Search results for: online learning management system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30931

Search results for: online learning management system

27601 Leveraging Digital Transformation Initiatives and Artificial Intelligence to Optimize Readiness and Simulate Mission Performance across the Fleet

Authors: Justin Woulfe

Abstract:

Siloed logistics and supply chain management systems throughout the Department of Defense (DOD) has led to disparate approaches to modeling and simulation (M&S), a lack of understanding of how one system impacts the whole, and issues with “optimal” solutions that are good for one organization but have dramatic negative impacts on another. Many different systems have evolved to try to understand and account for uncertainty and try to reduce the consequences of the unknown. As the DoD undertakes expansive digital transformation initiatives, there is an opportunity to fuse and leverage traditionally disparate data into a centrally hosted source of truth. With a streamlined process incorporating machine learning (ML) and artificial intelligence (AI), advanced M&S will enable informed decisions guiding program success via optimized operational readiness and improved mission success. One of the current challenges is to leverage the terabytes of data generated by monitored systems to provide actionable information for all levels of users. The implementation of a cloud-based application analyzing data transactions, learning and predicting future states from current and past states in real-time, and communicating those anticipated states is an appropriate solution for the purposes of reduced latency and improved confidence in decisions. Decisions made from an ML and AI application combined with advanced optimization algorithms will improve the mission success and performance of systems, which will improve the overall cost and effectiveness of any program. The Systecon team constructs and employs model-based simulations, cutting across traditional silos of data, aggregating maintenance, and supply data, incorporating sensor information, and applying optimization and simulation methods to an as-maintained digital twin with the ability to aggregate results across a system’s lifecycle and across logical and operational groupings of systems. This coupling of data throughout the enterprise enables tactical, operational, and strategic decision support, detachable and deployable logistics services, and configuration-based automated distribution of digital technical and product data to enhance supply and logistics operations. As a complete solution, this approach significantly reduces program risk by allowing flexible configuration of data, data relationships, business process workflows, and early test and evaluation, especially budget trade-off analyses. A true capability to tie resources (dollars) to weapon system readiness in alignment with the real-world scenarios a warfighter may experience has been an objective yet to be realized to date. By developing and solidifying an organic capability to directly relate dollars to readiness and to inform the digital twin, the decision-maker is now empowered through valuable insight and traceability. This type of educated decision-making provides an advantage over the adversaries who struggle with maintaining system readiness at an affordable cost. The M&S capability developed allows program managers to independently evaluate system design and support decisions by quantifying their impact on operational availability and operations and support cost resulting in the ability to simultaneously optimize readiness and cost. This will allow the stakeholders to make data-driven decisions when trading cost and readiness throughout the life of the program. Finally, sponsors are available to validate product deliverables with efficiency and much higher accuracy than in previous years.

Keywords: artificial intelligence, digital transformation, machine learning, predictive analytics

Procedia PDF Downloads 160
27600 Proposing an Algorithm to Cluster Ad Hoc Networks, Modulating Two Levels of Learning Automaton and Nodes Additive Weighting

Authors: Mohammad Rostami, Mohammad Reza Forghani, Elahe Neshat, Fatemeh Yaghoobi

Abstract:

An Ad Hoc network consists of wireless mobile equipment which connects to each other without any infrastructure, using connection equipment. The best way to form a hierarchical structure is clustering. Various methods of clustering can form more stable clusters according to nodes' mobility. In this research we propose an algorithm, which allocates some weight to nodes based on factors, i.e. link stability and power reduction rate. According to the allocated weight in the previous phase, the cellular learning automaton picks out in the second phase nodes which are candidates for being cluster head. In the third phase, learning automaton selects cluster head nodes, member nodes and forms the cluster. Thus, this automaton does the learning from the setting and can form optimized clusters in terms of power consumption and link stability. To simulate the proposed algorithm we have used omnet++4.2.2. Simulation results indicate that newly formed clusters have a longer lifetime than previous algorithms and decrease strongly network overload by reducing update rate.

Keywords: mobile Ad Hoc networks, clustering, learning automaton, cellular automaton, battery power

Procedia PDF Downloads 411
27599 Increasing Employee Productivity and Work Well-Being by Employing Affective Decision Support and a Knowledge-Based System

Authors: Loreta Kaklauskiene, Arturas Kaklauskas

Abstract:

This employee productivity and work well-being effective system aims to maximise the work performance of personnel and boost well-being in offices. Affective computing, decision support, and knowledge-based systems were used in our research. The basis of this effective system is our European Patent application (No: EP 4 020 134 A1) and two Lithuanian patents (LT 6841, LT 6866). Our study examines ways to support efficient employee productivity and well-being by employing mass-customised, personalised office environment. Efficient employee performance and well-being are managed by changing mass-customised office environment factors such as air pollution levels, humidity, temperature, data, information, knowledge, activities, lighting colours and intensity, scents, media, games, videos, music, and vibrations. These aspects of management generate a customised, adaptive environment for users taking into account their emotional, affective, and physiological (MAP) states measured and fed into the system. This research aims to develop an innovative method and system which would analyse, customise and manage a personalised office environment according to a specific user’s MAP states in a cohesive manner. Various values of work spaces (e.g., employee utilitarian, hedonic, perceived values) are also established throughout this process, based on the measurements that describe MAP states and other aspects related to the office environment. The main contribution of our research is the development of a real-time mass-customised office environment to boost employee performance and well-being. Acknowledgment: This work was supported by Project No. 2020-1-LT01-KA203-078100 “Minimizing the influence of coronavirus in a built environment” (MICROBE) from the European Union’s Erasmus + program.

