Search results for: neural networks Mel-Spectrogram
405 Amrita Bose-Einstein Condensate Solution Formed by Gold Nanoparticles Laser Fusion and Atmospheric Water Generation
Authors: Montree Bunruanses, Preecha Yupapin
Abstract:
In this work, the quantum material called Amrita (elixir) is made from top-down gold into nanometer particles by fusing 99% gold with a laser and mixing it with drinking water using the atmospheric water (AWG) production system, which is made of water with air. The high energy laser power destroyed the four natural force bindings from gravity-weak-electromagnetic and strong coupling forces, where finally it was the purified Bose-Einstein condensate (BEC) states. With this method, gold atoms in the form of spherical single crystals with a diameter of 30-50 nanometers are obtained and used. They were modulated (activated) with a frequency generator into various matrix structures mixed with AWG water to be used in the upstream conversion (quantum reversible) process, which can be applied on humans both internally or externally by drinking or applying on the treated surfaces. Doing both space (body) and time (mind) will go back to the origin and start again from the coupling of space-time on both sides of time at fusion (strong coupling force) and push out (Big Bang) at the equilibrium point (singularity) occurs as strings and DNA with neutrinos as coupling energy. There is no distortion (purification), which is the point where time and space have not yet been determined, and there is infinite energy. Therefore, the upstream conversion is performed. It is reforming DNA to make it be purified. The use of Amrita is a method used for people who cannot meditate (quantum meditation). Various cases were applied, where the results show that the Amrita can make the body and the mind return to their pure origins and begin the downstream process with the Big Bang movement, quantum communication in all dimensions, DNA reformation, frequency filtering, crystal body forming, broadband quantum communication networks, black hole forming, quantum consciousness, body and mind healing, etc.Keywords: quantum materials, quantum meditation, quantum reversible, Bose-Einstein condensate
Procedia PDF Downloads 77404 Environmental Performance Measurement for Network-Level Pavement Management
Authors: Jessica Achebe, Susan Tighe
Abstract:
The recent Canadian infrastructure report card reveals the unhealthy state of municipal infrastructure intensified challenged faced by municipalities to maintain adequate infrastructure performance thresholds and meet user’s required service levels. For a road agency, huge funding gap issue is inflated by growing concerns of the environmental repercussion of road construction, operation and maintenance activities. As the reduction of material consumption and greenhouse gas emission when maintain and rehabilitating road networks can achieve added benefits including improved life cycle performance of pavements, reduced climate change impacts and human health effect due to less air pollution, improved productivity due to optimal allocation of resources and reduced road user cost. Incorporating environmental sustainability measure into pavement management is solution widely cited and studied. However measuring the environmental performance of road network is still a far-fetched practice in road network management, more so an ostensive agency-wide environmental sustainability or sustainable maintenance specifications is missing. To address this challenge, this present research focuses on the environmental sustainability performance of network-level pavement management. The ultimate goal is to develop a framework to incorporate environmental sustainability in pavement management systems for network-level maintenance programming. In order to achieve this goal, this study reviewed previous studies that employed environmental performance measures, as well as the suitability of environmental performance indicators for the evaluation of the sustainability of network-level pavement maintenance strategies. Through an industry practice survey, this paper provides a brief forward regarding the pavement manager motivations and barriers to making more sustainable decisions, and data needed to support the network-level environmental sustainability. The trends in network-level sustainable pavement management are also presented, existing gaps are highlighted, and ideas are proposed for sustainable network-level pavement management.Keywords: pavement management, sustainability, network-level evaluation, environment measures
Procedia PDF Downloads 211403 A Case Study: Social Network Analysis of Construction Design Teams
Authors: Elif D. Oguz Erkal, David Krackhardt, Erica Cochran-Hameen
Abstract:
Even though social network analysis (SNA) is an abundantly studied concept for many organizations and industries, a clear SNA approach to the project teams has not yet been adopted by the construction industry. The main challenges for performing SNA in construction and the apparent reason for this gap is the unique and complex structure of each construction project, the comparatively high circulation of project team members/contributing parties and the variety of authentic problems for each project. Additionally, there are stakeholders from a variety of professional backgrounds collaborating in a high-stress environment fueled by time and cost constraints. Within this case study on Project RE, a design & build project performed at the Urban Design Build Studio of Carnegie Mellon University, social network analysis of the project design team will be performed with the main goal of applying social network theory to construction project environments. The research objective is to determine a correlation between the network of how individuals relate to each other on one’s perception of their own professional strengths and weaknesses and the communication patterns within the team and the group dynamics. Data is collected through a survey performed over four rounds conducted monthly, detailed follow-up interviews and constant observations to assess the natural alteration in the network with the effect of time. The data collected is processed by the means of network analytics and in the light of the qualitative data collected with observations and individual interviews. This paper presents the full ethnography of this construction design team of fourteen architecture students based on an elaborate social network data analysis over time. This study is expected to be used as an initial step to perform a refined, targeted and large-scale social network data collection in construction projects in order to deduce the impacts of social networks on project performance and suggest better collaboration structures for construction project teams henceforth.Keywords: construction design teams, construction project management, social network analysis, team collaboration, network analytics
Procedia PDF Downloads 200402 Machine Learning in Patent Law: How Genetic Breeding Algorithms Challenge Modern Patent Law Regimes
Authors: Stefan Papastefanou
Abstract:
Artificial intelligence (AI) is an interdisciplinary field of computer science with the aim of creating intelligent machine behavior. Early approaches to AI have been configured to operate in very constrained environments where the behavior of the AI system was previously determined by formal rules. Knowledge was presented as a set of rules that allowed the AI system to determine the results for specific problems; as a structure of if-else rules that could be traversed to find a solution to a particular problem or question. However, such rule-based systems typically have not been able to generalize beyond the knowledge provided. All over the world and especially in IT-heavy industries such as the United States, the European Union, Singapore, and China, machine learning has developed to be an immense asset, and its applications are becoming more and more significant. It has to be examined how such products of machine learning models can and should be protected by IP law and for the purpose of this paper patent law specifically, since it is the IP law regime closest to technical inventions and computing methods in technical applications. Genetic breeding models are currently less popular than recursive neural network method and deep learning, but this approach can be more easily described by referring to the evolution of natural organisms, and with increasing computational power; the genetic breeding method as a subset of the evolutionary algorithms models is expected to be regaining popularity. The research method focuses on patentability (according to the world’s most significant patent law regimes such as China, Singapore, the European Union, and the United States) of AI inventions and machine learning. Questions of the technical nature of the problem to be solved, the inventive step as such, and the question of the state of the art and the associated obviousness of the solution arise in the current patenting processes. Most importantly, and the key focus of this paper is the problem of patenting inventions that themselves are developed through machine learning. The inventor of a patent application must be a natural person or a group of persons according to the current legal situation in most patent law regimes. In order to be considered an 'inventor', a person must actually have developed part of the inventive concept. The mere application of machine learning or an AI algorithm to a particular problem should not be construed as the algorithm that contributes to a part of the inventive concept. However, when machine learning or the AI algorithm has contributed to a part of the inventive concept, there is currently a lack of clarity regarding the ownership of artificially created inventions. Since not only all European patent law regimes but also the Chinese and Singaporean patent law approaches include identical terms, this paper ultimately offers a comparative analysis of the most relevant patent law regimes.Keywords: algorithms, inventor, genetic breeding models, machine learning, patentability
