Search results for: electric driven heat pump
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6017

Search results for: electric driven heat pump

2687 Analyses of Soil Volatile Contaminants Extraction by Hot Air Injection

Authors: Abraham Dayan

Abstract:

Remediation of soil containing volatile contaminants is often conducted by vapor extraction (SVE) technique. The operation is based on injection of air at ambient temperatures with or without thermal soil warming. Thermal enhancements of soil vapor extraction (TESVE) processes are usually conducted by soil heating, sometimes assisted by added steam injections. The current study addresses a technique which has not received adequate attention and is based on using exclusively hot air as an alternative to the common TESVE practices. To demonstrate the merit of the hot air TESVE technique, a sandy soil containing contaminated water is studied. Numerical and analytical tools were used to evaluate the rate of decontamination processes for various geometries and operating conditions. The governing equations are based on the Darcy law and are applied to an expanding compressible flow within a sandy soil. The equations were solved to determine the minimal time required for complete soil remediation. An approximate closed form solution was developed based on the assumption of local thermodynamic equilibrium and on a linearized representation of temperature dependence of the vapor to air density ratio. The solution is general in nature and offers insight into the governing processes of the soil remediation operation, where self-similar temperature profiles under certain conditions may exist, and the noticeable role of the contaminants evaporation and recondensation processes in affecting the remediation time. Based on analyses of the hot air TESVE technique, it is shown that it is sufficient to heat the air during a certain period of the decontamination process without compromising its full advantage, and thereby, entailing a minimization of the air-heating-energy requirements. This in effect is achieved by regeneration, leaving the energy stored in the soil during the early period of the remediation process to heat the subsequently injected ambient air, which infiltrates through it for the decontamination of the remaining untreated soil zone. The characteristic time required to complete SVE operations are calculated as a function of, both, the injected air temperature and humidity. For a specific set of conditions, it is demonstrated that elevating the injected air temperature by 20oC, the hot air injection technique reduces the soil remediation time by 50%, while requiring 30% of additional energy consumption. Those evaluations clearly unveil the advantage of the hot air SVE process, which for insignificant cost of added air heating energy, the substantial cost expenditures for manpower and equipment utilization are reduced.

Keywords: Porous Media, Soil Decontamination, Hot Air, Vapor Extraction

Procedia PDF Downloads 16
2686 Simulation Analysis and Control of the Temperature Field in an Induction Furnace Based on Various Parameters

Authors: Sohaibullah Zarghoon, Syed Yousaf, Cyril Belavy, Stanislav Duris, Samuel Emebu, Radek Matusu

Abstract:

Induction heating is extensively employed in industrial furnaces due to its swift response and high energy efficiency. Designing and optimising these furnaces necessitates the use of computer-aided simulations. This study aims to develop an accurate temperature field model for a rectangular steel billet in an induction furnace by leveraging various parameters in COMSOL Multiphysics software. The simulation analysis incorporated temperature dynamics, considering skin depth, temperature-dependent, and constant parameters of the steel billet. The resulting data-driven model was transformed into a state-space model using MATLAB's System Identification Toolbox for the purpose of designing a linear quadratic regulator (LQR). This controller was successfully implemented to regulate the core temperature of the billet from 1000°C to 1200°C, utilizing the distributed parameter system circuit.

Keywords: induction heating, LQR controller, skin depth, temperature field

Procedia PDF Downloads 44
2685 Reduction and Smelting of Magnetic Fraction Obtained by Magnetic-Gravimetric-Separation (MGS) of Electric Arc Furnace Dust

Authors: Sara Scolari, Davide Mombelli, Gianluca Dall'Osto, Jasna Kastivnik, Gašper Tavčar, Carlo Mapelli

Abstract:

The EIT Raw Materials RIS-DustRec-II project aims to transform Electric Arc Furnace Dust (EAFD) into a valuable resource by overcoming the challenges associated with traditional recycling approaches. EAFD, a zinc-rich industrial by-product typically recycled by the Waelz process, contains complex oxides such as franklinite (ZnFe₂O₄), which hinder the efficient extraction of zinc, by also introducing other valuable elements (Fe, Ni, Cr, Cu, …) in the slag. The project aims to develop a multistage multidisciplinary approach to separate EAFD into two streams: a magnetic and non-magnetic one. In this paper the production of self-reducing briquettes from the magnetic stream of EAFD with a reducing agent, aiming to drive carbothermic reduction and recover iron as a usable alloy, was investigated. Research was focused on optimizing the magnetic and subsequent gravimetric separation (MGS) processes, followed by high-temperature smelting to evaluate reduction efficiency and phase separation. The characterization of selected two different raw EAFD samples and their magnetic-gravitational separation to isolate zinc- and iron-rich fractions was performed by X-ray diffraction and scanning electron microscope. The iron-enriched concentrates were then agglomerated into self-reducing briquettes by mixing them with either biochar (olive pomace pyrolyzed at 350 and 750°C and wood chips pyrolyzed at 750 °C) and a Cupola Furnace dust as reducing agents, combined with gelatinized corn starch as a binder. Cylindrical briquettes were produced and cured for 14 days to ensure structural integrity during subsequent thermal treatments. Smelting tests were carried out at 1400 °C in an inert argon atmosphere to assess the metallization efficiency and the separation between metal and slag phases. A carbon/oxides mass ratio of 0.262 (C/(ZnO+Fe₂O₃)) was used in these tests to maintain continuity with previous studies and to standardize reduction conditions. The magnetic and gravimetric separations effectively isolated zinc- and iron-enriched fractions, particularly for one of the two EAFD, where the concentration of Zn in the concentration fraction was reduced by 8 wt.% while Fe reached 45 wt.%. The reduction tests conducted at 1400 °C showed that the chosen carbon/oxides ratio was sufficient for the smelting of the reducible oxides within the briquettes. However, an important limitation became apparent: the amount of carbon, exceeding the stochiometric value, proved to be excessive for the effective coalescence of metal droplets, preventing clear metal-slag separation. To address this, further smelting tests were carried out in an air atmosphere rather than inert conditions to burn off excess carbon. This paper demonstrates the potential of controlled carbothermic reduction for EAFD recycling. By carefully optimizing the C/(ZnO+Fe₂O₃) ratio, the process can maximize metal recovery while achieving better separation of the metal and slag phases. This approach offers a promising alternative to traditional EAFD recycling methods, with further studies recommended to refine the parameters for industrial application.