Keywords: effective decision support and a knowledge-based system, human resource management, employee productivity and work well-being, affective computing

Procedia PDF Downloads 110
27598 Experimental investigation on the lithium-Ion Battery Thermal Management System Based on Micro Heat Pipe Array in High Temperature Environment

Authors: Ruyang Ren, Yaohua Zhao, Yanhua Diao

Abstract:

The intermittent and unstable characteristics of renewable energy such as solar energy can be effectively solved through battery energy storage system. Lithium-ion battery is widely used in battery energy storage system because of its advantages of high energy density, small internal resistance, low self-discharge rate, no memory effect and long service life. However, the performance and service life of lithium-ion battery is seriously affected by its operating temperature. Thus, the safety operation of the lithium-ion battery module is inseparable from an effective thermal management system (TMS). In this study, a new type of TMS based on micro heat pipe array (MHPA) for lithium-ion battery is established, and the TMS is applied to a battery energy storage box that needs to operate at a high temperature environment of 40 °C all year round. MHPA is a flat shape metal body with high thermal conductivity and excellent temperature uniformity. The battery energy storage box is composed of four battery modules, with a nominal voltage of 51.2 V, a nominal capacity of 400 Ah. Through the excellent heat transfer characteristics of the MHPA, the heat generated by the charge and discharge process can be quickly transferred out of the battery module. In addition, if only the MHPA cannot meet the heat dissipation requirements of the battery module, the TMS can automatically control the opening of the external fan outside the battery module according to the temperature of the battery, so as to further enhance the heat dissipation of the battery module. The thermal management performance of lithium-ion battery TMS based on MHPA is studied experimentally under different ambient temperatures and the condition to turn on the fan or not. Results show that when the ambient temperature is 40 °C and the fan is not turned on in the whole charge and discharge process, the maximum temperature of the battery in the energy storage box is 53.1 °C and the maximum temperature difference in the battery module is 2.4 °C. After the fan is turned on in the whole charge and discharge process, the maximum temperature is reduced to 50.1 °C, and the maximum temperature difference is reduced to 1.7 °C. Obviously, the lithium-ion battery TMS based on MHPA not only could control the maximum temperature of the battery below 55 °C, but also ensure the excellent temperature uniformity of the battery module. In conclusion, the lithium-ion battery TMS based on MHPA can ensure the safe and stable operation of the battery energy storage box in high temperature environment.

Keywords: heat dissipation, lithium-ion battery thermal management, micro heat pipe array, temperature uniformity

Procedia PDF Downloads 181
27597 Count of Trees in East Africa with Deep Learning

Authors: Nubwimana Rachel, Mugabowindekwe Maurice

Abstract:

Trees play a crucial role in maintaining biodiversity and providing various ecological services. Traditional methods of counting trees are time-consuming, and there is a need for more efficient techniques. However, deep learning makes it feasible to identify the multi-scale elements hidden in aerial imagery. This research focuses on the application of deep learning techniques for tree detection and counting in both forest and non-forest areas through the exploration of the deep learning application for automated tree detection and counting using satellite imagery. The objective is to identify the most effective model for automated tree counting. We used different deep learning models such as YOLOV7, SSD, and UNET, along with Generative Adversarial Networks to generate synthetic samples for training and other augmentation techniques, including Random Resized Crop, AutoAugment, and Linear Contrast Enhancement. These models were trained and fine-tuned using satellite imagery to identify and count trees. The performance of the models was assessed through multiple trials; after training and fine-tuning the models, UNET demonstrated the best performance with a validation loss of 0.1211, validation accuracy of 0.9509, and validation precision of 0.9799. This research showcases the success of deep learning in accurate tree counting through remote sensing, particularly with the UNET model. It represents a significant contribution to the field by offering an efficient and precise alternative to conventional tree-counting methods.

Keywords: remote sensing, deep learning, tree counting, image segmentation, object detection, visualization

Procedia PDF Downloads 71
27596 A Fuzzy Control System for Reducing Urban Stormwater Runoff by a Stormwater Storage Tank

Authors: Pingping Zhang, Yanpeng Cai, Jianlong Wang

Abstract:

Stormwater storage tank (SST) is a popular low impact development technology for reducing stormwater runoff in the construction of sponge city. At present, it is difficult to perform the automatic control of SST for reducing peak flow. In this paper, fuzzy control was introduced into the peak control of SST to improve the efficiency of reducing stormwater runoff. Firstly, the design of SST was investigated. A catchment area and a return period were assumed, a SST model was manufactured, and then the storage capacity of the SST was verified. Secondly, the control parameters of the SST based on reducing stormwater runoff were analyzed, and a schematic diagram of real-time control (RTC) system based on peak control SST was established. Finally, fuzzy control system of a double input (flow and water level) and double output (inlet and outlet valve) was designed. The results showed that 1) under the different return periods (one year, three years, five years), the SST had the effect of delayed peak control and storage by increasing the detention time, 2) rainfall, pipeline flow, the influent time and the water level in the SST could be used as RTC parameters, and 3) the response curves of flow velocity and water level fluctuated very little and reached equilibrium in a short time. The combination of online monitoring and fuzzy control was feasible to control the SST automatically. This paper provides a theoretical reference for reducing stormwater runoff and improving the operation efficiency of SST.