Procedia PDF Downloads 108401 Effects of Artificial Nectar Feeders on Bird Distribution and Erica Visitation Rate in the Cape Fynbos
Authors: Monique Du Plessis, Anina Coetzee, Colleen L. Seymour, Claire N. Spottiswoode
Abstract:
Artificial nectar feeders are used to attract nectarivorous birds to gardens and are increasing in popularity. The costs and benefits of these feeders remain controversial, however. Nectar feeders may have positive effects by attracting nectarivorous birds towards suburbia, facilitating their urban adaptation, and supplementing bird diets when floral resources are scarce. However, this may come at the cost of luring them away from the plants they pollinate in neighboring indigenous vegetation. This study investigated the effect of nectar feeders on an African pollinator-plant mutualism. Given that birds are important pollinators to many fynbos plant species, this study was conducted in gardens and natural vegetation along the urban edge of the Cape Peninsula. Feeding experiments were carried out to compare relative bird abundance and local distribution patterns for nectarivorous birds (i.e., sunbirds and sugarbirds) between feeder and control treatments. Resultant changes in their visitation rates to Erica flowers in the natural vegetation were tested by inspection of their anther ring status. Nectar feeders attracted higher densities of nectarivores to gardens relative to natural vegetation and decreased their densities in the neighboring fynbos, even when floral abundance in the neighboring vegetation was high. The consequent changes to their distribution patterns and foraging behavior decreased their visitation to at least Erica plukenetii flowers (but not to Erica abietina). This study provides evidence that nectar feeders may have positive effects for birds themselves by reducing their urban sensitivity but also highlights the unintended negative effects feeders may have on the surrounding fynbos ecosystem. Given that nectar feeders appear to compete with the flowers of Erica plukenetii, and perhaps those of other Erica species, artificial feeding may inadvertently threaten bird-plant pollination networks.Keywords: avian nectarivores, bird feeders, bird pollination, indirect effects in human-wildlife interactions, sugar water feeders, supplementary feeding
Procedia PDF Downloads 155400 3D Modeling of Flow and Sediment Transport in Tanks with the Influence of Cavity
Authors: A. Terfous, Y. Liu, A. Ghenaim, P. A. Garambois
Abstract:
With increasing urbanization worldwide, it is crucial to sustainably manage sediment flows in urban networks and especially in stormwater detention basins. One key aspect is to propose optimized designs for detention tanks in order to best reduce flood peak flows and in the meantime settle particles. It is, therefore, necessary to understand complex flows patterns and sediment deposition conditions in stormwater detention basins. The aim of this paper is to study flow structure and particle deposition pattern for a given tank geometry in view to control and maximize sediment deposition. Both numerical simulation and experimental works were done to investigate the flow and sediment distribution in a storm tank with a cavity. As it can be indicated, the settle distribution of the particle in a rectangular tank is mainly determined by the flow patterns and the bed shear stress. The flow patterns in a rectangular tank differ with different geometry, entrance flow rate and the water depth. With the changing of flow patterns, the bed shear stress will change respectively, which also play an influence on the particle settling. The accumulation of the particle in the bed changes the conditions at the bottom, which is ignored in the investigations, however it worth much more attention, the influence of the accumulation of the particle on the sedimentation should be important. The approach presented here is based on the resolution of the Reynolds averaged Navier-Stokes equations to account for turbulent effects and also a passive particle transport model. An analysis of particle deposition conditions is presented in this paper in terms of flow velocities and turbulence patterns. Then sediment deposition zones are presented thanks to the modeling with particle tracking method. It is shown that two recirculation zones seem to significantly influence sediment deposition. Due to the possible overestimation of particle trap efficiency with standard wall functions and stick conditions, further investigations seem required for basal boundary conditions based on turbulent kinetic energy and shear stress. These observations are confirmed by experimental investigations processed in the laboratory.Keywords: storm sewers, sediment deposition, numerical simulation, experimental investigation
Procedia PDF Downloads 325399 Electromagnetic-Mechanical Stimulation on PC12 for Enhancement of Nerve Axonal Extension
Authors: E. Nakamachi, K. Matsumoto, K. Yamamoto, Y. Morita, H. Sakamoto
Abstract:
In recently, electromagnetic and mechanical stimulations have been recognized as the effective extracellular environment stimulation technique to enhance the defected peripheral nerve tissue regeneration. In this study, we developed a new hybrid bioreactor by adopting 50 Hz uniform alternative current (AC) magnetic stimulation and 4% strain mechanical stimulation. The guide tube for nerve regeneration is mesh structured tube made of biodegradable polymer, such as polylatic acid (PLA). However, when neural damage is large, there is a possibility that peripheral nerve undergoes necrosis. So it is quite important to accelerate the nerve tissue regeneration by achieving enhancement of nerve axonal extension rate. Therefore, we try to design and fabricate the system that can simultaneously load the uniform AC magnetic field stimulation and the stretch stimulation to cells for enhancement of nerve axonal extension. Next, we evaluated systems performance and the effectiveness of each stimulation for rat adrenal pheochromocytoma cells (PC12). First, we designed and fabricated the uniform AC magnetic field system and the stretch stimulation system. For the AC magnetic stimulation system, we focused on the use of pole piece structure to carry out in-situ microscopic observation. We designed an optimum pole piece structure using the magnetic field finite element analyses and the response surface methodology. We fabricated the uniform AC magnetic field stimulation system as a bio-reactor by adopting analytically determined design specifications. We measured magnetic flux density that is generated by the uniform AC magnetic field stimulation system. We confirmed that measurement values show good agreement with analytical results, where the uniform magnetic field was observed. Second, we fabricated the cyclic stretch stimulation device under the conditions of particular strains, where the chamber was made of polyoxymethylene (POM). We measured strains in the PC12 cell culture region to confirm the uniform strain. We found slightly different values from the target strain. Finally, we concluded that these differences were allowable in this mechanical stimulation system. We evaluated the effectiveness of each stimulation to enhance the nerve axonal extension using PC12. We confirmed that the average axonal extension length of PC12 under the uniform AC magnetic stimulation was increased by 16 % at 96 h in our bio-reactor. We could not confirm that the axonal extension enhancement under the stretch stimulation condition, where we found the exfoliating of cells. Further, the hybrid stimulation enhanced the axonal extension. Because the magnetic stimulation inhibits the exfoliating of cells. Finally, we concluded that the enhancement of PC12 axonal extension is due to the magnetic stimulation rather than the mechanical stimulation. Finally, we confirmed that the effectiveness of the uniform AC magnetic field stimulation for the nerve axonal extension using PC12 cells.Keywords: nerve cell PC12, axonal extension, nerve regeneration, electromagnetic-mechanical stimulation, bioreactor
Procedia PDF Downloads 265398 Two-Level Graph Causality to Detect and Predict Random Cyber-Attacks
Authors: Van Trieu, Shouhuai Xu, Yusheng Feng
Abstract:
