusion.Keywords: chromosome, Murraya paniculata, protoplast fusion, somatic hybrid, tetrapoliod
Procedia PDF Downloads 3411230 Numerical Study of Modulus of Subgrade Reaction in Eccentrically Loaded Circular Footing Resting
Authors: Seyed Abolhasan Naeini, Mohammad Hossein Zade
Abstract:
This article is an attempt to present a numerically study of the behaviour of an eccentrically loaded circular footing resting on sand to determine its ultimate bearing capacity. A surface circular footing of diameter 12 cm (D) was used as shallow foundation. For this purpose, three dimensional models consist of foundation, and medium sandy soil was modelled by ABAQUS software. Bearing capacity of footing was evaluated and the effects of the load eccentricity on bearing capacity, its settlement, and modulus of subgrade reaction were studied. Three different values of load eccentricity with equal space from inside the core on the core boundary and outside the core boundary, which were respectively e=0.75, 1.5, and 2.25 cm, were considered. The results show that by increasing the load eccentricity, the ultimate load and the modulus of subgrade reaction decreased.Keywords: circular foundation, sand, eccentric loading, modulus of subgrade reaction
Procedia PDF Downloads 3461229 Control of Staphylococcus aureus in Meat System by in situ and ex situ Bacteriocins from Lactobacillus sakei and Pediococcus spp.
Authors: M. Naimi, M. B. Khaled
Abstract:
The present study consisted of an applied test in meat system to assess the effectiveness of three bio agents bacteriocinproducing strains: Lm24: Lactobacillus sakei, Lm14and Lm25: Pediococcus spp. Two tests were carried out: The ex-situ test was intended for three batches added with crude bacteriocin solutions at 12.48 AU/ml for Lm25 and 8.4 AU/ml for Lm14 and Lm24. However, the in situ one consisted of four batches; three of them inoculated with one bacteriocinogenic Lm25, Lm14, Lm24, respectively. The fourth one was used in mixture: Lm14+m24 at approximately of 107 CFU/ml. The two used tests were done in the presence of the pathogen St. aureus ATCC 6538, as a test strain at 103 CFU/ml. Another batch served as a positive or a negative control was used too. The incubation was performed at 7°C. Total viable counts, staphylococci and lactic acid bacteria, at the beginning and at selected times with interval of three days were enumerated. Physicochemical determinations (except for in situ test): pH, dry mater, sugars, fat and total protein, at the beginning and at end of the experiment, were done, according to the international norms. Our results confirmed the ex situ effectiveness. Furthermore, the batches affected negatively the total microbial load over the incubation days, and showed a significant regression in staphylococcal load at day seven, for Lm14, Lm24, and Lm25 of 0.73, 2.11, and 2.4 log units. It should be noticed that, at the last day of culture, staphylococcal load was nil for the three batches. In the in situ test, the cultures displayed less inhibitory attitude and recorded a decrease in staphylococcal load, for Lm14, Lm24, Lm25, Lm14+m24 of 0.73, 0.20, 0.86, 0.032 log units. Therefore, physicochemical analysis for Lm14, Lm24, Lm25, Lm14+m24 showed an increase in pH from 5.50 to 5.77, 6.18, 5.96, 7.22, a decrease in dry mater from 7.30% to 7.05%, 6.87%, 6.32%, 6.00%.This result reflects the decrease in fat ranging from 1.53% to 1.49%, 1.07%, 0.99%, 0.87%; and total protein from 6.18% to 5.25%, 5.56%, 5.37%, 5.5%. This study suggests that the use of selected strains as Lm25 could lead to the best results and would help in preserving and extending the shelf life of lamb meat.Keywords: biocontrol, in situ, ex situ, meat system, St. aureus, Lactobacillus sakei, Pediococcus spp.