Keywords: stormwater runoff, stormwater storage tank, real-time control, fuzzy control

Procedia PDF Downloads 204
27595 Discriminant Analysis as a Function of Predictive Learning to Select Evolutionary Algorithms in Intelligent Transportation System

Authors: Jorge A. Ruiz-Vanoye, Ocotlán Díaz-Parra, Alejandro Fuentes-Penna, Daniel Vélez-Díaz, Edith Olaco García

Abstract:

In this paper, we present the use of the discriminant analysis to select evolutionary algorithms that better solve instances of the vehicle routing problem with time windows. We use indicators as independent variables to obtain the classification criteria, and the best algorithm from the generic genetic algorithm (GA), random search (RS), steady-state genetic algorithm (SSGA), and sexual genetic algorithm (SXGA) as the dependent variable for the classification. The discriminant classification was trained with classic instances of the vehicle routing problem with time windows obtained from the Solomon benchmark. We obtained a classification of the discriminant analysis of 66.7%.

Keywords: Intelligent Transportation Systems, data-mining techniques, evolutionary algorithms, discriminant analysis, machine learning

Procedia PDF Downloads 472
27594 Evolution of Floating Photovoltaic System Technology and Future Prospect

Authors: Young-Kwan Choi, Han-Sang Jeong

Abstract:

Floating photovoltaic system is a technology that combines photovoltaic power generation with floating structure. However, since floating technology has not been utilized in photovoltaic generation, there are no standardized criteria. It is separately developed and used by different installation bodies. This paper aims to discuss the change of floating photovoltaic system technology based on examples of floating photovoltaic systems installed in Korea.

Keywords: floating photovoltaic system, floating PV installation, ocean floating photovoltaic system, tracking type floating photovoltaic system

Procedia PDF Downloads 560
27593 Active Learning Role on Strategic I-Map Thinking in Developing Reasoning Thinking and the Intrinsic-Motivation Orientation

Authors: Khaled Alotaibi

Abstract:

This paper deals with developing reasoning thinking and the intrinsic-extrinsic motivation for learning, and enhancing the academic achievement of a sample of students at Teachers' College in King Saud University. The study sample included 58 students who were divided randomly into two groups; one was an experimental group with 20 students and the other was a control group with 22 students. The following tools were used: e-courses by using I-map, Reasoning Thinking Tes, questionnaire to measure the intrinsic-extrinsic motivation for learning and an academic achievement test. Experimental group was taught using e-courses by using I-map, while the control group was taught by using traditional education. The results showed that: - There were no statistically significant differences between the experimental group and the control group in Reasoning thinking skills. - There were statistically significant differences between the experimental group and the control group in the intrinsic-extrinsic motivation for learning in favor of the experimental group. - There were statistically significant differences between the experimental group and the control group in academic achievement in favor of the experimental group.

Keywords: reasoning, thinking, intrinsic motivation, active learning

Procedia PDF Downloads 419
27592 Descriptive Study of Role Played by Exercise and Diet on Brain Plasticity

Authors: Mridul Sharma, Praveen Saroha

Abstract:

In today's world, everyone has become so busy in their to-do tasks and daily routine that they tend to ignore some of the basal components of our life, including exercise and diet. This comparative study analyzes the pathways of the relationship between exercise and brain plasticity and also includes another variable diet to study the effects of diet on learning by answering questions including which diet is known to be the best learning supporter and what are the recommended quantities of the same. Further, this study looks into inter-relation between diet and exercise, and also some other approach of the relation between diet and exercise on learning apart from through Brain Derived Neurotrophic Factor (BDNF).

Keywords: brain derived neurotrophic factor, brain plasticity, diet, exercise

Procedia PDF Downloads 141
27591 Knowledge Management Factors Affecting the Level of Commitment

Authors: Abbas Keramati, Abtin Boostani, Mohammad Jamal Sadeghi

Abstract:

This paper examines the influence of knowledge management factors on organizational commitment for employees in the oil and gas drilling industry of Iran. We determine what knowledge factors have the greatest impact on the personnel loyalty and commitment to the organization using collected data from a survey of over 300 full-time personnel working in three large companies active in oil and gas drilling industry of Iran. To specify the effect of knowledge factors in the organizational commitment of the personnel in the studied organizations, the Principal Component Analysis (PCA) is used. Findings of our study show that the factors such as knowledge and expertise, in-service training, the knowledge value and the application of individuals’ knowledge in the organization as the factor “learning and perception of personnel from the value of knowledge within the organization” has the greatest impact on the organizational commitment. After this factor, “existence of knowledge and knowledge sharing environment in the organization”; “existence of potential knowledge exchanging in the organization”; and “organizational knowledge level” factors have the most impact on the organizational commitment of personnel, respectively.

Keywords: drilling industry, knowledge management, organizational commitment, loyalty, principle component analysis

Procedia PDF Downloads 351
27590 Internet of Things-Based Smart Irrigation System

Authors: Ahmed Abdulfatah Yusuf, Collins Oduor Ondiek

Abstract:

The automation of farming activities can have a transformational impact on the agricultural sector, especially from the emerging new technologies such as the Internet of Things (IoT). The system uses water level sensors and soil moisture sensors that measure the content of water in the soil as the values generated from the sensors enable the system to use an appropriate quantity of water, which avoids over or under irrigation. Due to the increase in the world’s population, there is a need to increase food production. With this demand in place, it is difficult to increase crop yield using the traditional manual approaches that lead to the wastage of water, thus affecting crop production. Food insecurity has become a scourge greatly affecting the developing countries and agriculture is an essential part of human life and tends to be the mainstay of the economy in most developing nations. Thus, without the provision of adequate food supplies, the population of those living in poverty is likely to multiply. The project’s main objective is to design and develop an IoT (Internet of Things) microcontroller-based Smart Irrigation System. In addition, the specific research objectives are to find out the challenges with traditional irrigation approaches and to determine the benefits of IoT-based smart irrigation systems. Furthermore, the system includes Arduino, a website and a database that works simultaneously in collecting and storing the data. The system is designed to pave the way in attaining the Sustainable Development Goal (SDG 1), which aims to end extreme poverty in all forms by 2030. The research design aimed at this project is a descriptive research design. Data was gathered through online questionnaires that used both quantitative and qualitative in order to triangulate the data. Out of the 32 questionnaires sent, there were 32 responses leading to a 100% response rate. In terms of sampling, the target group of this project is urban farmers, which account for about 25% of the population of Nairobi. From the findings of the research carried out, it is evident that there is a need to move away from manual irrigation approaches due to the high wastage of water to the use of smart irrigation systems that propose a better way of conserving water while maintaining the quality and moisture of the soil. The research also found out that urban farmers are willing to adopt this system to better their farming practices. However, this system can be improved in the future by incorporating it with other features and deploying it to a larger geographical area.