Tracking attack trajectories can be difficult, with limited information about the nature of the attack. Even more difficult as attack information is collected by Intrusion Detection Systems (IDSs) due to the current IDSs having some limitations in identifying malicious and anomalous traffic. Moreover, IDSs only point out the suspicious events but do not show how the events relate to each other or which event possibly cause the other event to happen. Because of this, it is important to investigate new methods capable of performing the tracking of attack trajectories task quickly with less attack information and dependency on IDSs, in order to prioritize actions during incident responses. This paper proposes a two-level graph causality framework for tracking attack trajectories in internet networks by leveraging observable malicious behaviors to detect what is the most probable attack events that can cause another event to occur in the system. Technically, given the time series of malicious events, the framework extracts events with useful features, such as attack time and port number, to apply to the conditional independent tests to detect the relationship between attack events. Using the academic datasets collected by IDSs, experimental results show that the framework can quickly detect the causal pairs that offer meaningful insights into the nature of the internet network, given only reasonable restrictions on network size and structure. Without the framework’s guidance, these insights would not be able to discover by the existing tools, such as IDSs. It would cost expert human analysts a significant time if possible. The computational results from the proposed two-level graph network model reveal the obvious pattern and trends. In fact, more than 85% of causal pairs have the average time difference between the causal and effect events in both computed and observed data within 5 minutes. This result can be used as a preventive measure against future attacks. Although the forecast may be short, from 0.24 seconds to 5 minutes, it is long enough to be used to design a prevention protocol to block those attacks.Keywords: causality, multilevel graph, cyber-attacks, prediction
Procedia PDF Downloads 156397 On Cloud Computing: A Review of the Features
Authors: Assem Abdel Hamed Mousa
Abstract:
The Internet of Things probably already influences your life. And if it doesn’t, it soon will, say computer scientists; Ubiquitous computing names the third wave in computing, just now beginning. First were mainframes, each shared by lots of people. Now we are in the personal computing era, person and machine staring uneasily at each other across the desktop. Next comes ubiquitous computing, or the age of calm technology, when technology recedes into the background of our lives. Alan Kay of Apple calls this "Third Paradigm" computing. Ubiquitous computing is essentially the term for human interaction with computers in virtually everything. Ubiquitous computing is roughly the opposite of virtual reality. Where virtual reality puts people inside a computer-generated world, ubiquitous computing forces the computer to live out here in the world with people. Virtual reality is primarily a horse power problem; ubiquitous computing is a very difficult integration of human factors, computer science, engineering, and social sciences. The approach: Activate the world. Provide hundreds of wireless computing devices per person per office, of all scales (from 1" displays to wall sized). This has required new work in operating systems, user interfaces, networks, wireless, displays, and many other areas. We call our work "ubiquitous computing". This is different from PDA's, dynabooks, or information at your fingertips. It is invisible; everywhere computing that does not live on a personal device of any sort, but is in the woodwork everywhere. The initial incarnation of ubiquitous computing was in the form of "tabs", "pads", and "boards" built at Xerox PARC, 1988-1994. Several papers describe this work, and there are web pages for the Tabs and for the Boards (which are a commercial product now): Ubiquitous computing will drastically reduce the cost of digital devices and tasks for the average consumer. With labor intensive components such as processors and hard drives stored in the remote data centers powering the cloud , and with pooled resources giving individual consumers the benefits of economies of scale, monthly fees similar to a cable bill for services that feed into a consumer’s phone.Keywords: internet, cloud computing, ubiquitous computing, big data
Procedia PDF Downloads 382396 Special Single Mode Fiber Tests of Polarization Mode Dispersion Changes in a Harsh Environment
Authors: Jan Bohata, Stanislav Zvanovec, Matej Komanec, Jakub Jaros, David Hruby
Abstract:
Even though there is a rapid development in new optical networks, still optical communication infrastructures remain composed of thousands of kilometers of aging optical cables. Many of them are located in a harsh environment which contributes to an increased attenuation or induced birefringence of the fibers leading to the increase of polarization mode dispersion (PMD). In this paper, we report experimental results from environmental optical cable tests and characterization in the climate chamber. We focused on the evaluation of optical network reliability in a harsh environment. For this purpose, a special thermal chamber was adopted, targeting to the large temperature changes between -60 °C and 160 C° with defined humidity. Single mode optical cable 230 meters long, having six tubes and a total number of 72 single mode optical fibers was spliced together forming one fiber link, which was afterward tested in the climate chamber. The main emphasis was put to the polarization mode dispersion (PMD) changes, which were evaluated by three different PMD measuring methods (general interferometry technique, scrambled state-of-polarization analysis and polarization optical time domain reflectometer) in order to fully validate obtained results. Moreover, attenuation and chromatic dispersion (CD), as well as the PMD, were monitored using 17 km long single mode optical cable. Results imply a strong PMD dependence on thermal changes, imposing the exceeding 200 % of its value during the exposure to extreme temperatures and experienced more than 20 dB insertion losses in the optical system. The derived statistic is provided in the paper together with an evaluation of such as optical system reliability, which could be a crucial tool for the optical network designers. The environmental tests are further taken in context to our previously published results from long-term monitoring of fundamental parameters within an optical cable placed in a harsh environment in a special outdoor testbed. Finally, we provide a correlation between short-term and long-term monitoring campaigns and statistics, which are necessary for optical network safety and reliability.Keywords: optical fiber, polarization mode dispersion, harsh environment, aging
Procedia PDF Downloads 385395 Innovation in "Low-Tech" Industries: Portuguese Footwear Industry
Authors: Antonio Marques, Graça Guedes
Abstract:
The Portuguese footwear industry had in the last five years a remarkable performance in the exportation values, the trade balance and others economic indicators. After a long period of difficulties and with a strong reduction of companies and employees since 1994 until 2009, the Portuguese footwear industry changed the strategy and is now a success case between the international players of footwear. Only the Italian industry sells footwear with a higher value than the Portuguese and the distance between them is decreasing year by year. This paper analyses how the Portuguese footwear companies innovate and make innovation, according the classification proposed by the Oslo Manual. Also analyses the strategy follow in the innovation process, as suggested by Freeman and Soete, and shows the linkage between the type of innovation and the strategy of innovation. The research methodology was qualitative and the strategy for data collection was the case study. The qualitative data will be analyzed with the MAXQDA software. The economic results of the footwear companies studied shows differences between all of them and these differences are related with the innovation strategy adopted. The companies focused in product and marketing innovation, oriented to their target market, have higher ratios “turnover per worker” than the companies focused in process innovation. However, all the footwear companies in this “low-tech” industry create value and contribute to a positive foreign trade of 1.310 million euros in 2013. The growth strategies implemented has the participation of the sectorial organizations in several innovative projects. And it’s obvious that cooperation between all of them is a critical element to the performance achieved by the companies and the innovation observed. Can conclude that the Portuguese footwear sector has in the last years an excellent performance (economic results, exportation values, trade balance, brands and international image) and his performance is strongly related with the strategy in innovation followed, the type of innovation and the networks in the cluster. A simplified model, called “Ace of Diamonds”, is proposed by the authors and explains the way how this performance was reached by the seven companies that participate in the study (two of them are the leaders in the setor), and if this model can be used in others traditional and “low-tech” industries.Keywords: footwear, innovation, “low-tech” industry, Oslo manual