Procedia PDF Downloads 1981228 Biomimetic Strategies to Design Non-Toxic Antimicrobial Textiles
Authors: Isabel Gouveia
Abstract:
Antimicrobial textile materials may significantly reduce the risk of infections and because they are able to absorb substances from the skin and release therapeutic compounds to the skin, they can also find applications as complementary therapy of skin-diseases as part of standard management. Although functional textiles may be a promising area in skin disease/injury management, as part of standard management, few offer complementary treatment even though they are well known to reduce scratching and aiding emollient absorption, reducing infection, and alleviating pruritus. The reason for this may rely on the low quality of supporting evidence and negative effect that antimicrobial agents may exert on skin microbiome, as for example additional irritation of the vulnerable skin, and by causing resistant bacteria. Several antimicrobial agents have been tested in textiles: quaternary ammonium compounds, silver, polyhexamethylene-biguanides and triclosan have been used, with success. They have powerful bactericidal activity but the majority have a reduce spectrum of microbial inhibition and may cause skin irritation, ecotoxicity and bacteria resistance. Furthermore, the rising flow of strains resistant to last-resort antibiotics rekindles interest in alternative strategies. In this regard, new functional textiles incorporating highly specific antimicrobial agents towards pathogenic bacteria, are required. Recent research has been conducted on naturally occurring antimicrobials as novel alternatives to antibiotics. Conscious of this need our team firstly reported new approaches using L-cysteine and antimicrobial peptides (AMP). Briefly, we were able to develop different immobilization processes towards 6 Log Reduction against bacteria such as S. aureus and K. pneumoniae. Therefore, here we present several innovative antimicrobial textiles incorporating AMP and L-Cysteine which may open new avenues for the medical textiles market and biomaterials in general. Team references will be discussed as an overview and for comparison purposes in terms of potential therapeutic applications.Keywords: Antimicrobials, Antimicrobial Textiles, Biomedical Textiles, Biomimetic surface functionalization
Procedia PDF Downloads 1181227 Optimization of Bioremediation Process to Remove Hexavalent Chromium from Tannery Effluent
Authors: Satish Babu Rajulapati
Abstract:
The removal of toxic and heavy metal contaminants from wastewater streams and industrial effluents is one of the most important environmental issues being faced world over. In the present study three bacterial cultures tolerating high concentrations of chromium were isolated from the soil and wastewater sample collected from the tanneries located in Warangal, Telangana state. The bacterial species were identified as Bacillus sp., Staphylococcus sp. and pseudomonas sp. Preliminary studies were carried out with the three bacterial species at various operating parameters such as pH and temperature. The results indicate that pseudomonas sp. is the efficient one in the uptake of Cr(VI). Further, detailed investigation of Pseudomonas sp. have been carried out to determine the efficiency of removal of Cr(VI). The various parameters influencing the biosorption of Cr(VI) such as pH, temperature, initial chromium concentration, innoculum size and incubation time have been studied. Response Surface Methodology (RSM) was applied to optimize the removal of Cr(VI). Maximum Cr(VI) removal was found to be 85.72% Cr(VI) atpH 7, temperature 35 °C, initial concentration 67mg/l, inoculums size 9 %(v/v) and time 60 hrs.Keywords: Staphylococcus sp, chromium, RSM, optimization, Cr(IV)
Procedia PDF Downloads 3251226 Preparation of Novel Silicone/Graphene-based Nanostructured Surfaces as Fouling Release Coatings
Authors: Mohamed S. Selim, Nesreen A. Fatthallah, Shimaa A. Higazy, Zhifeng Hao, Ping Jing Mo
Abstract:
As marine fouling-release (FR) surfaces, two new superhydrophobic nanocomposite series of polydimethylsiloxane (PDMS) loaded with reduced graphene oxide (RGO) and graphene oxide/boehmite nanorods (GO-γ-AlOOH) nanofillers were created. The self-cleaning and antifouling capabilities were modified by controlling the nanofillers' shapes and distribution in the silicone matrix. With an average diameter of 10-20 nm and a length of 200 nm, γ-AlOOH nanorods showed a single crystallinity. RGO was made using a hydrothermal process, whereas GO-γ-AlOOH nanocomposites were made using a chemical deposition method for use as fouling-release coating materials. These nanofillers were disseminated in the silicone matrix using the solution casting method to explore the synergetic effects of graphene-based materials on the surface, mechanical, and FR characteristics. Water contact angle (WCA), scanning electron, and atomic force microscopes were used to investigate the surface's hydrophobicity and antifouling capabilities (SEM and AFM). The roughness, superhydrophobicity, and surface mechanical characteristics of coatings all increased the homogeneity of the nanocomposite dispersion. To examine the antifouling effects of the coating systems, laboratory tests were conducted for 30 days using specified bacteria.PDMS/GO-γ-AlOOH nanorod composite demonstrated superior antibacterial efficacy against several bacterial strains than PDMS/RGO nanocomposite. The high surface area and stabilizing effects of the GO-γ-AlOOH hybrid nanofillers are to blame for this. The biodegradability percentage of the PDMS/GO-γ-AlOOH nanorod composite (3 wt.%) was the lowest (1.6%), while the microbial endurability percentages for gram-positive, gram-negative, and fungi were 86.42%, 97.94%, and 85.97%, respectively. The homogeneity of the GO-γ-AlOOH (3 wt.%) dispersion, which had a WCA of 151° and a rough surface, was the most profound superhydrophobic antifouling nanostructured coating.Keywords: superhydrophobic nanocomposite, fouling release, nanofillers, surface coating
Procedia PDF Downloads 2341225 Phytobeds with Fimbristylis dichotoma and Ammannia baccifera for Treatment of Real Textile Effluent: An in situ Treatment, Anatomical Studies and Toxicity Evaluation
Authors: Suhas Kadam, Vishal Chandanshive, Niraj Rane, Sanjay Govindwar
Abstract:
Fimbristylis dichotoma, Ammannia baccifera, and their co-plantation consortium FA were found to degrade methyl orange, simulated dye mixture, and real textile effluent. Wild plants of Fimbristylis dichotoma and Ammannia baccifera with equal biomass showed 91 and 89% decolorization of methyl orange within 60 h at a concentration of 50 ppm, while 95% dye removal was achieved by consortium FA within 48 h. Floating phyto-beds with co-plantation (Fimbristylis dichotoma and Ammannia baccifera) for the treatment of real textile effluent in a constructed wetland was observed to be more efficient and achieved 79, 72, 77, 66 and 56% reductions in ADMI color value, chemical oxygen demand, biological oxygen demand, total dissolve solid and total suspended solid of textile effluent, respectively. High performance thin layer chromatography, gas chromatography-mass spectroscopy, Fourier transform infrared spectroscopy, Ultra violet-Visible spectroscopy and enzymatic assays confirmed the phytotransformation of parent dye in the new metabolites. T-RFLP analysis of rhizospheric bacteria of Fimbristylis dichotoma, Ammannia baccifera, and consortium FA revealed the presence of 88, 98 and 223 genera which could have been involved in dye removal. Toxicity evaluation of products formed after phytotransformation of methyl orange by consortium FA on bivalves Lamellidens marginalis revealed less damage in the gills architecture when analyzed histologically. Toxicity measurement by Random Amplification of Polymorphic DNA (RAPD) technique revealed normal banding pattern in treated methyl orange sample suggesting less toxic nature of phytotransformed dye products.Keywords: constructed wetland, phyto-bed, textile effluent, phytoremediation
Procedia PDF Downloads 4831224 Legal Basis for Water Resources Management in Brazil: Case Study of the Rio Grande Basin
Authors: Janaína F. Guidolini, Jean P. H. B. Ometto, Angélica Giarolla, Peter M. Toledo, Carlos A. Valera
Abstract:
The water crisis, a major problem of the 21st century, occurs mainly due to poor management. The central issue that should govern the management is the integration of the various aspects that interfere with the use of water resources and their protection, supported by legal basis. A watershed is a unit of water interacting with the physical, biotic, social, economic and cultural variables. The Brazilian law recognized river basin as the territorial management unit. Based on the diagnosis of the current situation of the water resources of the Rio Grande Basin, a discussion informed in the Brazilian legal basis was made to propose measures to fight or mitigate damages and environmental degradation in the Basin. To manage water resources more efficiently, conserve water and optimize their multiple uses, the integration of acquired scientific knowledge and management is essential. Moreover, it is necessary to monitor compliance with environmental legislation.Keywords: conservation of soil and water, environmental laws, river basin, sustainability