Keywords: crop production, food security, smart irrigation system, sustainable development goal

Procedia PDF Downloads 151
27589 A Distributed Smart Battery Management System – sBMS, for Stationary Energy Storage Applications

Authors: António J. Gano, Carmen Rangel

Abstract:

Currently, electric energy storage systems for stationary applications have known an increasing interest, namely with the integration of local renewable energy power sources into energy communities. Li-ion batteries are considered the leading electric storage devices to achieve this integration, and Battery Management Systems (BMS) are decisive for their control and optimum performance. In this work, the advancement of a smart BMS (sBMS) prototype with a modular distributed topology is described. The system, still under development, has a distributed architecture with modular characteristics to operate with different battery pack topologies and charge capacities, integrating adaptive algorithms for functional state real-time monitoring and management of multicellular Li-ion batteries, and is intended for application in the context of a local energy community fed by renewable energy sources. This sBMS system includes different developed hardware units: (1) Cell monitoring units (CMUs) for interfacing with each individual cell or module monitoring within the battery pack; (2) Battery monitoring and switching unit (BMU) for global battery pack monitoring, thermal control and functional operating state switching; (3) Main management and local control unit (MCU) for local sBMS’s management and control, also serving as a communications gateway to external systems and devices. This architecture is fully expandable to battery packs with a large number of cells, or modules, interconnected in series, as the several units have local data acquisition and processing capabilities, communicating over a standard CAN bus and will be able to operate almost autonomously. The CMU units are intended to be used with Li-ion cells but can be used with other cell chemistries, with output voltages within the 2.5 to 5 V range. The different unit’s characteristics and specifications are described, including the different implemented hardware solutions. The developed hardware supports both passive and active methods for charge equalization, considered fundamental functionalities for optimizing the performance and the useful lifetime of a Li-ion battery package. The functional characteristics of the different units of this sBMS system, including different process variables data acquisition using a flexible set of sensors, can support the development of custom algorithms for estimating the parameters defining the functional states of the battery pack (State-of-Charge, State-of-Health, etc.) as well as different charge equalizing strategies and algorithms. This sBMS system is intended to interface with other systems and devices using standard communication protocols, like those used by the Internet of Things. In the future, this sBMS architecture can evolve to a fully decentralized topology, with all the units using Wi-Fi protocols and integrating a mesh network, making unnecessary the MCU unit. The status of the work in progress is reported, leading to conclusions on the system already executed, considering the implemented hardware solution, not only as fully functional advanced and configurable battery management system but also as a platform for developing custom algorithms and optimizing strategies to achieve better performance of electric energy stationary storage devices.

Keywords: Li-ion battery, smart BMS, stationary electric storage, distributed BMS

Procedia PDF Downloads 101
27588 An Online Corpus-Based Bilingual Collocations Dictionary for Second/Foreign Language Learners

Authors: Adriane Orenha-Ottaiano

Abstract:

Collocations are conventionalized, recurrent and arbitrary lexical combinations. Due to the fact that they are highly specific for a particular language and may be contextually restricted, collocations pose a problem to EFL/ESL learners with regard to production or encoding. Taking that into account, the compilation of monolingual and bilingual collocations dictionaries for the referred audience is highly crucial and significant. Thus, the aim of this paper is to discuss the importance of the compilation of an Online Corpus-based Bilingual Collocations Dictionary, in the English-Portuguese and Portuguese-English directions. On a first phase, with the use of WordSmith Tools, the collocations were extracted from a Translation Learner Corpus (TLC), a parallel corpus made up of university students’ translations in the Portuguese-English direction, with approximately 100,000 words. In a second stage, based on the keywords analyzed from the TLC, more collocational patterns were extracted using the Sketch Engine. In order to include more collocations as well as to ensure dictionary users will have access to more frequent and recurrent collocations, we also use the frequency list from The Corpus of Contemporary American English, with the purpose of extracting more patterns. The dictionary focuses on all types of collocations (verbal, noun, adjectival and adverbial collocations), in order to help the referred audience use them more accurately and productively – so far the dictionary has more than 330 entries, and more than 3,500 collocations extracted. The idea of having the proposed dictionary in online format may allow to incorporate more qualitatively and quantitatively collocational information. Besides, more examples may be included, different from conventional printed collocations dictionaries. Being the first bilingual collocations dictionary in the aforementioned directions, it is hoped to achieve the challenge of meeting learners’ collocational needs as the collocations have been selected according to learners’ difficulties regarding the use of collocations.