Keywords: biochars, electrical arc furnace dust, metallization, smelting

Procedia PDF Downloads 15
2684 Modelling the Dynamics of Corporate Bonds Spreads with Asymmetric GARCH Models

Authors: Sélima Baccar, Ephraim Clark

Abstract:

This paper can be considered as a new perspective to analyse credit spreads. A comprehensive empirical analysis of conditional variance of credit spreads indices is performed using various GARCH models. Based on a comparison between traditional and asymmetric GARCH models with alternative functional forms of the conditional density, we intend to identify what macroeconomic and financial factors have driven daily changes in the US Dollar credit spreads in the period from January 2011 through January 2013. The results provide a strong interdependence between credit spreads and the explanatory factors related to the conditions of interest rates, the state of the stock market, the bond market liquidity and the exchange risk. The empirical findings support the use of asymmetric GARCH models. The AGARCH and GJR models outperform the traditional GARCH in credit spreads modelling. We show, also, that the leptokurtic Student-t assumption is better than the Gaussian distribution and improves the quality of the estimates, whatever the rating or maturity.

Keywords: corporate bonds, default risk, credit spreads, asymmetric garch models, student-t distribution

Procedia PDF Downloads 475
2683 A Peg Board with Photo-Reflectors to Detect Peg Insertion and Pull-Out Moments

Authors: Hiroshi Kinoshita, Yasuto Nakanishi, Ryuhei Okuno, Toshio Higashi

Abstract:

Various kinds of pegboards have been developed and used widely in research and clinics of rehabilitation for evaluation and training of patient’s hand function. A common measure in these peg boards is a total time of performance execution assessed by a tester’s stopwatch. Introduction of electrical and automatic measurement technology to the apparatus, on the other hand, has been delayed. The present work introduces the development of a pegboard with an electric sensor to detect moments of individual peg’s insertion and removal. The work also gives fundamental data obtained from a group of healthy young individuals who performed peg transfer tasks using the pegboard developed. Through trails and errors in pilot tests, two 10-hole peg-board boxes installed with a small photo-reflector and a DC amplifier at the bottom of each hole were designed and built by the present authors. The amplified electric analogue signals from the 20 reflectors were automatically digitized at 500 Hz per channel, and stored in a PC. The boxes were set on a test table at different distances (25, 50, 75, and 125 mm) in parallel to examine the effect of hole-to-hole distance. Fifty healthy young volunteers (25 in each gender) as subjects of the study performed successive fast 80 time peg transfers at each distance using their dominant and non-dominant hands. The data gathered showed a clear-cut light interruption/continuation moment by the pegs, allowing accurately (no tester’s error involved) and precisely (an order of milliseconds) to determine the pull out and insertion times of each peg. This further permitted computation of individual peg movement duration (PMD: from peg-lift-off to insertion) apart from hand reaching duration (HRD: from peg insertion to lift-off). An accidental drop of a peg led to an exceptionally long ( < mean + 3 SD) PMD, which was readily detected from an examination of data distribution. The PMD data were commonly right-skewed, suggesting that the median can be a better estimate of individual PMD than the mean. Repeated measures ANOVA using the median values revealed significant hole-to-hole distance, and hand dominance effects, suggesting that these need to be fixed in the accurate evaluation of PMD. The gender effect was non-significant. Performance consistency was also evaluated by the use of quartile variation coefficient values, which revealed no gender, hole-to-hole, and hand dominance effects. The measurement reliability was further examined using interclass correlation obtained from 14 subjects who performed the 25 and 125 mm hole distance tasks at two 7-10 days separate test sessions. Inter-class correlation values between the two tests showed fair reliability for PMD (0.65-0.75), and for HRD (0.77-0.94). We concluded that a sensor peg board developed in the present study could provide accurate (excluding tester’s errors), and precise (at a millisecond rate) time information of peg movement separated from that used for hand movement. It could also easily detect and automatically exclude erroneous execution data from his/her standard data. These would lead to a better evaluation of hand dexterity function compared to the widely used conventional used peg boards.

Keywords: hand, dexterity test, peg movement time, performance consistency

Procedia PDF Downloads 135
2682 Thermo-Exergy Optimization of Gas Turbine Cycle with Two Different Regenerator Designs

Authors: Saria Abed, Tahar Khir, Ammar Ben Brahim

Abstract:

A thermo-exergy optimization of a gas turbine cycle with two different regenerator designs is established. A comparison was made between the performance of the two regenerators and their roles in improving the cycle efficiencies. The effect of operational parameters (the pressure ratio of the compressor, the ambient temperature, excess of air, geometric parameters of the regenerators, etc.) on thermal efficiencies, the exergy efficiencies, and irreversibilities were studied using thermal balances and quantitative exegetic equilibrium for each component and for the whole system. The results are given graphically by using the EES software, and an appropriate discussion and conclusion was made.