Procedia PDF Downloads 2801223 Flood Analysis of Domestic Rooftop Rainwater Harvesting in Low Lying Flood Plain Areas at Gomti Nagar In Rain-Dominated Monsoon Climates
Authors: Rajkumar Ghosh
Abstract:
Rapid urbanization, rising population, changing lifestyles and in-migration, Lucknow is groundwater over-exploited area, with an abstract rate of 1968 m3/day/km2 in Gomti Nagar. The groundwater situation in Gomti Nagar is deteriorating day-by-day. According to the work, the calculated annual water deficiency in Gomti Nagar area will be 28061 Million Litre (ML) in 2022. Within 30 yrs., the water deficiency will be 735570 ML (till 2051). The calculated groundwater recharge in Gomti Nagar was 10813 ML/y (in 2022). The annual groundwater abstraction from Gomti Nagar area was 35332 ML/yr. (in 2022). Bye-laws (≥ 300 sq.m) existing RTRWHs can recharge 17.71 ML/yr. in Gomti Nagar area. The existing RTRWHs are contributing 0.07% for recharging groundwater table. In Gomti Nagar, the water level is dropping at a rate of 1.0 metre per year, and the depth of the water table is less than 30 metre below ground level (mbgl). Natural groundwater recharge is affected by the geomorphological conditions of the surrounding area. Gomti Nagar is located on the erosional terrace (Te) and depositional terrace (d) of the Gomti River. The flood plain in Lucknow city is less active due to the embankments on the both sides of the Gomti River. The alluvium is composed of clay sandy up to a depth of 30m, and the alignment of the Gomti River reveals the presence of sandy soil at shallow depths. Aquifer depth 120 metre. Recharge as in Gomti Nagar (it may vary) 0 – 150 metre. Infiltration rates in alluvial floodplains range from 0.8 to 74 cm/hr. Geologically and Geomorphologically support rapid percolation of rainwater through alluvium in Gomti Nagar, Lucknow city, Uttar Pradesh. Over-exploitation of groundwater causes natural hazards viz. land subsidence, development of cracks on roads and buildings, development of vacuum and compactness of soil/clay which leads towards land subsidence, devastating effects on natural stream flow. Gomti River already transitioning phase from ‘effluent’ to ‘influent’, and saline intrusion in Aquifer –II (among Five aquifers in Lucknow city). A 250 m long crack developed in 2007 due to groundwater depletion in Dullu Khera and Vader Khera village of Kakori, Uttar Pradesh. The groundwater table of Lucknow is declining and water table imbalance occurs due to 17 times less recharge than groundwater exploitation. Uttar Pradesh along with four states have extracted 49% of groundwater in the entire country. In Gomti Nagar area, 27305 no of houses are present and available build up area 3.8 sq. km (60% of plot area) based on Lucknow Development Authority (LDA) Master plan 2031. If RTRWHs would install in all the houses, then 12% harvested rainwater contribute to the water table in Gomti Nagar area. Till 2051, Gomti Nagar area will harvest 91110 ML of rainwater. There are minimalistic chances that any incidence of flood can occur due to RTRWH. Thus, it can conclud that RTRWH is not related to flood happening in urban areas viz. Gomti Nagar.Keywords: RTRWH, aquifer, groundwater table, rainwater, infiltration
Procedia PDF Downloads 781222 Groundwater Arsenic Contamination in Gangetic Jharkhand, India: Risk Implications for Human Health and Sustainable Agriculture
Authors: Sukalyan Chakraborty
Abstract:
Arsenic contamination in groundwater has been a matter of serious concern worldwide. Globally, arsenic contaminated water has caused serious chronic human diseases and in the last few decades the transfer of arsenic to human beings via food chain has gained much attention because food represents a further potential exposure pathway to arsenic in instances where crops are irrigated with high arsenic groundwater, grown in contaminated fields or cooked with arsenic laden water. In the present study, the groundwater of Sahibganj district of Jharkhand has been analysed to find the degree of contamination and its probable associated risk due to direct consumption or irrigation. The present study area comprising of three blocks, namely Sahibganj, Rajmahal and Udhwa in Sahibganj