Keywords: Corpus-Based Collocations Dictionary, Collocations , Bilingual Collocations Dictionary, Collocational Patterns

Procedia PDF Downloads 309
27587 Multi-Agent Searching Adaptation Using Levy Flight and Inferential Reasoning

Authors: Sagir M. Yusuf, Chris Baber

Abstract:

In this paper, we describe how to achieve knowledge understanding and prediction (Situation Awareness (SA)) for multiple-agents conducting searching activity using Bayesian inferential reasoning and learning. Bayesian Belief Network was used to monitor agents' knowledge about their environment, and cases are recorded for the network training using expectation-maximisation or gradient descent algorithm. The well trained network will be used for decision making and environmental situation prediction. Forest fire searching by multiple UAVs was the use case. UAVs are tasked to explore a forest and find a fire for urgent actions by the fire wardens. The paper focused on two problems: (i) effective agents’ path planning strategy and (ii) knowledge understanding and prediction (SA). The path planning problem by inspiring animal mode of foraging using Lévy distribution augmented with Bayesian reasoning was fully described in this paper. Results proof that the Lévy flight strategy performs better than the previous fixed-pattern (e.g., parallel sweeps) approaches in terms of energy and time utilisation. We also introduced a waypoint assessment strategy called k-previous waypoints assessment. It improves the performance of the ordinary levy flight by saving agent’s resources and mission time through redundant search avoidance. The agents (UAVs) are to report their mission knowledge at the central server for interpretation and prediction purposes. Bayesian reasoning and learning were used for the SA and results proof effectiveness in different environments scenario in terms of prediction and effective knowledge representation. The prediction accuracy was measured using learning error rate, logarithm loss, and Brier score and the result proves that little agents mission that can be used for prediction within the same or different environment. Finally, we described a situation-based knowledge visualization and prediction technique for heterogeneous multi-UAV mission. While this paper proves linkage of Bayesian reasoning and learning with SA and effective searching strategy, future works is focusing on simplifying the architecture.

Keywords: Levy flight, distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence

Procedia PDF Downloads 144
27586 Learning Communities and Collaborative Reflection for Teaching Improvement

Authors: Mariana Paz Sajon, Paula Cecilia Primogerio, Mariana Albarracin

Abstract:

This study recovers an experience of teacher training carried out in an Undergraduate Business School from a private university in Buenos Aires, Argentina. The purpose of the project was to provide teachers with an opportunity to reflect on their teaching practices at the university. The aim of the study is to systematize lessons and challenges that emerge from this teacher training experience. A group of teachers who showed a willingness to learn teaching abilities was selected to work. They completed a formative journey working in learning communities starting from the immersion in different aspects of teaching and learning, class observations, and an individual and collaborative reflection exercise in a systematic way among colleagues. In this study, the productions of the eight teachers who are members of the learning communities are analyzed, framed in an e-portfolio that they prepared during the training journey. The analysis shows that after the process of shared reflection, traits related to powerful teaching and meaningful learning have appeared in the classes. For their part, teachers reflect having reached an awareness of their own practices, identifying strengths and opportunities for improvement, and the experience of sharing their own way and knowing the successes and failures of others was valued. It is an educational journey of pedagogical transformation of the teachers, which is infrequent in business education, which could lead to a change in teaching practices for the entire Business School. The present study involves theoretical and pedagogic aspects of education in a business school in Argentina and its flow-on implications for the workplace that may be transferred to other educational contexts.

Keywords: Argentina, learning community, meaningful learning, powerful teaching, reflective practice

Procedia PDF Downloads 223
27585 Object Oriented Software Engineering Approach to Industrial Information System Design and Implementation

Authors: Issa Hussein Manita

Abstract:

This paper presents an example of industrial information system design and implementation (IIDC), the most common software engineering design steps that are applied to the different design stages. We are going through the life cycle of software system development. We start by a study of system requirement and end with testing and delivering system, going by system design and coding, program integration and system integration step. The most modern software design tools available used in the design this includes, but not limited to, Unified Modeling Language (UML), system modeling, SQL server side application, uses case analysis, design and testing as applied to information processing systems. The system is designed to perform tasks specified by the client with real data. By the end of the implementation of the system, default or user defined acceptance policy to provide an overall score as an indication of the system performance is used. To test the reliability of he designed system, it is tested in different environment and different work burden such as multi-user environment.

Keywords: software engineering, design, system requirement, integration, unified modeling language

Procedia PDF Downloads 570
27584 Geo-Collaboration Model between a City and Its Inhabitants to Develop Complementary Solutions for Better Household Waste Collection

Authors: Abdessalam Hijab, Hafida Boulekbache, Eric Henry

Abstract:

According to several research studies, the city as a whole is a complex, spatially organized system; its modeling must take into account several factors, socio-economic, and political, or geographical, acting at multiple scales of observation according to varied temporalities. Sustainable management and protection of the environment in this complex system require significant human and technical investment, particularly for monitoring and maintenance. The objective of this paper is to propose an intelligent approach based on the coupling of Geographic Information System (GIS) and Information and Communications Technology (ICT) tools in order to integrate the inhabitants in the processes of sustainable management and protection of the urban environment, specifically in the processes of household waste collection in urban areas. We are discussing a collaborative 'city/inhabitant' space. Indeed, it is a geo-collaborative approach, based on the spatialization and real-time geo-localization of topological and multimedia data taken by the 'active' inhabitant, in the form of geo-localized alerts related to household waste issues in their city. Our proposal provides a good understanding of the extent to which civil society (inhabitants) can help and contribute to the development of complementary solutions for the collection of household waste and the protection of the urban environment. Moreover, it allows the inhabitant to contribute to the enrichment of a data bank for future uses. Our geo-collaborative model will be tested in the Lamkansa sampling district of the city of Casablanca in Morocco.