Keywords: exergy efficiency, gas turbine, heat transfer, irreversibility, optimization, regenerator, thermal efficiency

Procedia PDF Downloads 452
2681 Investigation of Enhanced Geothermal System with CO2 as Working Fluid

Authors: Ruina Xu, Peixue Jiang, Feng Luo

Abstract:

The novel concept of enhanced geothermal system with CO2 instead of water as working fluid (CO2-EGS) has attracted wide attention due to additional benefit of CO2 geological storage during the power generation process. In this research, numerical investigation on a doublet CO2-EGS system is performed, focusing on the influence of the injection/production well perforation location in the targeted geothermal reservoir. Three different reservoir inlet and outlet boundary conditions are used in simulations since the well constrains are different in reality. The results show that CO2-EGS system performance of power generation and power cost vary greatly among cases of different wells perforation locations, and the optimum options under different boundary conditions are also different.

Keywords: Enhanced Geothermal System, supercritical CO2, heat transfer, CO2-EGS

Procedia PDF Downloads 293
2680 Focusing of Technology Monitoring Activities Using Indicators

Authors: Günther Schuh, Christina König, Toni Drescher

Abstract:

One of the key factors for the competitiveness and market success of technology-driven companies is the timely provision of information about emerging technologies, changes in existing technologies, as well as relevant related changes in the market's structures and participants. Therefore, many companies conduct technology intelligence (TI) activities to ensure an early identification of appropriate technologies and other (weak) signals. One base activity of TI is technology monitoring, which is defined as the systematic tracking of developments within a specified topic of interest as well as related trends over a long period of time. Due to the very large number of dynamically changing parameters within the technological and the market environment of a company as well as their possible interdependencies, it is necessary to focus technology monitoring on specific indicators or other criteria, which are able to point out technological developments and market changes. In addition to the execution of a literature review on existing approaches, which mainly propose patent-based indicators, it is examined in this paper whether indicator systems from other branches such as risk management or economic research could be transferred to technology monitoring in order to enable an efficient and focused technology monitoring for companies.

Keywords: technology forecasting, technology indicator, technology intelligence, technology management, technology monitoring

Procedia PDF Downloads 474
2679 Assessment of Chemical and Physical Properties of Surface Water Resources in Flood Affected Area

Authors: Siti Hajar Ya’acob, Nor Sayzwani Sukri, Farah Khaliz Kedri, Rozidaini Mohd Ghazi, Nik Raihan Nik Yusoff, Aweng A/L Eh Rak

Abstract:

Flood event that occurred in mid-December 2014 in East Coast of Peninsular Malaysia has driven attention from the public nationwide. Apart from loss and damage of properties and belongings, the massive flood event has introduced environmental disturbances on surface water resources in such flood affected area. A study has been conducted to measure the physical and chemical composition of Galas River and Pergau River prior to identification the flood impact towards environmental deterioration in surrounding area. Samples that have been collected were analyzed in-situ using YSI portable instrument and also in the laboratory for acid digestion and heavy metals analysis using Atomic Absorption Spectroscopy (AAS). Results showed that range of temperature (0C), DO (mg/L), Ec (µs/cm), TDS (mg/L), turbidity (NTU), pH, and salinity were 25.05-26.65, 1.51-5.85, 0.032-0.054, 0.022-0.035, 23.2-76.4, 3.46-7.31, and 0.01-0.02 respectively. The results from this study could be used as a primary database to evaluate the status of water quality of the respective river after the massive flood.

Keywords: flood, river, heavy metals, AAS

Procedia PDF Downloads 382
2678 Enabling Wire Arc Additive Manufacturing in Aircraft Landing Gear Production and Its Benefits

Authors: Jun Wang, Chenglei Diao, Emanuele Pagone, Jialuo Ding, Stewart Williams

Abstract:

As a crucial component in aircraft, landing gear systems are responsible for supporting the plane during parking, taxiing, takeoff, and landing. Given the need for high load-bearing capacity over extended periods, 300M ultra-high strength steel (UHSS) is often the material of choice for crafting these systems due to its exceptional strength, toughness, and fatigue resistance. In the quest for cost-effective and sustainable manufacturing solutions, Wire Arc Additive Manufacturing (WAAM) emerges as a promising alternative for fabricating 300M UHSS landing gears. This is due to its advantages in near-net-shape forming of large components, cost-efficiency, and reduced lead times. Cranfield University has conducted an extensive preliminary study on WAAM 300M UHSS, covering feature deposition, interface analysis, and post-heat treatment. Both Gas Metal Arc (GMA) and Plasma Transferred Arc (PTA)-based WAAM methods were explored, revealing their feasibility for defect-free manufacturing. However, as-deposited 300M features showed lower strength but higher ductility compared to their forged counterparts. Subsequent post-heat treatments were effective in normalising the microstructure and mechanical properties, meeting qualification standards. A 300M UHSS landing gear demonstrator was successfully created using PTA-based WAAM, showcasing the method's precision and cost-effectiveness. The demonstrator, measuring Ф200mm x 700mm, was completed in 16 hours, using 7 kg of material at a deposition rate of 1.3kg/hr. This resulted in a significant reduction in the Buy-to-Fly (BTF) ratio compared to traditional manufacturing methods, further validating WAAM's potential for this application. A "cradle-to-gate" environmental impact assessment, which considers the cumulative effects from raw material extraction to customer shipment, has revealed promising outcomes. Utilising Wire Arc Additive Manufacturing (WAAM) for landing gear components significantly reduces the need for raw material extraction and refinement compared to traditional subtractive methods. This, in turn, lessens the burden on subsequent manufacturing processes, including heat treatment, machining, and transportation. Our estimates indicate that the carbon footprint of the component could be halved when switching from traditional machining to WAAM. Similar reductions are observed in embodied energy consumption and other environmental impact indicators, such as emissions to air, water, and land. Additionally, WAAM offers the unique advantage of part repair by redepositing only the necessary material, a capability not available through conventional methods. Our research shows that WAAM-based repairs can drastically reduce environmental impact, even when accounting for additional transportation for repairs. Consequently, WAAM emerges as a pivotal technology for reducing environmental impact in manufacturing, aiding the industry in its crucial and ambitious journey towards Net Zero. This study paves the way for transformative benefits across the aerospace industry, as we integrate manufacturing into a hybrid solution that offers substantial savings and access to more sustainable technologies for critical component production.