Procedia PDF Downloads 379394 Enhancing Sell-In and Sell-Out Forecasting Using Ensemble Machine Learning Method
Authors: Vishal Das, Tianyi Mao, Zhicheng Geng, Carmen Flores, Diego Pelloso, Fang Wang
Abstract:
Accurate sell-in and sell-out forecasting is a ubiquitous problem in the retail industry. It is an important element of any demand planning activity. As a global food and beverage company, Nestlé has hundreds of products in each geographical location that they operate in. Each product has its sell-in and sell-out time series data, which are forecasted on a weekly and monthly scale for demand and financial planning. To address this challenge, Nestlé Chilein collaboration with Amazon Machine Learning Solutions Labhas developed their in-house solution of using machine learning models for forecasting. Similar products are combined together such that there is one model for each product category. In this way, the models learn from a larger set of data, and there are fewer models to maintain. The solution is scalable to all product categories and is developed to be flexible enough to include any new product or eliminate any existing product in a product category based on requirements. We show how we can use the machine learning development environment on Amazon Web Services (AWS) to explore a set of forecasting models and create business intelligence dashboards that can be used with the existing demand planning tools in Nestlé. We explored recent deep learning networks (DNN), which show promising results for a variety of time series forecasting problems. Specifically, we used a DeepAR autoregressive model that can group similar time series together and provide robust predictions. To further enhance the accuracy of the predictions and include domain-specific knowledge, we designed an ensemble approach using DeepAR and XGBoost regression model. As part of the ensemble approach, we interlinked the sell-out and sell-in information to ensure that a future sell-out influences the current sell-in predictions. Our approach outperforms the benchmark statistical models by more than 50%. The machine learning (ML) pipeline implemented in the cloud is currently being extended for other product categories and is getting adopted by other geomarkets.Keywords: sell-in and sell-out forecasting, demand planning, DeepAR, retail, ensemble machine learning, time-series
Procedia PDF Downloads 274393 Rheumatoid Arthritis, Periodontitis and the Subgingival Microbiome: A Circular Relationship
Authors: Isabel Lopez-Oliva, Akshay Paropkari, Shweta Saraswat, Stefan Serban, Paola de Pablo, Karim Raza, Andrew Filer, Iain Chapple, Thomas Dietrich, Melissa Grant, Purnima Kumar
Abstract:
Objective: We aimed to explicate the role of the subgingival microbiome in the causal link between rheumatoid arthritis (RA) and periodontitis (PD). Methods: Subjects with/without RA and with/without PD were randomized for treatment with scaling and root planing (SRP) or oral hygiene instructions. Subgingival biofilm, gingival crevicular fluid, and serum were collected at baseline and at 3- and 6-months post-operatively. Correlations were generated between 72 million 16S rDNA sequences, immuno-inflammatory mediators, circulating antibodies to oral microbial antigens, serum inflammatory molecules, and clinical metrics of RA. The dynamics of inter-microbial and host-microbial interactions were modeled using differential network analysis. Results: RA superseded periodontitis as a determinant of microbial composition, and DAS28 score superseded the severity of periodontitis as a driver of microbial assemblages (p=0.001, ANOSIM). RA subjects evidenced higher serum anti-PPAD (p=0.0013), anti-Pg-enolase (p=0.0031), anti-RPP3, anti- Pg-OMP and anti- Pi-OMP (p=0.001) antibodies than non-RA controls (with and without periodontitis). Following SRP, bacterial networks anchored by IL-1b, IL-4, IL-6, IL-10, IL-13, MIP-1b, and PDGF-b underwent ≥5-fold higher rewiring; and serum antibodies to microbial antigens decreased significantly. Conclusions: Our data suggest a circular relationship between RA and PD, beginning with an RA-influenced dysbiosis within the healthy subgingival microbiome that leads to exaggerated local inflammation in periodontitis and circulating antibodies to periodontal pathogens and positive correlation between severity of periodontitis and RA activity. Periodontal therapy restores host-microbial homeostasis, reduces local inflammation, and decreases circulating microbial antigens. Our data highlights the importance of integrating periodontal care into the management of RA patients.Keywords: rheumatoid arthritis, periodontal, subgingival, DNA sequence analysis, oral microbiome
Procedia PDF Downloads 108392 Energy Loss Reduction in Oil Refineries through Flare Gas Recovery Approaches
Authors: Majid Amidpour, Parisa Karimi, Marzieh Joda
Abstract:
For the last few years, release of burned undesirable by-products has become a challenging issue in oil industries. Flaring, as one of the main sources of air contamination, involves detrimental and long-lasting effects on human health and is considered a substantial reason for energy losses worldwide. This research involves studying the implications of two main flare gas recovery methods at three oil refineries, all in Iran as the case I, case II, and case III in which the production capacities are increasing respectively. In the proposed methods, flare gases are converted into more valuable products, before combustion by the flare networks. The first approach involves collecting, compressing and converting the flare gas to smokeless fuel which can be used in the fuel gas system of the refineries. The other scenario includes utilizing the flare gas as a feed into liquefied petroleum gas (LPG) production unit already established in the refineries. The processes of these scenarios are simulated, and the capital investment is calculated for each procedure. The cumulative profits of the scenarios are evaluated using Net Present Value method. Furthermore, the sensitivity analysis based on total propane and butane mole fraction is carried out to make a rational comparison for LPG production approach, and the results are illustrated for different mole fractions of propane and butane. As the mole fraction of propane and butane contained in LPG differs in summer and winter seasons, the results corresponding to LPG scenario are demonstrated for each season. The results of the simulations show that cumulative profit in fuel gas production scenario and LPG production rate increase with the capacity of the refineries. Moreover, the investment return time in LPG production method experiences a decline, followed by a rising trend with an increase in C3 and C4 content. The minimum value of time return occurs at propane and butane sum concentration values of 0.7, 0.6, and 0.7 in case I, II, and III, respectively. Based on comparison of the time of investment return and cumulative profit, fuel gas production is the superior scenario for three case studies.Keywords: flare gas reduction, liquefied petroleum gas, fuel gas, net present value method, sensitivity analysis
Procedia PDF Downloads 159391 Determinants of Carbon-Certified Small-Scale Agroforestry Adoption In Rural Mount Kenyan
Authors: Emmanuel Benjamin, Matthias Blum
Abstract:
Purpose – We address smallholder farmers’ restricted possibilities to adopt sustainable technologies which have direct and indirect benefits. Smallholders often face little asset endowment due to small farm size und insecure property rights, therefore experiencing constraints in adopting agricultural innovation. A program involving payments for ecosystem services (PES) benefits poor smallholder farmers in developing countries in many ways and has been suggested as a means of easing smallholder farmers’ financial constraints. PES may also provide additional mainstay which can eventually result in more favorable credit contract terms due to the availability of collateral substitute. Results of this study may help to understand the barriers, motives and incentives for smallholders’ participation in PES and help in designing a strategy to foster participation in beneficial programs. Design/methodology/approach – This paper uses a random utility model and a logistic regression approach to investigate factors that influence agroforestry adoption. We investigate non-monetary factors, such as information spillover, that influence the decision to adopt such conservation strategies. We collected original data from non-government-run agroforestry mitigation programs with PES that have been implemented in the Mount Kenya region. Preliminary Findings – We find that spread of information, existing networks and peer involvement in such programs drive participation. Conversely, participation by smallholders does not seem to be influenced by education, land or asset endowment. Contrary to some existing literature, we found weak evidence for a positive correlation between the adoption of agroforestry with PES and age of smallholder, e.g., one increases with the other, in the Mount Kenyan region. Research implications – Poverty alleviation policies for developing countries should target social capital to increase the adoption rate of modern technologies amongst smallholders.Keywords: agriculture innovation, agroforestry adoption, smallholders, payment for ecosystem services, Sub-Saharan Africa