Keywords: geographic information system, GIS, information and communications technology, ICT, geo-collaboration, inhabitants, city

Procedia PDF Downloads 116
27583 Application the Queuing Theory in the Warehouse Optimization

Authors: Jaroslav Masek, Juraj Camaj, Eva Nedeliakova

Abstract:

The aim of optimization of store management is not only designing the situation of store management itself including its equipment, technology and operation. In optimization of store management we need to consider also synchronizing of technological, transport, store and service operations throughout the whole process of logistic chain in such a way that a natural flow of material from provider to consumer will be achieved the shortest possible way, in the shortest possible time in requested quality and quantity and with minimum costs. The paper deals with the application of the queuing theory for optimization of warehouse processes. The first part refers to common information about the problematic of warehousing and using mathematical methods for logistics chains optimization. The second part refers to preparing a model of a warehouse within queuing theory. The conclusion of the paper includes two examples of using queuing theory in praxis.

Keywords: queuing theory, logistics system, mathematical methods, warehouse optimization

Procedia PDF Downloads 593
27582 Quality of Education in Dilla Zone

Authors: Gezahegn Bekele Welldgiyorgise

Abstract:

It is obvious that the economics, politics and social conditions of a country are determined by the quality and standard of its education. Indeed, education plays a vital role in changing the consciousness and awareness of society and transforming it on a large scale. Moreover, education contributes a lot to the advancement of science and technology, information and communication, and above all, it speeds up its progress in no time if it focuses mainly on the qualitative approach to education. Education brings about universal change and transformation and lightens mankind in all dimensions. It creates an educated, enlightened and brightened generation in society. The generation will be sharped, sharpened and well-oriented if it gets modern, sophisticated and standardized education in its field of study. The main goal of education is to produce well-qualified, well-trained and disciplined young offers in a given community. If the youth is well trained and well-mannered, he will certainly be enlightened, problem solvers and solution seekers, researchers, and innovators. In this respect, we have to provide the youth with modern education, a teaching-learning process led by active learning and a participatory approach with a new curriculum preparation for the age of children supported by modern facilities (ICT).In addition to that, the curriculum should have to give attention to mathematics and science lessons that include international experience in a comfortable school and classrooms. Therefore, the generation that will be created through such kinds of the guided education system will make the students active participants, self-confident, researchers and problem solvers, besides that result in changed life standards and a developed country. Similarly, our country, Ethiopia, has aimed to get such change in youth (generation) through modern education, designing a new educational policy and curriculum which was implemented for many years, although the goal of education has not reached the required level. To get the main idea of the article, I should have answered the question of why our country's educational goal had not reached the desired level because it is necessary to lay the foundation for research in finding out problems seen through students learning performance, the first task is selecting primary-school as a sample. Therefore, we selected “Dilla primary school (5-8)” which is a workplace for a teacher and gives me a chance to recognize students’ learning performance to recognize their learning grades (internal and external) and measure performance (achievement) of students easily’.

Keywords: curriculum, performance, innovation, learning

Procedia PDF Downloads 77
27581 Self-Weight Reduction of Tall Structures by Taper Cladding System

Authors: Divya Dharshini Omprakash, Anjali Subramani

Abstract:

Most of the tall structures are constructed using shear walls and tube systems in the recent decades. This makes the structure heavy and less resistant to lateral effects as the height of the structure goes up. This paper aims in the reduction of self-weight in tall structures by the use of Taper Cladding System (TCS) and also enumerates the construction techniques used in TCS. TCS has a tapering clad either fixed at the top or bottom of the structural core at the tapered end. This system eliminates the use of RC structural elements on the exterior of the structure and uses fewer columns only on the interior part to take up the gravity loads in order to reduce the self-weight of the structure. The self-weight reduction by TCS is 50% more compared to the present structural systems. The lateral loads on the hull will be taken care of by the tapered steel frame. Analysis were done to study the structural behaviour of taper cladded buildings subjected to lateral loads. TCS has a great impact in the construction of tall structures in seismic and dense urban areas. An effective construction management can be done by the use of Taper Cladding System. In this paper, sustainability, design considerations and implications of the system has also been discussed.

Keywords: Lateral Loads Resistance, reduction of self-weight, sustainable, taper clads

Procedia PDF Downloads 289
27580 Training Undergraduate Engineering Students in Robotics and Automation through Model-Based Design Training: A Case Study at Assumption University of Thailand

Authors: Sajed A. Habib

Abstract:

Problem-based learning (PBL) is a student-centered pedagogy that originated in the medical field and has also been used extensively in other knowledge disciplines with recognized advantages and limitations. PBL has been used in various undergraduate engineering programs with mixed outcomes. The current fourth industrial revolution (digital era or Industry 4.0) has made it essential for many science and engineering students to receive effective training in advanced courses such as industrial automation and robotics. This paper presents a case study at Assumption University of Thailand, where a PBL-like approach was used to teach some aspects of automation and robotics to selected groups of undergraduate engineering students. These students were given some basic level training in automation prior to participating in a subsequent training session in order to solve technical problems with increased complexity. The participating students’ evaluation of the training sessions in terms of learning effectiveness, skills enhancement, and incremental knowledge following the problem-solving session was captured through a follow-up survey consisting of 14 questions and a 5-point scoring system. From the most recent training event, an overall 70% of the respondents indicated that their skill levels were enhanced to a much greater level than they had had before the training, whereas 60.4% of the respondents from the same event indicated that their incremental knowledge following the session was much greater than what they had prior to the training. The instructor-facilitator involved in the training events suggested that this method of learning was more suitable for senior/advanced level students than those at the freshmen level as certain skills to effectively participate in such problem-solving sessions are acquired over a period of time, and not instantly.