district of Jharkhand state, India, situated in the western bank of river Ganga has been investigated for arsenic contamination in groundwater, soil and crops predominantly growing in the region. Associated physicochemical parameters of groundwater including pH, temperature, electrical conductivity (EC), total dissolved solids (TDS), dissolved oxygen (DO), oxidation reduction potential (ORP), ammonium, nitrate and chloride were assessed to understand the mobilisation mechanism and chances of arsenic exposure from soil to crops and further into the food chain. Results suggested the groundwater to be dominantly Ca-HCO3- type with low redox potential and high total dissolved solids load. Major cations followed the order of Ca ˃ Na ˃ Mg ˃ K. The concentration of major anions was found in the order of HCO3− > Cl− > SO42− > NO3− > PO43− varied between 0.009 to 0.20 mg L-1. Fe concentrations of the groundwater samples were below WHO permissible limit varying between 54 to 344 µg L-1. Phosphate concentration was high and showed a significant positive correlation with arsenic. As concentrations ranged from 7 to 115 µg L-1 in premonsoon, between 2 and 98 µg L-1 in monsoon and 1 to 133µg L-1 in postmonsoon season. Arsenic concentration was found to be much higher than the WHO or BIS permissible limit in majority of the villages in the study area. Arsenic was also seen to be positively correlated with iron and phosphate. PCA results demonstrated the role of both geological condition and anthropogenic inputs to influence the water quality. Arsenic was also found to increase with depth up to 100 m from the surface. Calculation of carcinogenic and non-carcinogenic effects of the arsenic concentration in the communities exposed to the groundwater for drinking and other purpose indicated high risk with an average of more than 1 in a 1000 population. Health risk analysis revealed high to very high carcinogenic and non-carcinogenic risk for adults and children in the communities dependent on groundwater of the study area. Observation suggested the groundwater to be considerably polluted with arsenic and posing significant health risk for the exposed communities. The mobilisation mechanism of arsenic also could be identified from the results suggesting reductive dissolution of Fe oxyhydroxides due to high phosphate concentration from agricultural input arsenic release from the sediments along river Ganges.Keywords: arsenic, physicochemical parameters, mobilisation, health effects
Procedia PDF Downloads 2281221 Metabolic Profiling of Populus trichocarpa Family 1 UDP-Glycosyltransferases
Authors: Patricia M. B. Saint-Vincent, Anna Furches, Stephanie Galanie, Erica Teixeira Prates, Piet Jones, Nancy Engle, David Kainer, Wellington Muchero, Daniel Jacobson, Timothy J. Tschaplinski
Abstract:
Uridine diphosphate-glycosyltransferases (UGTs) are enzymes that catalyze sugar transfer to a variety of plant metabolites. UGT substrates, which include plant secondary metabolites involved in lignification, demonstrate new activities and incorporation when glycosylated. Knowledge of UGT function, substrate specificity, and enzyme products is important for plant engineering efforts, especially related to increasing plant biomass through lignification. UGTs in Populus trichocarpa, a biofuel feedstock, and model woody plant, were selected from a pool of gene candidates using rapid prioritization strategies. A functional genomics workflow, consisting of a metabolite genome-wide association study (mGWAS), expression of synthetic codon-optimized genes, and high-throughput biochemical assays with mass spectrometry-based analysis, was developed for determining the substrates and products of previously-uncharacterized enzymes. A total of 40 UGTs from P. trichocarpa were profiled, and the biochemical assay results were compared to predicted mGWAS connections. Assay results confirmed seven of 11 leaf mGWAS associations and demonstrated varying levels of substrate specificity among candidate UGTs. P. trichocarpa UGT substrate processing confirms the role of these newly-characterized enzymes in lignan, flavonoid, and phytohormone metabolism, with potential implications for cell wall biosynthesis, nitrogen uptake, and biotic and abiotic stress responses.Keywords: Populus, metabolite-gene associations, GWAS, bio feedstocks, glycosyltransferase
Procedia PDF Downloads 1141220 Experimental Simulations of Aerosol Effect to Landfalling Tropical Cyclones over Philippine Coast: Virtual Seeding Using WRF Model