Keywords: WAAM, aircraft landing gear, microstructure, mechanical performance, life cycle assessment

Procedia PDF Downloads 162
2677 Analytical Terahertz Characterization of In0.53Ga0.47As Transistors and Homogenous Diodes

Authors: Abdelmadjid Mammeri, Fatima Zohra Mahi, Luca Varani, H. Marinchoi

Abstract:

We propose an analytical model for the admittance and the noise calculations of the InGaAs transistor and diode. The development of the small-signal admittance takes into account the longitudinal and transverse electric fields through a pseudo two-dimensional approximation of the Poisson equation. The frequency-dependent of the small-signal admittance response is determined by the total currents and the potentials matrix relation between the gate and the drain terminals. The noise is evaluated by using the real part of the transistor/diode admittance under a small-signal perturbation. The analytical results show that the admittance spectrum exhibits a series of resonant peaks corresponding to the excitation of plasma waves. The appearance of the resonance is discussed and analyzed as functions of the channel length and the temperature. The model can be used, on one hand; to control the appearance of the plasma resonances, and on other hand; can give significant information about the noise frequency dependence in the InGaAs transistor and diode.

Keywords: InGaAs transistors, InGaAs diode, admittance, resonant peaks, plasma waves, analytical model

Procedia PDF Downloads 317
2676 Identifying Degradation Patterns of LI-Ion Batteries from Impedance Spectroscopy Using Machine Learning

Authors: Yunwei Zhang, Qiaochu Tang, Yao Zhang, Jiabin Wang, Ulrich Stimming, Alpha Lee

Abstract:

Forecasting the state of health and remaining useful life of Li-ion batteries is an unsolved challenge that limits technologies such as consumer electronics and electric vehicles. Here we build an accurate battery forecasting system by combining electrochemical impedance spectroscopy (EIS) -- a real-time, non-invasive and information-rich measurement that is hitherto underused in battery diagnosis -- with Gaussian process machine learning. We collect over 20,000 EIS spectra of commercial Li-ion batteries at different states of health, states of charge and temperatures -- the largest dataset to our knowledge of its kind. Our Gaussian process model takes the entire spectrum as input, without further feature engineering, and automatically determines which spectral features predict degradation. Our model accurately predicts the remaining useful life, even without complete knowledge of past operating conditions of the battery. Our results demonstrate the value of EIS signals in battery management systems.

Keywords: battery degradation, machine learning method, electrochemical impedance spectroscopy, battery diagnosis

Procedia PDF Downloads 151
2675 Numerical Investigation of Poling Vector Angle on Adaptive Sandwich Plate Deflection

Authors: Alireza Pouladkhan, Mohammad Yavari Foroushani, Ali Mortazavi

Abstract:

This paper presents a finite element model for a sandwich plate containing a piezoelectric core. A sandwich plate with a piezoelectric core is constructed using the shear mode of piezoelectric materials. The orientation of poling vector has a significant effect on deflection and stress induced in the piezo-actuated adaptive sandwich plate. In the present study, the influence of this factor for a clamped-clamped-free-free and simple-simple-free-free square sandwich plate is investigated using Finite Element Method. The study uses ABAQUS (v.6.7) software to derive the finite element model of the sandwich plate. By using this model, the study gives the influences of the poling vector angle on the response of the smart structure and determines the maximum transverse displacement and maximum stress induced.

Keywords: finite element method, sandwich plate, poling vector, piezoelectric materials, smart structure, electric enthalpy

Procedia PDF Downloads 233
2674 Non-Contact Human Movement Monitoring Technique for Security Control System Based 2n Electrostatic Induction

Authors: Koichi Kurita

Abstract:

In this study, an effective non-contact technique for the detection of human physical activity is proposed. The technique is based on detecting the electrostatic induction current generated by the walking motion under non-contact and non-attached conditions. A theoretical model for the electrostatic induction current generated because of a change in the electric potential of the human body is proposed. By comparing the obtained electrostatic induction current with the theoretical model, it becomes obvious that this model effectively explains the behavior of the waveform of the electrostatic induction current. The normal walking motions are recorded using a portable sensor measurement located in a passageway of office building. The obtained results show that detailed information regarding physical activity such as a walking cycle can be estimated using our proposed technique. This suggests that the proposed technique which is based on the detection of the walking signal, can be successfully applied to the detection of human walking motion in a secured building.

Keywords: human walking motion, access control, electrostatic induction, alarm monitoring

Procedia PDF Downloads 358
2673 Vibration Mitigation in Partially Liquid-Filled Vessel Using Passive Energy Absorbers

Authors: Maor Farid, Oleg Gendelman

Abstract:

The following study deals with fluid vibration of a liquid in a partially filled vessel under periodic ground excitation. This external excitation might lead to hidraulic impact applied on the vessel inner walls. In order to model these sloshing dynamic regimes, several equivalent mechanical models were suggested in the literature, such as series of pendula or mass-spring systems that are able to impact the inner tank walls. In the following study, we use the latter methodology, use parameter values documented in literature corresponding to cylindrical tanks and consider structural elasticity of the tank. The hydraulic impulses are modeled by the high-exponent potential function. Additional system parameters are found with the help of Finite-Element (FE) analysis. Model-driven stress assessment method is developed. Finally, vibration mitigation performances of both tuned mass damper (TMD) and nonlinear energy sink (NES) are examined.