Keywords: automation, industry 4.0, model-based design training, problem-based learning

Procedia PDF Downloads 134
27579 Comparative Analysis of Decentralized Financial Education Systems: Lessons From Global Implementations

Authors: Flex Anim

Abstract:

The financial system is a decentralized studies system that was put into place in Ghana as a grassroots financial studies approach. Its main goal is to give people the precise knowledge, abilities, and training required for a given trade, business, profession, or occupation. In this essay, the question of how the financial studies system's devolution to local businesses results in responsible and responsive representation as well as long-term company learning is raised. It centers on two case studies, Asekwa Municipal and Oforikrom. The next question posed by the study is how senior high school students are rebuilding their livelihoods and socioeconomic well-being by creating new curriculum and social practices related to the finance and business studies system. The paper here concentrates on Kumasi District and makes inferences for the other two examples. The paper demonstrates how the financial studies system's establishment of representative groups creates the democratic space required for the successful representation of community goals. Nonetheless, the interests of a privileged few are advanced as a result of elite capture. The state's financial and business training programs do not adhere to the financial studies system's established policy procedures and do not transfer pertinent and discretionary resources to local educators. As a result, local educators are unable to encourage representation that is accountable and responsive. The financial studies system continues to pique the interest of rural areas, but this desire is skewed toward getting access to financial or business training institutions for higher education. Since the locals are not actively involved in financial education, the financial studies system serves just to advance the interests of specific populations. This article explains how rhetoric and personal benefits can be supported by the public even in the case of "failed" interventions.

Keywords: financial studies system, financial studies' devolution, local government, senior high schools and financial education, as well as community goals and representation

Procedia PDF Downloads 74
27578 Galvinising Higher Education Institutions as Creative, Humanised and Innovative Environments

Authors: A. Martins, I. Martins, O. Pereira

Abstract:

The purpose of this research is to focus on the importance of distributed leadership in universities and Higher Education Institutions (HEIs). The research question is whether there a significant finding in self-reported ratings of leadership styles of those respondents that are studying management. The study aims to further discover whether students are encouraged to become responsible and proactive citizens, to develop their skills set, specifically shared leadership and higher-level skills to inspire creation knowledge, sharing and distribution thereof. Contemporary organizations need active and responsible individuals who are capable to make decisions swiftly and responsibly. Leadership influences innovative results and education play a dynamic role in preparing graduates. Critical reflection of extant literature indicates a need for a culture of leadership and innovation to promote organizational sustainability in the globalised world. This study debates the need for HEIs to prepare the graduate for both organizations and society as a whole. This active collaboration should be the very essence of both universities and the industry in order for these to achieve responsible sustainability. Learning and innovation further depend on leadership efficacy. This study follows the pragmatic paradigm methodology. Primary data collection is currently being gathered via the web-based questionnaire link which was made available on the UKZN notice system. The questionnaire has 35 items with a Likert scale of five response options. The purposeful sample method was used, and the population entails the undergraduate and postgraduate students in the College of Law and Business, University of KwaZulu-Natal, South Africa. Limitations include the design of the study and the reliance on the quantitative data as the only method of primary data collection. This study is of added value for scholars and organizations in the innovation economy.

Keywords: knowledge creation, learning, performance, sustainability

Procedia PDF Downloads 287
27577 Universal Design for Learning: Its Impact for Enhanced Performance in General Psychology

Authors: Jose Gay D. Gallego

Abstract:

This study examined the learning performance in General Psychology of 297 freshmen of the CPSU-Main through the Pre and Post Tests. The instructional intervention via Universal Design for Learning (UDL) was applied to 33% (97 out of 297) of these freshmen as the Treatment Group while the 67% (200) belonged to the Control Group for traditional instructions. Statistical inferences utilized one-way Analysis of Variance for mean differences; Pearson R Correlations for bivariate relationships, and; Factor Analysis for significant components that contributed most to the Universal Design for Learning instructions. Findings showed very high levels of students’ acquired UDL skills. Results in the pre test in General Psychology, respectively, were low and average when grouped into low and high achievers. There was no significant mean difference in the acquired nine UDL components when categorized into seven colleges to generalize that between colleges they were on the same very high levels. Significant differences were found in three test areas in General Psychology in eight colleges whose students in College of teacher education taking the lead in the learning performance. Significant differences were also traced in the post test in favor of the students in the treatment group. This proved that UDL really impacted the learning performance of the low achieving students. Significant correlations were revealed between the components of UDL and General Psychology. There were twenty four significant itemized components that contributed most to UDL instructional interventions. Implications were emphasized to maximizing the principles of UDL with the contention of thoughtful planning related to the four curricular pillars of UDL: (a) instructional goals, (b) instructional delivery methods, (c) instructional materials, and (d) student assessments.

Keywords: universal design for learning, enhanced performance, teaching innovation, technology in education, social science area

Procedia PDF Downloads 277
27576 Gender Diversity Practices in Talent Management: An Exploratory Study in the Space Industry in Luxembourg

Authors: K. Usanova

Abstract:

This study contributes to the conceptual and empirical understanding of how gender diversity management (GDM) is integrated into talent management (TM). Following the grounded theory, we interviewed 40 HR managers and talents from the space industry in Luxembourg. We provide a nuanced picture of what attitude on the GDM in TM organizations have, what strategies and practices they conduct, and how they differ from each other. Based on these differences, we developed three types of GDM integration to TM and explained the talents’ view on this issue. To the author's best knowledge, this study is the first empirical investigation of GDM in TM in the space industry that integrates both the TM executives' and TM receivers' views on gender equality in TM.