Procedia PDF Downloads 381390 Thermodynamic Analysis of Surface Seawater under Ocean Warming: An Integrated Approach Combining Experimental Measurements, Theoretical Modeling, Machine Learning Techniques, and Molecular Dynamics Simulation for Climate Change Assessment
Authors: Nishaben Desai Dholakiya, Anirban Roy, Ranjan Dey
Abstract:
Understanding ocean thermodynamics has become increasingly critical as Earth's oceans serve as the primary planetary heat regulator, absorbing approximately 93% of excess heat energy from anthropogenic greenhouse gas emissions. This investigation presents a comprehensive analysis of Arabian Sea surface seawater thermodynamics, focusing specifically on heat capacity (Cp) and thermal expansion coefficient (α) - parameters fundamental to global heat distribution patterns. Through high-precision experimental measurements of ultrasonic velocity and density across varying temperature (293.15-318.15K) and salinity (0.5-35 ppt) conditions, it characterize critical thermophysical parameters including specific heat capacity, thermal expansion, and isobaric and isothermal compressibility coefficients in natural seawater systems. The study employs advanced machine learning frameworks - Random Forest, Gradient Booster, Stacked Ensemble Machine Learning (SEML), and AdaBoost - with SEML achieving exceptional accuracy (R² > 0.99) in heat capacity predictions. the findings reveal significant temperature-dependent molecular restructuring: enhanced thermal energy disrupts hydrogen-bonded networks and ion-water interactions, manifesting as decreased heat capacity with increasing temperature (negative ∂Cp/∂T). This mechanism creates a positive feedback loop where reduced heat absorption capacity potentially accelerates oceanic warming cycles. These quantitative insights into seawater thermodynamics provide crucial parametric inputs for climate models and evidence-based environmental policy formulation, particularly addressing the critical knowledge gap in thermal expansion behavior of seawater under varying temperature-salinity conditions.Keywords: climate change, arabian sea, thermodynamics, machine learning
Procedia PDF Downloads 7389 Investigating University Students' Attitudes towards Infertility in Terms of Socio-Demographic Variables
Authors: Yelda Kağnıcı, Seçil Seymenler, Bahar Baran, Erol Esen, Barışcan Öztürk, Ender Siyez, Diğdem M. Siyez
Abstract:
Infertility is the inability to reproduce after twelve months or longer unprotected sexual relationship. Although infertility is not a life threatening illness, it is considered as a serious problem for both the individual and the society. At this point, the importance of examining attitudes towards infertility is critical. Negative attitudes towards infertility may postpone individuals’ help seeking behaviors. The aim of this study is to investigate university students’ attitudes towards infertility in terms of socio-demographic variables (gender, age, taking sexual health education, existence of an infertile individual in the social network, plans about having child and behaviors about health). The sample of the study was 9693 university students attending to 21 universities in Turkey. Of the 9693 students, % 51.6 (n = 5002) were female, % 48.4 (n = 4691) were male. The data was collected by Attitudes toward Infertility Scale developed by researchers and Personal Information Form. In data analysis first frequencies were calculated, then in order to test whether there were significant differences in attitudes towards infertility scores of university students in terms of socio-demographic variables, one way ANOVA was conducted. According to the results, it was found that female students, students who had sexual health education, who have sexual relationship experience, who have an infertile individual in their social networks, who have child plans, who have high caffeine usage and who use alcohol regularly have more positive attitudes towards infertility. On the other hand, attitudes towards infidelity did not show significant differences in terms of age and cigarette usage. When the results of the study were evaluated in general, it was seen that university students’ attitudes towards infertility were negative. The attitudes of students who have high caffeine and alcohols usage were high. It can be considered that these students are aware that their social habits are risky. Female students’ positive attitudes might be explained by their gender role. The results point out that in order to decrease university students’ negative attitudes towards infertility, there is a necessity to develop preventive programs in universities.Keywords: infertility, attitudes, sex, university students
Procedia PDF Downloads 247388 Chemical Aging of High-Density Polyethylene (HDPE-100) in Interaction with Aggressive Environment
Authors: Berkas Khaoula, Chaoui Kamel
Abstract:
Polyethylene (PE) pipes are one of the best options for water and gas transmission networks. The main reason for such a choice is its high-quality performance in service conditions over long periods of time. PE pipes are installed in contact with different soils having various chemical compositions with confirmed aggressiveness. As a result, PE pipe surfaces undergo unwanted oxidation reactions. Usually, the polymer mixture is designed to include some additives, such as anti-oxidants, to inhibit or reduce the degradation effects. Some other additives are intended to increase resistance to the ESC phenomenon associated with polymers (ESC: Environmental Stress Cracking). This situation occurs in contact with aggressive external environments following different contaminations of soil, groundwater and transported fluids. In addition, bacterial activity and other physical or chemical media, such as temperature and humidity, can play an enhancing role. These conditions contribute to modifying the PE pipe structure and degrade its properties during exposure. In this work, the effect of distilled water, sodium hypochlorite (bleach), diluted sulfuric acid (H2SO4) and toluene-methanol (TM) mixture are studied when extruded PE samples are exposed to those environments for given periods. The chosen exposure periods are 7, 14 and 28 days at room temperature and in sealed glass containers. Post-exposure observations and ISO impact tests are presented as a function of time and chemical medium. Water effects are observed to be limited in explaining such use in real applications, whereas the changes in TM and acidic media are very significant. For the TM medium, the polymer toughness increased drastically (from 15.95 kJ/m² up to 32.01 kJ/m²), while sulfuric acid showed a steady augmentation over time. This situation may correspond to a hardening phenomenon of PE increasing its brittleness and its ability for structural degradation because of localized oxidation reactions and changes in crystallinity.Keywords: polyethylene, toluene-methanol mixture, environmental stress cracking, degradation, impact resistance
Procedia PDF Downloads 75387 Slöjd International: Translating and Tracking Nordic Curricula for Holistic Health, 1890s-1920s
Authors: Sasha Mullally
Abstract:
This paper investigates the transnational circulation of European Nordic ideas about and programs for manual education and training over the decades spanning the late 19th and early 20th centuries. Based on the unexamined but voluminous correspondence (English-language) of Otto Salomon, an internationally famous education reformer who popularized a form of manual training called "slöjd" (anglicized as "sloyd"), this paper examines it's circulation and translation across global cultures. Salomon, a multilingual promoter of new standardized program for manual training, based his curricula on traditional handcrqafts, particularly Swedish woodworking. He and his followers claimed that the integration of manual training and craft work provided primary and secondary educators with an opportunity to cultivate the mental, but also the physical, and tangentially, the spiritual, health of children. While historians have examined the networks who came together in person to train at his slöjd school for educators in western Sweden, no one has mapped the international community he cultivated over decades of letter writing. Additionally, while the circulation of his ideas in Britain and Germany, as well as the northeastern United States has been placed in a broader narrative of "western" education reform in the Progressive or late Victorian era, no one has examined the correspondence for evidence of the program's wider international appeal beyond Europe and North America. This paper fills this gap by examining the breadth of his reach through active correspondence with educators in Asia (Japan), South America (Brazil), and Africa (South Africa and Zimbabwe). As such, this research presents an opportunity to map the international communities of education reformers active at the turn of the last century, compare and contrast their understandings of and interpretations of "holistic" education, and reveal the ways manual formation was understood to be foundational to the healthy development of children.Keywords: history of education, history of medicine and psychiatry, child health, child formation, internationalism