Keywords: nonlinear energy sink (NES), reduced-order modelling, liquid sloshing, vibration mitigation, vibro-impact dynamics

Procedia PDF Downloads 198
2672 Investigating the Effect of Artificial Intelligence on the Improvement of Green Supply Chain in Industry

Authors: Sepinoud Hamedi

Abstract:

Over the past few decades, companies have appeared developing concerns in connection to the natural affect of their fabricating exercises. Green supply chain administration has been considered by the producers as a attainable choice to decrease the natural affect of operations whereas at the same time moving forward their operational execution. Contemporaneously the coming of digitalization and globalization within the supply chain space has driven to a developing acknowledgment of the importance of data preparing methodologies, such as enormous information analytics and fake insights innovations, in improving and optimizing supply chain execution. Also, supply chain collaboration in part intervenes the relationship between manufactured innovation and supply chain execution Ponders appear that the use of BDA-AI advances includes a significant impact on natural handle integration and green supply chain collaboration conjointly underlines that both natural handle integration and green supply chain collaboration have a critical affect on natural execution. Correspondingly savvy supply chain contributes to green execution through overseeing green connections and setting up green operations.

Keywords: green supply chain, artificial intelligence, manufacturers, technology, environmental

Procedia PDF Downloads 75
2671 An Integrated Power Generation System Design Developed between Solar Energy-Assisted Dual Absorption Cycles

Authors: Asli Tiktas, Huseyin Gunerhan, Arif Hepbasli

Abstract:

Solar energy, with its abundant and clean features, is one of the prominent renewable energy sources in multigeneration energy systems where various outputs, especially power generation, are produced together. In the literature, concentrated solar energy systems, which are an expensive technology, are mostly used in solar power plants where medium-high capacity production outputs are achieved. In addition, although different methods have been developed and proposed for solar energy-supported integrated power generation systems by different investigators, absorption technology, which is one of the key points of the present study, has been used extensively in cooling systems in these studies. Unlike these common uses mentioned in the literature, this study designs a system in which a flat plate solar collector (FPSC), Rankine cycle, absorption heat transformer (AHT), and cooling systems (ACS) are integrated. The system proposed within the scope of this study aims to produce medium-high-capacity electricity, heating, and cooling outputs using a technique different from the literature, with lower production costs than existing systems. With the proposed integrated system design, the average production costs based on electricity, heating, and cooling load production for similar scale systems are 5-10% of the average production costs of 0.685 USD/kWh, 0.247 USD/kWh, and 0.342 USD/kWh. In the proposed integrated system design, this will be achieved by increasing the outlet temperature of the AHT and FPSC system first, expanding the high-temperature steam coming out of the absorber of the AHT system in the turbine up to the condenser temperature of the ACS system, and next directly integrating it into the evaporator of this system and then completing the AHT cycle. Through this proposed system, heating and cooling will be carried out by completing the AHT and ACS cycles, respectively, while power generation will be provided because of the expansion of the turbine. Using only a single generator in the production of these three outputs together, the costs of additional boilers and the need for a heat source are also saved. In order to demonstrate that the system proposed in this study offers a more optimum solution, the techno-economic parameters obtained based on energy, exergy, economic, and environmental analysis were compared with the parameters of similar scale systems in the literature. The design parameters of the proposed system were determined through a parametric optimization study to exceed the maximum efficiency and effectiveness and reduce the production cost rate values of the compared systems.

Keywords: solar energy, absorption technology, Rankine cycle, multigeneration energy system

Procedia PDF Downloads 59
2670 Construction of a Desktop Arduino Controlled Propeller Test Stand

Authors: Brian Kozak, Ryan Ferguson, Evan Hockeridge

Abstract:

Aerospace engineering and aeronautical engineering students studying propulsion often learn about propellers and their importance in aviation propulsion. In order to reinforce concepts introduced in the classroom, laboratory projects are used. However, to test a full scale propeller, an engine mounted on a test stand must be used. This engine needs to be enclosed in a test cell for appropriated safety requirements, is expensive to operate, and requires a significant amount of time to change propellers. In order to decrease costs and time requirements, the authors designed and built an electric motor powered desktop Arduino controlled test stand. This test stand is used to enhance student understanding of propeller size and pitch on thrust. The test stand can accommodate propellers up to 25 centimeters in diameter. The code computer allowed for the motor speed to be increased or decreased by 1% per second. Outputs that are measured are thrust, motor rpm, amperes, voltage, and motor temperature. These data are exported as a .CVS file and can be imported into a graphing program for data analysis.

Keywords: Arduino, Laboratory Project, Test stand, Propeller

Procedia PDF Downloads 222
2669 Joule Self-Heating Effects and Controlling Oxygen Vacancy in La₀.₈Ba₀.₂MnO₃ Ultrathin Films with Nano-Sized Labyrinth Morphology

Authors: Guankai Lin, Wei Tong, Hong Zhu

Abstract:

The electric current induced Joule heating effects have been investigated in La₀.₈Ba₀.₂MnO₃ ultrathin films deposited on LaAlO₃(001) single crystal substrate with smaller lattice constant by using the sol-gel method. By applying moderate bias currents (~ 10 mA), it is found that Joule self-heating simply gives rise to a temperature deviation between the thermostat and the test sample, but the intrinsic ρ(T) relationship measured at a low current (0.1 mA) changes little. However, it is noteworthy that the low-temperature transport behavior degrades from metallic to insulating state after applying higher bias currents ( > 31 mA) in a vacuum. Furthermore, metallic transport can be recovered by placing the degraded film in air. The results clearly suggest that the oxygen vacancy in the La₀.₈Ba₀.₂MnO₃ films is controllable in different atmospheres, particularly with the aid of the Joule self-heating. According to the SEM images, we attribute the controlled oxygen vacancy to the nano-sized labyrinth pattern of the films, where the large surface-to-volume ratio plays a curial role.