Keywords: gender diversity management, high-technology industry, human resource management, talent management

Procedia PDF Downloads 133
27575 Deep Learning Approaches for Accurate Detection of Epileptic Seizures from Electroencephalogram Data

Authors: Ramzi Rihane, Yassine Benayed

Abstract:

Epilepsy is a chronic neurological disorder characterized by recurrent, unprovoked seizures resulting from abnormal electrical activity in the brain. Timely and accurate detection of these seizures is essential for improving patient care. In this study, we leverage the UK Bonn University open-source EEG dataset and employ advanced deep-learning techniques to automate the detection of epileptic seizures. By extracting key features from both time and frequency domains, as well as Spectrogram features, we enhance the performance of various deep learning models. Our investigation includes architectures such as Long Short-Term Memory (LSTM), Bidirectional LSTM (Bi-LSTM), 1D Convolutional Neural Networks (1D-CNN), and hybrid CNN-LSTM and CNN-BiLSTM models. The models achieved impressive accuracies: LSTM (98.52%), Bi-LSTM (98.61%), CNN-LSTM (98.91%), CNN-BiLSTM (98.83%), and CNN (98.73%). Additionally, we utilized a data augmentation technique called SMOTE, which yielded the following results: CNN (97.36%), LSTM (97.01%), Bi-LSTM (97.23%), CNN-LSTM (97.45%), and CNN-BiLSTM (97.34%). These findings demonstrate the effectiveness of deep learning in capturing complex patterns in EEG signals, providing a reliable and scalable solution for real-time seizure detection in clinical environments.

Keywords: electroencephalogram, epileptic seizure, deep learning, LSTM, CNN, BI-LSTM, seizure detection

Procedia PDF Downloads 14
27574 Project Management Agile Model Based on Project Management Body of Knowledge Guideline

Authors: Mehrzad Abdi Khalife, Iraj Mahdavi

Abstract:

This paper presents the agile model for project management process. For project management process, the Project Management Body of Knowledge (PMBOK) guideline has been selected as platform. Combination of computational science and artificial intelligent methodology has been added to the guideline to transfer the standard to agile project management process. The model is the combination of practical standard, computational science and artificial intelligent. In this model, we present communication model and protocols to keep process agile. Here, we illustrate the collaboration man and machine in project management area with artificial intelligent approach.

Keywords: artificial intelligent, conceptual model, man-machine collaboration, project management, standard

Procedia PDF Downloads 341
27573 Solid Waste Disposal Site Selection in Thiruvananthapuram Corporation Area by Data Analysis Using GIS and Remote Sensing Tools

Authors: C. Asha Poorna, P. G. Vinod, A. R. R. Menon

Abstract:

Currently increasing population and their activities like urbanization and industrialization generating the greatest environmental, issue called Waste. And the major problem in waste management is selection of an appropriate site for waste disposal. The selection of suitable site have constrains like environmental, economical and political considerations. In this paper we discuss the strategies to be followed while selecting a site for decentralized system for solid waste disposal, using Geographic Information System (GIS), the Analytical Hierarchy Process (AHP) and the remote sensing method for Thiruvananthapuram corporation area. It is located on the west coast of India near the extreme south of the mainland. It lies on the shores of Killiyar and Karamana River. Being on the basin the waste managements must be regulated with the water body. The different criteria considered for waste disposal site selection are lithology, surface water, aquifer, groundwater, land use, contours, aspect, elevation, slope, and distance to road, distance from settlement are examined in relation to land fill site selection. Each criterion was identified and weighted by AHP score and mapped using GIS technique and suitable map is prepared by overlay analysis.

Keywords: waste disposal, solid waste management, Geographic Information System (GIS), Analytical Hierarchy Process (AHP)

Procedia PDF Downloads 397
27572 Vocational Education: A Synergy for Skills Acquisition and Global Learning in Colleges of Education in Ogun State, Nigeria

Authors: Raimi, Kehinde Olawuyi, Omoare Ayodeji Motunrayo

Abstract:

In the last two decades, there has been rising youth unemployment, restiveness, and social vices in Nigeria. The relevance of Vocational Education for skills acquisition, global learning, and national development to address these problems cannot be underestimated. Thus, the need to economically empower Nigerian youths to be able to develop the nation and meet up in the ever-changing global learning and economy led to the assessment of Vocational Education as Synergy for the Skills Acquisition and Global Learning in Ogun State, Nigeria. One hundred and twenty out of 1,500 students were randomly selected for this study. Data were obtained through a questionnaire and were analyzed with descriptive statistics and Chi-square. The results of the study showed that 59.2% of the respondents were between 20 – 24 years of age, 60.8% were male, and 65.8% had a keen interest in Vocational Education. Also, 90% of the respondents acquired skills in extension/advisory, 78.3% acquired skills in poultry production, and 69.1% acquired skills in fisheries/aquaculture. The major constraints to Vocational Education are inadequate resource personnel (χ² = 10.25, p = 0.02), inadequate training facilities (x̅ = 2.46) and unstable power supply (x̅ = 2.38). Results of Chi-square showed significance association between constraints and Skills Acquisition (χ² = 12.54, p = 0.00) at p < 0.05 level of significance. It was established that Vocational Education significantly contributed to students’ skills acquisition and global learning. This study, therefore, recommends that inadequate personnel should be looked into by the school authority in order not to over-stretch the available staff of the institution while the provision of alternative stable power supply (solar power) is also essential for effective teaching and learning process.

Keywords: vocational education, skills acquisition, national development, global learning

Procedia PDF Downloads 128