Authors: Bhenjamin Jordan L. Ona
Abstract:
Weather modification is an act of altering weather systems that catches interest on scientific studies. Cloud seeding is a common form of weather alteration. On the same principle, tropical cyclone mitigation experiment follows the methods of cloud seeding with intensity to account for. This study will present the effects of aerosol to tropical cyclone cloud microphysics and intensity. The framework of Weather Research and Forecasting (WRF) model incorporated with Thompson aerosol-aware scheme is the prime host to support the aerosol-cloud microphysics calculations of cloud condensation nuclei (CCN) ingested into the tropical cyclones before making landfall over the Philippine coast. The coupled microphysical and radiative effects of aerosols will be analyzed using numerical data conditions of Tropical Storm Ketsana (2009), Tropical Storm Washi (2011), and Typhoon Haiyan (2013) associated with varying CCN number concentrations per simulation per typhoon: clean maritime, polluted, and very polluted having 300 cm-3, 1000 cm-3, and 2000 cm-3 aerosol number initial concentrations, respectively. Aerosol species like sulphates, sea salts, black carbon, and organic carbon will be used as cloud nuclei and mineral dust as ice nuclei (IN). To make the study as realistic as possible, investigation during the biomass burning due to forest fire in Indonesia starting October 2015 as Typhoons Mujigae/Kabayan and Koppu/Lando had been seeded with aerosol emissions mainly comprises with black carbon and organic carbon, will be considered. Emission data that will be used is from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS). The physical mechanism/s of intensification or deintensification of tropical cyclones will be determined after the seeding experiment analyses.Keywords: aerosol, CCN, IN, tropical cylone
Procedia PDF Downloads 2961219 Optimum Design of Piled-Raft Systems
Authors: Alaa Chasib Ghaleb, Muntadher M. Abbood
Abstract:
This paper presents a study of the problem of the optimum design of piled-raft foundation systems. The study has been carried out using a hypothetic problem and soil investigations of six sites locations in Basrah city to evaluate the adequacy of using the piled-raft foundation concept. Three dimensional finite element analysis method has been used, to perform the structural analysis. The problem is optimized using Hooke and Jeeves method with the total weight of the foundation as objective function and each of raft thickness, piles length, number of piles and piles diameter as design variables. It is found that the total and differential settlement decreases with increasing the raft thickness, the number of piles, the piles length, and the piles diameter. Finally parametric study for load values, load type and raft dimensions have been studied and the results have been discussed.Keywords: Hooke and Jeeves, optimum design, piled-raft, foundations
Procedia PDF Downloads 2231218 Phytoremediation of Textile Wastewater Laden with 1,4-Dioxane Using Eichhornia crassipes: A Sustainable Development Approach
Authors: Hadeer Ibrahiem, Mahmoud Nasr, Masarrat M. M. Migahid, Mohamed A. Ghazy
Abstract:
The release of textile wastewater loaded with 1,4 dioxane into aquatic ecosystems has been associated with various human health risks and adverse environmental impacts. In parallel, phytoremediation has been recently employed to treat highly polluted wastewater because various plant species tend to produce certain enzymes as a defense mechanism against a toxic environment. To our best knowledge, this study is the first to investigate the ability of phytoremediation using Eichhornia crassipes for the removal of various pollutants, including 1,4 dioxane, from textile wastewater. A phytoremediation system composed of Eichhornia crassipes was acclimatized for 10 d, and then operated in four lab-scale hydroponic systems, viz., negative control, positive control, and two different 1,4 dioxane concentration (400 and 500 mg/L). After 11 d of operation, the phytoremediation system achieved removal efficiencies of 67.5±3.4%, 89.4±4.4%, 83.6±3.8% for 1,4 dioxane (at initial concentration 400 mg/L), chemical oxygen demand (COD) (at initial concentration 679 mg/L), and cumulative heavy metals, respectively. The removal of these pollutants was mainly supported by the phyto-sorption and phytodegradation mechanisms. The economic feasibility of this phytoremediation system was validated by estimating the capital and operating costs, requiring 4.6 