Keywords: controlling oxygen vacancy, joule self-heating, manganite, sol-gel method

Procedia PDF Downloads 154
2668 Combination of Electrochemical Impedance Spectroscopy and Electromembrane Extraction for the Determination of Zolpidem Using Modified Screen-Printed Electrode

Authors: Ali Naeemy, Mir Ghasem Hoseini

Abstract:

In this study, for the first time, an analytical method developed and validated by combining electrochemical impedance spectroscopy and electromembrane extraction (EIS-EME) by Vulcan/poly pyrrole nanocomposite modified screen-printed electrode (PPY–VU/SPE) for accurately quantifying zolpidem. EME parameters optimized, including solvent composition, voltage, pH adjustments and extraction time. Zolpidem was transferred from a donor solution (pH 5) to an acceptor solution (pH 13) using a hollow fiber in 1-octanol as a membrane, driven by a 60 V voltage for 25 minutes, ensuring precise and selective extraction. In comparison with SPE, VU/SPE and PPY/SPE, the PPY–VU/SPE was much more efficient for ZP oxidation. Calibration curves with good linearity were obtained in the concentration range of 2-75 µmol L-1 using the EIS-EME with the detection limit of 0.5 µmol L-1 . Finally, the EIS-EME by using the PPY– VU/SPE was successfully used to determine ZP in tablet dosage form, urine and plasma samples. Keywords: Electrochemical impedance spectroscopy, Electromembrane extraction, Zolpidem, Vulcan, poly pyrrole, Screen printed electrode

Keywords: electrochemical impedance spectroscopy, electromembrane extraction, screen printed electrode, zolpidem

Procedia PDF Downloads 42
2667 Superhydrophobic Materials: A Promising Way to Enhance Resilience of Electric System

Authors: M. Balordi, G. Santucci de Magistris, F. Pini, P. Marcacci

Abstract:

The increasing of extreme meteorological events represents the most important causes of damages and blackouts of the whole electric system. In particular, the icing on ground-wires and overheads lines, due to snowstorms or harsh winter conditions, very often gives rise to the collapse of cables and towers both in cold and warm climates. On the other hand, the high concentration of contaminants in the air, due to natural and/or antropic causes, is reflected in high levels of pollutants layered on glass and ceramic insulators, causing frequent and unpredictable flashover events. Overheads line and insulator failures lead to blackouts, dangerous and expensive maintenances and serious inefficiencies in the distribution service. Inducing superhydrophobic (SHP) properties to conductors, ground-wires and insulators, is one of the ways to face all these problems. Indeed, in some cases, the SHP surface can delay the ice nucleation time and decrease the ice nucleation temperature, preventing ice formation. Besides, thanks to the low surface energy, the adhesion force between ice and a superhydrophobic material are low and the ice can be easily detached from the surface. Moreover, it is well known that superhydrophobic surfaces can have self-cleaning properties: these hinder the deposition of pollution and decrease the probability of flashover phenomena. Here this study presents three different studies to impart superhydrophobicity to aluminum, zinc and glass specimens, which represent the main constituent materials of conductors, ground-wires and insulators, respectively. The route to impart the superhydrophobicity to the metallic surfaces can be summarized in a three-step process: 1) sandblasting treatment, 2) chemical-hydrothermal treatment and 3) coating deposition. The first step is required to create a micro-roughness. In the chemical-hydrothermal treatment a nano-scale metallic oxide (Al or Zn) is grown and, together with the sandblasting treatment, bring about a hierarchical micro-nano structure. By coating an alchilated or fluorinated siloxane coating, the surface energy decreases and gives rise to superhydrophobic surfaces. In order to functionalize the glass, different superhydrophobic powders, obtained by a sol-gel synthesis, were prepared. Further, the specimens were covered with a commercial primer and the powders were deposed on them. All the resulting metallic and glass surfaces showed a noticeable superhydrophobic behavior with a very high water contact angles (>150°) and a very low roll-off angles (<5°). The three optimized processes are fast, cheap and safe, and can be easily replicated on industrial scales. The anti-icing and self-cleaning properties of the surfaces were assessed with several indoor lab-tests that evidenced remarkable anti-icing properties and self-cleaning behavior with respect to the bare materials. Finally, to evaluate the anti-snow properties of the samples, some SHP specimens were exposed under real snow-fall events in the RSE outdoor test-facility located in Vinadio, western Alps: the coated samples delay the formation of the snow-sleeves and facilitate the detachment of the snow. The good results for both indoor and outdoor tests make these materials promising for further development in large scale applications.