Procedia PDF Downloads 105386 An Adaptive Oversampling Technique for Imbalanced Datasets
Authors: Shaukat Ali Shahee, Usha Ananthakumar
Abstract:
A data set exhibits class imbalance problem when one class has very few examples compared to the other class, and this is also referred to as between class imbalance. The traditional classifiers fail to classify the minority class examples correctly due to its bias towards the majority class. Apart from between-class imbalance, imbalance within classes where classes are composed of a different number of sub-clusters with these sub-clusters containing different number of examples also deteriorates the performance of the classifier. Previously, many methods have been proposed for handling imbalanced dataset problem. These methods can be classified into four categories: data preprocessing, algorithmic based, cost-based methods and ensemble of classifier. Data preprocessing techniques have shown great potential as they attempt to improve data distribution rather than the classifier. Data preprocessing technique handles class imbalance either by increasing the minority class examples or by decreasing the majority class examples. Decreasing the majority class examples lead to loss of information and also when minority class has an absolute rarity, removing the majority class examples is generally not recommended. Existing methods available for handling class imbalance do not address both between-class imbalance and within-class imbalance simultaneously. In this paper, we propose a method that handles between class imbalance and within class imbalance simultaneously for binary classification problem. Removing between class imbalance and within class imbalance simultaneously eliminates the biases of the classifier towards bigger sub-clusters by minimizing the error domination of bigger sub-clusters in total error. The proposed method uses model-based clustering to find the presence of sub-clusters or sub-concepts in the dataset. The number of examples oversampled among the sub-clusters is determined based on the complexity of sub-clusters. The method also takes into consideration the scatter of the data in the feature space and also adaptively copes up with unseen test data using Lowner-John ellipsoid for increasing the accuracy of the classifier. In this study, neural network is being used as this is one such classifier where the total error is minimized and removing the between-class imbalance and within class imbalance simultaneously help the classifier in giving equal weight to all the sub-clusters irrespective of the classes. The proposed method is validated on 9 publicly available data sets and compared with three existing oversampling techniques that rely on the spatial location of minority class examples in the euclidean feature space. The experimental results show the proposed method to be statistically significantly superior to other methods in terms of various accuracy measures. Thus the proposed method can serve as a good alternative to handle various problem domains like credit scoring, customer churn prediction, financial distress, etc., that typically involve imbalanced data sets.Keywords: classification, imbalanced dataset, Lowner-John ellipsoid, model based clustering, oversampling
Procedia PDF Downloads 418385 A Methodology Based on Image Processing and Deep Learning for Automatic Characterization of Graphene Oxide
Authors: Rafael do Amaral Teodoro, Leandro Augusto da Silva
Abstract:
Originated from graphite, graphene is a two-dimensional (2D) material that promises to revolutionize technology in many different areas, such as energy, telecommunications, civil construction, aviation, textile, and medicine. This is possible because its structure, formed by carbon bonds, provides desirable optical, thermal, and mechanical characteristics that are interesting to multiple areas of the market. Thus, several research and development centers are studying different manufacturing methods and material applications of graphene, which are often compromised by the scarcity of more agile and accurate methodologies to characterize the material – that is to determine its composition, shape, size, and the number of layers and crystals. To engage in this search, this study proposes a computational methodology that applies deep learning to identify graphene oxide crystals in order to characterize samples by crystal sizes. To achieve this, a fully convolutional neural network called U-net has been trained to segment SEM graphene oxide images. The segmentation generated by the U-net is fine-tuned with a standard deviation technique by classes, which allows crystals to be distinguished with different labels through an object delimitation algorithm. As a next step, the characteristics of the position, area, perimeter, and lateral measures of each detected crystal are extracted from the images. This information generates a database with the dimensions of the crystals that compose the samples. Finally, graphs are automatically created showing the frequency distributions by area size and perimeter of the crystals. This methodological process resulted in a high capacity of segmentation of graphene oxide crystals, presenting accuracy and F-score equal to 95% and 94%, respectively, over the test set. Such performance demonstrates a high generalization capacity of the method in crystal segmentation, since its performance considers significant changes in image extraction quality. The measurement of non-overlapping crystals presented an average error of 6% for the different measurement metrics, thus suggesting that the model provides a high-performance measurement for non-overlapping segmentations. For overlapping crystals, however, a limitation of the model was identified. To overcome this limitation, it is important to ensure that the samples to be analyzed are properly prepared. This will minimize crystal overlap in the SEM image acquisition and guarantee a lower error in the measurements without greater efforts for data handling. All in all, the method developed is a time optimizer with a high measurement value, considering that it is capable of measuring hundreds of graphene oxide crystals in seconds, saving weeks of manual work.Keywords: characterization, graphene oxide, nanomaterials, U-net, deep learning
Procedia PDF Downloads 160384 A Next Generation Multi-Scale Modeling Theatre for in silico Oncology
Authors: Safee Chaudhary, Mahnoor Naseer Gondal, Hira Anees Awan, Abdul Rehman, Ammar Arif, Risham Hussain, Huma Khawar, Zainab Arshad, Muhammad Faizyab Ali Chaudhary, Waleed Ahmed, Muhammad Umer Sultan, Bibi Amina, Salaar Khan, Muhammad Moaz Ahmad, Osama Shiraz Shah, Hadia Hameed, Muhammad Farooq Ahmad Butt, Muhammad Ahmad, Sameer Ahmed, Fayyaz Ahmed, Omer Ishaq, Waqar Nabi, Wim Vanderbauwhede, Bilal Wajid, Huma Shehwana, Muhammad Tariq, Amir Faisal
Abstract:
Cancer is a manifestation of multifactorial deregulations in biomolecular pathways. These deregulations arise from the complex multi-scale interplay between cellular and extracellular factors. Such multifactorial aberrations at gene, protein, and extracellular scales need to be investigated systematically towards decoding the underlying mechanisms and orchestrating therapeutic interventions for patient treatment. In this work, we propose ‘TISON’, a next-generation web-based multiscale modeling platform for clinical systems oncology. TISON’s unique modeling abstraction allows a seamless coupling of information from biomolecular networks, cell decision circuits, extra-cellular environments, and tissue geometries. The platform can undertake multiscale sensitivity analysis towards in silico biomarker identification and drug evaluation on cellular phenotypes in user-defined tissue geometries. Furthermore, integration of cancer expression databases such as The Cancer Genome Atlas (TCGA) and Human Proteome Atlas (HPA) facilitates in the development of personalized therapeutics. TISON is the next-evolution of multiscale cancer modeling and simulation platforms and provides a ‘zero-code’ model development, simulation, and analysis environment for application in clinical settings.Keywords: systems oncology, cancer systems biology, cancer therapeutics, personalized therapeutics, cancer modelling
Procedia PDF Downloads 222383 Detection of Alzheimer's Protein on Nano Designed Polymer Surfaces in Water and Artificial Saliva
Authors: Sevde Altuntas, Fatih Buyukserin
Abstract:
Alzheimer’s disease is responsible for irreversible neural damage of brain parts. One of the disease markers is Amyloid-β 1-42 protein that accumulates in the brain in the form plaques. The basic problem for detection of the protein is the low amount of protein that cannot be detected properly in body liquids such as blood, saliva or urine. To solve this problem, tests like ELISA or PCR are proposed which are expensive, require specialized personnel and can contain complex protocols. Therefore, Surface-enhanced Raman Spectroscopy (SERS) a good candidate for detection of Amyloid-β 1-42 protein. Because the spectroscopic technique can potentially allow even single molecule detection from liquid and solid surfaces. Besides SERS signal can be improved by using nanopattern surface and also is specific to molecules. In this context, our study proposes to fabricate diagnostic test models that utilize Au-coated nanopatterned polycarbonate (PC) surfaces modified with Thioflavin - T to detect low concentrations of Amyloid-β 1-42 protein in water and artificial saliva medium by the enhancement of protein SERS signal. The nanopatterned PC surface that was used to enhance SERS signal was fabricated by using Anodic Alumina Membranes (AAM) as a template. It is possible to produce AAMs with different column structures and varying thicknesses depending on voltage and anodization time. After fabrication process, the pore diameter of AAMs can be arranged with dilute acid solution treatment. In this study, two different columns structures were prepared. After a surface modification to decrease their surface energy, AAMs were treated with PC solution. Following the solvent evaporation, nanopatterned PC films with tunable pillared structures were peeled off from the membrane surface. The PC film was then modified with Au and Thioflavin-T for the detection of Amyloid-β 1-42 protein. The protein detection studies were conducted first in water via this biosensor platform. Same measurements were conducted in artificial saliva to detect the presence of Amyloid Amyloid-β 1-42 protein. SEM, SERS and contact angle measurements were carried out for the characterization of different surfaces and further demonstration of the protein attachment. SERS enhancement factor calculations were also completed via experimental results. As a result, our research group fabricated diagnostic test models that utilize Au-coated nanopatterned polycarbonate (PC) surfaces modified with Thioflavin-T to detect low concentrations of Alzheimer’s Amiloid – β protein in water and artificial saliva medium. This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) Grant No: 214Z167.Keywords: alzheimer, anodic aluminum oxide, nanotopography, surface enhanced Raman spectroscopy
Procedia PDF Downloads 291382 Family Health in Families with Children with Autism
Authors: Teresa Isabel Lozano Pérez, Sandra Soca Lozano
Abstract:
In Cuba, the childcare is one of the programs prioritized by the Ministry of Public Health and the birth of a child becomes a desired and rewarding event for the family, which is prepared for the reception of a healthy child. When this does not happen and after the first months of the child's birth begin to appear developmental deviations that indicate the presence of a disorder, the event becomes a live event potentially negative and generates disruptions in the family health. A quantitative, descriptive, and cross-sectional research methodology was conducted to describe the impact on family health of diagnosis of autism in a sample of 25 families of children diagnosed with infantile autism at the University Pediatric Hospital Juan Manuel Marquez Havana, Cuba; in the period between January 2014 and May 2015. The sample was non probabilistic and intentional from the inclusion criteria selected. As instruments, we used a survey to identify the structure of the family, life events inventory and an instrument to assess the relative impact, adaptive resources of family and social support perceived (IRFA) to identify the diagnosis of autism as life event. The main results indicated that the majority of families studied were nuclear, small and medium and in the formation stage. All households surveyed identified the diagnosis of autism in a child as an event of great importance and negative significance for the family, taking in most of the families studied a high impact on the four areas of family health and impact enhancer of involvement in family health. All the studied families do not have sufficient adaptive resources to face this situation, sensing that they received social support frequently, mainly in information and emotional areas. We conclude that the diagnosis of autism one of the members of the families studied is valued as a life event highly significant with unfavorably way causing an enhancer impact of involvement in family health especially in the areas ‘health’ and ‘socio-psychological’. Among the social support networks health institutions, partners and friends are highlighted. We recommend developing intervention strategies in families of these children to support them in the process of adapting the diagnosis.Keywords: family, family health, infantile autism, life event
Procedia PDF Downloads 431381 A Relational Approach to Adverb Use in Interactions
Authors: Guillaume P. Fernandez
Abstract:
Individual language use is a matter of choice in particular interactions. The paper proposes a conceptual and theoretical framework with methodological consideration to develop how language produced in dyadic relations is to be considered and situated in the larger social configuration the interaction is embedded within. An integrated and comprehensive view is taken: social interactions are expected to be ruled by a normative context, defined by the chain of interdependences that structures the personal network. In this approach, the determinants of discursive practices are not only constrained by the moment of production and isolated from broader influences. Instead, the position the individual and the dyad have in the personal network influences the discursive practices in a twofold manner: on the one hand, the network limits the access to linguistic resources available within it, and, on the other hand, the structure of the network influences the agency of the individual, by the social control inherent to particular network characteristics. Concretely, we investigate how and to what extent consistent ego is from one interaction to another in his or her use of adverbs. To do so, social network analysis (SNA) methods are mobilized. Participants (N=130) are college students recruited in the french speaking part of Switzerland. The personal network of significant ones of each individual is created using name generators and edge interpreters, with a focus on social support and conflict. For the linguistic parts, respondents were asked to record themselves with five of their close relations. From the recordings, we computed an average similarity score based on the adverb used across interactions. In terms of analyses, two are envisaged: First, OLS regressions including network-level measures, such as density and reciprocity, and individual-level measures, such as centralities, are performed to understand the tenets of linguistic similarity from one interaction to another. The second analysis considers each social tie as nested within ego networks. Multilevel models are performed to investigate how the different types of ties may influence the likelihood to use adverbs, by controlling structural properties of the personal network. Primary results suggest that the more cohesive the network, the less likely is the individual to change his or her manner of speaking, and social support increases the use of adverbs in interactions. While promising results emerge, further research should consider a longitudinal approach to able the claim of causality.Keywords: personal network, adverbs, interactions, social influence
Procedia PDF Downloads 67380 Determination of Influence Lines for Train Crossings on a Tied Arch Bridge to Optimize the Construction of the Hangers
Authors: Martin Mensinger, Marjolaine Pfaffinger, Matthias Haslbeck
Abstract:
The maintenance and expansion of the railway network represents a central task for transport planning in the future. In addition to the ultimate limit states, the aspects of resource conservation and sustainability are increasingly more necessary to include in the basic engineering. Therefore, as part of the AiF research project, ‘Integrated assessment of steel and composite railway bridges in accordance with sustainability criteria’, the entire lifecycle of engineering structures is involved in planning and evaluation, offering a way to optimize the design of steel bridges. In order to reduce the life cycle costs and increase the profitability of steel structures, it is particularly necessary to consider the demands on hanger connections resulting from fatigue. In order for accurate analysis, a number simulations were conducted as part of the research project on a finite element model of a reference bridge, which gives an indication of the internal forces of the individual structural components of a tied arch bridge, depending on the stress incurred by various types of trains. The calculations were carried out on a detailed FE-model, which allows an extraordinarily accurate modeling of the stiffness of all parts of the constructions as it is made up surface elements. The results point to a large impact of the formation of details on fatigue-related changes in stress, on the one hand, and on the other, they could depict construction-specific specifics over the course of adding stress. Comparative calculations with varied axle-stress distribution also provide information about the sensitivity of the results compared to the imposition of stress and axel distribution on the stress-resultant development. The calculated diagrams help to achieve an optimized hanger connection design through improved durability, which helps to reduce the maintenance costs of rail networks and to give practical application notes for the formation of details.Keywords: fatigue, influence line, life cycle, tied arch bridge