USD for the treatment of 1 m3 textile wastewater. The study concluded that the phytoremediation process could be used as a practical and economical approach to treat textile wastewater laden with various organic and inorganic pollutants. Due to the observed pollution reduction and human health protection, the study objectives would fulfill the targets of SDG 3 “Good Health and Well-being” and SDG 6 “Clean Water and Sanitation”. Further studies are required to (i) investigate the ability of plant species to withstand higher concentrations of 1,4 dioxane for an extended operation time and (ii) understand the biochemical pathways for the degradation of 1,4 dioxane via the action of plant enzymes and the associated microbial community.Keywords: 1, 4 dioxane concentrations, hydrophytes, Eichhornia crassipes, phytoremediation effectiveness, SDGs, textile industrial effluent
Procedia PDF Downloads 1011217 Sustainable Milling Process for Tensile Specimens
Authors: Shilpa Kumari, Ramakumar Jayachandran
Abstract:
Machining of aluminium extrusion profiles in the automotive industry has gained much interest in the last decade, particularly due to the higher utilization of aluminum profiles and the weight reduction benefits it brings. Milling is the most common material removal process, where the rotary milling cutter is moved against a workpiece. The physical contact of the milling cutter to the workpiece increases the friction between them, thereby affecting the longevity of the milling tool and also the surface finish of the workpiece. To minimise this issue, the milling process uses cutting fluids or emulsions; however, the use of emulsion in the process has a negative impact on the environment ( such as consumption of water, oils and the used emulsion needs to be treated before disposal) and also on the personal ( may cause respiratory problems, exposure to microbial toxins generated by bacteria in the emulsions on prolonged use) working close to the process. Furthermore, the workpiece also needs to be cleaned after the milling process, which is not adding value to the process, and the cleaning also disperses mist of emulsion in the working environment. Hydro Extrusion is committed to improving the performance of sustainability from its operations, and with the negative impact of using emulsion in the milling process, a new innovative process- Dry Milling was developed to minimise the impact the cutting fluid brings. In this paper, the authors present one application of dry milling in the machining of tensile specimens in the laboratory. Dry milling is an innovative milling process without the use of any cooling/lubrication and has several advantages. Several million tensile tests are carried out in extrusion laboratories worldwide with the wet milling process. The machining of tensile specimens has a significant impact on the reliability of test results. The paper presents the results for different 6xxx alloys with different wall thicknesses of the specimens, which were machined by both dry and wet milling processes. For both different 6xxx alloys and different wall thicknesses, mechanical properties were similar for samples milled using dry and wet milling. Several tensile specimens were prepared using both dry and wet milling to compare the results, and the outcome showed the dry milling process does not affect the reliability of tensile test results.Keywords: dry milling, tensile testing, wet milling, 6xxx alloy
Procedia PDF Downloads 1981216 A Proper Design of Wind Turbine Grounding Systems under Lightning
Authors: M. A. Abd-Allah, Mahmoud N. Ali, A. Said
Abstract:
Lightning Protection Systems (LPS) for wind power generation is becoming an important public issue. A serious damage of blades, accidents where low-voltage and control circuit breakdowns frequently occur in many wind farms. A grounding system is one of the most important components required for appropriate LPSs in wind turbines WTs. Proper design of a wind turbine grounding system is demanding and several factors for the proper and effective implementation must be taken into account. This paper proposed procedure of proper design of grounding systems for a wind turbine was introduced. This procedure depends on measuring of ground current of simulated wind farm under lightning taking into consideration the soil ionization. The procedure also includes the Ground Potential Rise (GPR) and the voltage distributions at ground surface level and Touch potential. In particular, the contribution of mitigating techniques, such as rings, rods and the proposed design were investigated.Keywords: WTs, Lightning Protection Systems (LPS), GPR, grounding system, mitigating techniques