Keywords: superhydrophobic coatings, anti-icing, self-cleaning, anti-snow, overheads lines

Procedia PDF Downloads 184
2666 Machine Learning Driven Analysis of Kepler Objects of Interest to Identify Exoplanets

Authors: Akshat Kumar, Vidushi

Abstract:

This paper identifies 27 KOIs, 26 of which are currently classified as candidates and one as false positives that have a high probability of being confirmed. For this purpose, 11 machine learning algorithms were implemented on the cumulative kepler dataset sourced from the NASA exoplanet archive; it was observed that the best-performing model was HistGradientBoosting and XGBoost with a test accuracy of 93.5%, and the lowest-performing model was Gaussian NB with a test accuracy of 54%, to test model performance F1, cross-validation score and RUC curve was calculated. Based on the learned models, the significant characteristics for confirm exoplanets were identified, putting emphasis on the object’s transit and stellar properties; these characteristics were namely koi_count, koi_prad, koi_period, koi_dor, koi_ror, and koi_smass, which were later considered to filter out the potential KOIs. The paper also calculates the Earth similarity index based on the planetary radius and equilibrium temperature for each KOI identified to aid in their classification.

Keywords: Kepler objects of interest, exoplanets, space exploration, machine learning, earth similarity index, transit photometry

Procedia PDF Downloads 76
2665 Entrepreneurship Education as a 21st Century Strategy for Economic Growth and Sustainable Development

Authors: M. Fems Kurotimi, Agada Franklin, Godsave Aladei, Opigo Helen

Abstract:

Within the last 30 years, entrepreneurship education (EE) has continued to gain massive interest both in the field of research and among policy makers. This surge in interest can be attributed to the perceived importance EE plays in the equipping of potential entrepreneurs and as a 21st century strategy to foster economic growth and development. This paper sets out to ascertain the correlation between EE and economic growth and development. A desk research approach was adopted where a multiplicity of literatures in the field were studied intensely. The findings reveal that indeed EE has a positive effect on entrepreneurship engagement thereby fostering economic growth and development. However, some research studies reported the contrary. That although EE may be able to equip potential entrepreneurs with requisite entrepreneurial skills and competencies, it will only be successful in producing entrepreneurs if they are internally driven to become entrepreneurs, because we cannot make people what they are not. The findings also reveal that countries that adopted EE early have more innovations inspired by entrepreneurs and are more developed than those that only recently adopted EE as a viable tool for entrepreneurship and economic development.

Keywords: entrepreneurship, entrepreneurship education, economic development, economic growth, sustainable development

Procedia PDF Downloads 338
2664 Attitude and Perception of Non-emergency Vehicle Drivers on Roads Towards Medical Emergency Vehicles: The Role of Empathy and Pro-Social Skills

Authors: Purnima K Bajre, Rujula Talloo

Abstract:

A variety of vehicles are driven on roads such as private vehicles, commercial vehicles, public vehicles, and emergency service vehicles (EMV). Drivers driving different vehicles can have attitude differences towards emergency service vehicles which in turn affects their likelihood to give way to them. The present review aims to understand the factors that mediate this yielding behavior of drivers towards EMVs. Through extensive review of available literature, factors such as effects of lights and sirens, cognitive load, age of the driver, driving general experience, traffic load, drivers’ experience and training with EMVs and drivers’ attitude towards EMV drivers, have emerged as mediating factors. Whereas cognitive load is the most researched area and is observed to be associated negatively with on road drivers’ attitudes towards EMVs, there is a paucity of research to understand the relationships between empathy, pro-social skills, and on road drivers’ attitude towards EMVs.

Keywords: cognitive load, emergency service vehicle, empathy, traffic load

Procedia PDF Downloads 35
2663 High-Quality Flavor of Black Belly Pork under Lightning Corona Discharge Using Tesla Coil for High Voltage Education

Authors: Kyung-Hoon Jang, Jae-Hyo Park, Kwang-Yeop Jang, Dongjin Kim

Abstract:

The Tesla coil is an electrical resonant transformer circuit designed by inventor Nikola Tesla in 1891. It is used to produce high voltage, low current and high frequency alternating current electricity. Tesla experimented with a number of different configurations consisting of two or sometimes three coupled resonant electric circuits. This paper focuses on development and high voltage education to apply a Tesla coil to cuisine for high quality flavor and taste conditioning as well as high voltage education under 50 kV corona discharge. The result revealed that the velocity of roasted black belly pork by Tesla coil is faster than that of conventional methods such as hot grill and steel plate etc. depending on applied voltage level and applied voltage time. Besides, carbohydrate and crude protein increased, whereas natrium and saccharides significantly decreased after lightning surge by Tesla coil. This idea will be useful in high voltage education and high voltage application.

Keywords: corona discharge, Tesla coil, high voltage application, high voltage education

Procedia PDF Downloads 330
2662 Geothermal Resources to Ensure Energy Security During Climate Change

Authors: Debasmita Misra, Arthur Nash

Abstract:

Energy security and sufficiency enables the economic development and welfare of a nation or a society. Currently, the global energy system is dominated by fossil fuels, which is a non-renewable energy resource, which renders vulnerability to energy security. Hence, many nations have begun augmenting their energy system with renewable energy resources, such as solar, wind, biomass and hydro. However, with climate change, how sustainable are some of the renewable energy resources in the future is a matter of concern. Geothermal energy resources have been underexplored or underexploited in global renewable energy production and security, although it is gaining attractiveness as a renewable energy resource. The question is, whether geothermal energy resources are more sustainable than other renewable energy resources. High-temperature reservoirs (> 220 °F) can produce electricity from flash/dry steam plants as well as binary cycle production facilities. Most of the world’s high enthalpy geothermal resources are within the seismo-tectonic belt. However, exploration for geothermal energy is of great importance in conventional geothermal systems in order to improve its economic viability. In recent years, there has been an increase in the use and development of several exploration methods for geo-thermal resources, such as seismic or electromagnetic methods. The thermal infrared band of the Landsat can reflect land surface temperature difference, so the ETM+ data with specific grey stretch enhancement has been used to explore underground heat water. Another way of exploring for potential power is utilizing fairway play analysis for sites without surface expression and in rift zones. Utilizing this type of analysis can improve the success rate of project development by reducing exploration costs. Identifying the basin distribution of geologic factors that control the geothermal environment would help in identifying the control of resource concentration aside from the heat flow, thus improving the probability of success. The first step is compiling existing geophysical data. This leads to constructing conceptual models of potential geothermal concentrations which can then be utilized in creating a geodatabase to analyze risk maps. Geospatial analysis and other GIS tools can be used in such efforts to produce spatial distribution maps. The goal of this paper is to discuss how climate change may impact renewable energy resources and how could a synthesized analysis be developed for geothermal resources to ensure sustainable and cost effective exploitation of the resource.