Procedia PDF Downloads 330379 Streamflow Modeling Using the PyTOPKAPI Model with Remotely Sensed Rainfall Data: A Case Study of Gilgel Ghibe Catchment, Ethiopia
Authors: Zeinu Ahmed Rabba, Derek D Stretch
Abstract:
Remote sensing contributes valuable information to streamflow estimates. Usually, stream flow is directly measured through ground-based hydrological monitoring station. However, in many developing countries like Ethiopia, ground-based hydrological monitoring networks are either sparse or nonexistent, which limits the manage water resources and hampers early flood-warning systems. In such cases, satellite remote sensing is an alternative means to acquire such information. This paper discusses the application of remotely sensed rainfall data for streamflow modeling in Gilgel Ghibe basin in Ethiopia. Ten years (2001-2010) of two satellite-based precipitation products (SBPP), TRMM and WaterBase, were used. These products were combined with the PyTOPKAPI hydrological model to generate daily stream flows. The results were compared with streamflow observations at Gilgel Ghibe Nr, Assendabo gauging station using four statistical tools (Bias, R², NS and RMSE). The statistical analysis indicates that the bias-adjusted SBPPs agree well with gauged rainfall compared to bias-unadjusted ones. The SBPPs with no bias-adjustment tend to overestimate (high Bias and high RMSE) the extreme precipitation events and the corresponding simulated streamflow outputs, particularly during wet months (June-September) and underestimate the streamflow prediction over few dry months (January and February). This shows that bias-adjustment can be important for improving the performance of the SBPPs in streamflow forecasting. We further conclude that the general streamflow patterns were well captured at daily time scales when using SBPPs after bias adjustment. However, the overall results demonstrate that the simulated streamflow using the gauged rainfall is superior to those obtained from remotely sensed rainfall products including bias-adjusted ones.Keywords: Ethiopia, PyTOPKAPI model, remote sensing, streamflow, Tropical Rainfall Measuring Mission (TRMM), waterBase
Procedia PDF Downloads 285378 Transit Facility Planning in Fringe Areas of Kolkata Metropolitan Region
Authors: Soumen Mitra, Aparna Saha
Abstract:
The perceived link between the city and the countryside is evolving rapidly and is getting shifted away from the assumptions of mainstream paradigms to new conceptual networks where rural-urban links are being redefined. In this conceptual field, the fringe interface is still considered as a transitional zone between city and countryside, and is defined as a diffused area rather than a discrete territory. In developing countries fringe areas are said to have both rural and urban characteristics but are devoid of basic municipal facilities. Again, when the urban core areas envelopes the fringe areas along with it the character of fringe changes but services are not well facilitated which in turn results to uneven growth, rapid and haphazard development. One of the major services present in fringe areas is inter-linkages in terms of transit corridors. Planning for the appropriate and sustainable future of fringe areas requires a sheer focus on these corridors pertaining to transit facility, for better accessibility and mobility. Inducing a transit facility plan enhances the various facilities and also increases their proximity for user groups. The study focuses on the western fringe region of Kolkata metropolis which is a major source of industrial hub and housing sector, thus converting the agricultural lands into non-agricultural use. The study emphasizes on providing transit facilities both physical (stops, sheds, terminals, etc.) and operational (ticketing system, route prioritization, integration of transit modes, etc.), to facilitate the region as well as accelerate the growth pattern systematically. Hence, the scope of this work is on the basis of prevailing conditions in fringe areas and attempts for an effective transit facility plan. The strategies and recommendations are in terms of road widening, service coverage, feeder route prioritization, bus stops facilitation, pedestrian facilities, etc, which in turn enhances the region’s growth pattern. Thus, this context of transit facility planning acts as a catalytic agent to avoid the future unplanned growth and accelerates it towards an integrated development.Keywords: feeder route, fringe, municipal planning, transit facility
Procedia PDF Downloads 177377 Determining Components of Deflection of the Vertical in Owerri West Local Government, Imo State Nigeria Using Least Square Method
Authors: Chukwu Fidelis Ndubuisi, Madufor Michael Ozims, Asogwa Vivian Ndidiamaka, Egenamba Juliet Ngozi, Okonkwo Stephen C., Kamah Chukwudi David
Abstract:
Deflection of the vertical is a quantity used in reducing geodetic measurements related to geoidal networks to the ellipsoidal plane; and it is essential in Geoid modeling processes. Computing the deflection of the vertical component of a point in a given area is necessary in evaluating the standard errors along north-south and east-west direction. Using combined approach for the determination of deflection of the vertical component provides improved result but labor intensive without appropriate method. Least square method is a method that makes use of redundant observation in modeling a given sets of problem that obeys certain geometric condition. This research work is aimed to computing the deflection of vertical component of Owerri West local government area of Imo State using geometric method as field technique. In this method combination of Global Positioning System on static mode and precise leveling observation were utilized in determination of geodetic coordinate of points established within the study area by GPS observation and the orthometric heights through precise leveling. By least square using Matlab programme; the estimated deflections of vertical component parameters for the common station were -0.0286 and -0.0001 arc seconds for the north-south and east-west components respectively. The associated standard errors of the processed vectors of the network were computed. The computed standard errors of the North-south and East-west components were 5.5911e-005 and 1.4965e-004 arc seconds, respectively. Therefore, including the derived component of deflection of the vertical to the ellipsoidal model will yield high observational accuracy since an ellipsoidal model is not tenable due to its far observational error in the determination of high quality job. It is important to include the determined deflection of the vertical component for Owerri West Local Government in Imo State, Nigeria.Keywords: deflection of vertical, ellipsoidal height, least square, orthometric height
Procedia PDF Downloads 209376 A Literature Study on IoT Based Monitoring System for Smart Agriculture
Authors: Sonu Rana, Jyoti Verma, A. K. Gautam
Abstract:
In most developing countries like India, the majority of the population heavily relies on agriculture for their livelihood. The yield of agriculture is heavily dependent on uncertain weather conditions like a monsoon, soil fertility, availability of irrigation facilities and fertilizers as well as support from the government. The agricultural yield is quite less compared to the effort put in due to inefficient agricultural facilities and obsolete farming practices on the one hand and lack of knowledge on the other hand, and ultimately agricultural community does not prosper. It is therefore essential for the farmers to improve their harvest yield by the acquisition of related data such as soil condition, temperature, humidity, availability of irrigation facilities, availability of, manure, etc., and adopt smart farming techniques using modern agricultural equipment. Nowadays, using IOT technology in agriculture is the best solution to improve the yield with fewer efforts and economic costs. The primary focus of this work-related is IoT technology in the agriculture field. By using IoT all the parameters would be monitored by mounting sensors in an agriculture field held at different places, will collect real-time data, and could be transmitted by a transmitting device like an antenna. To improve the system, IoT will interact with other useful systems like Wireless Sensor Networks. IoT is exploring every aspect, so the radio frequency spectrum is getting crowded due to the increasing demand for wireless applications. Therefore, Federal Communications Commission is reallocating the spectrum for various wireless applications. An antenna is also an integral part of the newly designed IoT devices. The main aim is to propose a new antenna structure used for IoT agricultural applications and compatible with this new unlicensed frequency band. The main focus of this paper is to present work related to these technologies in the agriculture field. This also presented their challenges & benefits. It can help in understanding the job of data by using IoT and correspondence advancements in the horticulture division. This will help to motivate and educate the unskilled farmers to comprehend the best bits of knowledge given by the huge information investigation utilizing smart technology.Keywords: smart agriculture, IoT, agriculture technology, data analytics, smart technology
Procedia PDF Downloads 116