Procedia PDF Downloads 3771215 Comparison of Tidalites in Siliciclastics and Mixed Siliciclastic Carbonate Systems: An Outstanding Example from Proterozoic Simla Basin, Western Lesser Himalaya, India
Authors: Tithi Banerjee, Ananya Mukhopadhyay
Abstract:
The comparison of ancient tidalites recorded in both siliciclastics and carbonates has not been well documented due to a lack of suitable outcropping examples. The Proterozoic Simla Basin, Lesser Himalaya serves a unique example in this regard. An attempt has been made in the present work to differentiate sedimentary facies and architectural elements of tidalites in both siliciclastics and carbonates recorded in the Simla Basin. Lithofacies and microfacies analysis led to identification of 11 lithofacies and 4 architectural elements from the siliciclastics, 6 lithofacies and 3 architectural elements from the carbonates. The most diagnostic features for comparison of the two tidalite systems are sedimentary structures, textures, and architectural elements. The physical features such as flaser-lnticular bedding, mud/silt couplets, tidal rhythmites, tidal bundles, cross stratified successions, tidal bars, tidal channels, microbial structures are common to both the environments. The architecture of these tidalites attests to sedimentation in shallow subtidal to intertidal flat facies, affected by intermittent reworking by open marine waves/storms. The seventeen facies attributes were categorized into two major facies belts (FA1 and FA2). FA1 delineated from the lower part of the Chhaosa Formation (middle part of the Simla Basin) represents a prograding muddy pro-delta deposit whereas FA2 delineated from the upper part of the Basantpur Formation (lower part of the Simla Basin) bears the signature of an inner-mid carbonate ramp deposit. Facies distribution indicates development of highstand systems tract (HST) during sea level still stand related to normal regression. The aggradational to progradational bedsets record the history of slow rise in sea level.Keywords: proterozoic, Simla Basin, tidalites, inner-mid carbonate ramp, prodelta, TST, HST
Procedia PDF Downloads 2331214 Cationic Copolymer-Functionalized Nanodiamonds Stabilizes Silver Nanoparticles with Dual Antibacterial Activity and Lower Cytotoxicity
Authors: Weiwei Cao, Xiaodong Xing
Abstract:
In order to effectively resolve the microbial pollution and contamination, synthetic nano-antibacterial materials are widely used in daily life. Among them, nanodiamonds (NDs) have recently been demonstrated to hold promise as useful materials in biomedical applications due to their high specific surface area and biocompatibility. In this work, the copolymer, poly(4-vinylpyridine-co-2-hydroxyethyl methacrylate) was applied for the surface functionalization of NDs to produce the quaternized poly(4-vinylpyridine-co-2-hydroxyethyl methacrylate)-functionalized NDs (QNDs). Then, QNDs were used as a substrate for silver nanoparticles (AgNPs) to produce a QND@Ag hybrid. The composition and morphology of the resultant nanostructures were confirmed by Fourier transform infrared spectra (FT-IR), transmission electron microscope (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The mass fraction of AgNPs in the nanocomposites was about 35.7%. The antibacterial performances of the prepared nanocomposites were evaluated with Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus by minimum inhibitory concentration (MIC), inhibition zone testing and time-kill study. As a result, due to the synergistic antibacterial activity of QND and AgNPs, this hybrid showed substantially higher antibacterial activity than QND and polyvinyl pyrrolidone (PVP)-stabilized AgNPs, and the AgNPs on QND@Ag were more stable than the Ag NPs on PVP, resulting in long-term antibacterial effects. More importantly, this hybrid showed excellent water solubility and low cytotoxicity, suggesting the great potential application in biomedical applications. The present work provided a simple strategy that successfully turned NDs into nanosized antibiotics with simultaneous superior stability and biocompatibility, which would broaden the applications of NDs and advance the development of novel antibacterial agents.Keywords: cationic copolymer, nanodiamonds, silver nanoparticles, dual antibacterial activity, lower cytotoxicity
Procedia PDF Downloads 130