Keywords: exploration, geothermal, renewable energy, sustainable

Procedia PDF Downloads 155
2661 Sustainable Lighting Solutions in Residential Interiors to Combat the Ever-Growing Problem of Environmental Degradation

Authors: Ankita Sharma, Reenu Singh

Abstract:

In order to conserve the ecology and the environment, there is a need to focus on sustainable lighting solutions such as LED bulbs instead of incandescent bulbs, candle-powered lamps, self-cooling smart bulbs, and many more, that are both eco-friendly and practical. This paper focuses on such sustainable solutions to lighting, which will have a major positive impact on the environment in the coming future. A questionnaire survey was conducted to note the responses of people living in high-rise buildings in metropolitan cities with regards to such sustainable lighting choices in their homes. The result of such questionnaire survey has helped to design parameters which are used to ideate design interventions in this field of sustainable lighting choices. This paper includes proposals to facilitate the reduction of electric power in interior lighting through various lighting accessory design interventions. Thus, such design interventions will allow us to design more sustainable interior spaces, and renewable energy strategies can be developed in the field of lighting, which will not only help to save energy but also positively affect other aspects of human well-being such as productivity, heritage conservation and economic well-being too!

Keywords: sustainable, interior lighting, lighting design, environmental impact, metropolitan cities

Procedia PDF Downloads 208
2660 Partial Discharge Characteristics of Free- Moving Particles in HVDC-GIS

Authors: Philipp Wenger, Michael Beltle, Stefan Tenbohlen, Uwe Riechert

Abstract:

The integration of renewable energy introduces new challenges to the transmission grid, as the power generation is located far from load centers. The associated necessary long-range power transmission increases the demand for high voltage direct current (HVDC) transmission lines and DC distribution grids. HVDC gas-insulated switchgears (GIS) are considered being a key technology, due to the combination of the DC technology and the long operation experiences of AC-GIS. To ensure long-term reliability of such systems, insulation defects must be detected in an early stage. Operational experience with AC systems has proven evidence, that most failures, which can be attributed to breakdowns of the insulation system, can be detected and identified via partial discharge (PD) measurements beforehand. In AC systems the identification of defects relies on the phase resolved partial discharge pattern (PRPD). Since there is no phase information within DC systems this method cannot be transferred to DC PD diagnostic. Furthermore, the behaviour of e.g. free-moving particles differs significantly at DC: Under the influence of a constant direct electric field, charge carriers can accumulate on particles’ surfaces. As a result, a particle can lift-off, oscillate between the inner conductor and the enclosure or rapidly bounces at just one electrode, which is known as firefly motion. Depending on the motion and the relative position of the particle to the electrodes, broadband electromagnetic PD pulses are emitted, which can be recorded by ultra-high frequency (UHF) measuring methods. PDs are often accompanied by light emissions at the particle’s tip which enables optical detection. This contribution investigates PD characteristics of free moving metallic particles in a commercially available 300 kV SF6-insulated HVDC-GIS. The influences of various defect parameters on the particle motion and the PD characteristic are evaluated experimentally. Several particle geometries, such as cylinder, lamella, spiral and sphere with different length, diameter and weight are determined. The applied DC voltage is increased stepwise from inception voltage up to UDC = ± 400 kV. Different physical detection methods are used simultaneously in a time-synchronized setup. Firstly, the electromagnetic waves emitted by the particle are recorded by an UHF measuring system. Secondly, a photomultiplier tube (PMT) detects light emission with a wavelength in the range of λ = 185…870 nm. Thirdly, a high-speed camera (HSC) tracks the particle’s motion trajectory with high accuracy. Furthermore, an electrically insulated electrode is attached to the grounded enclosure and connected to a current shunt in order to detect low frequency ion currents: The shunt measuring system’s sensitivity is in the range of 10 nA at a measuring bandwidth of bw = DC…1 MHz. Currents of charge carriers, which are generated at the particle’s tip migrate through the gas gap to the electrode and can be recorded by the current shunt. All recorded PD signals are analyzed in order to identify characteristic properties of different particles. This includes e.g. repetition rates and amplitudes of successive pulses, characteristic frequency ranges and detected signal energy of single PD pulses. Concluding, an advanced understanding of underlying physical phenomena particle motion in direct electric field can be derived.

Keywords: current shunt, free moving particles, high-speed imaging, HVDC-GIS, UHF

Procedia PDF Downloads 164
2659 Adaptive Programming for Indigenous Early Learning: The Early Years Model

Authors: Rachel Buchanan, Rebecca LaRiviere

Abstract:

Context: The ongoing effects of colonialism continue to be experienced through paternalistic policies and funding processes that cause disjuncture between and across Indigenous early childhood programming on-reserve and in urban and Northern settings in Canada. While various educational organizations and social service providers have risen to address these challenges in the short, medium and long term, there continues to be a lack in nation-wide cohesive, culturally grounded, and meaningful early learning programming for Indigenous children in Canada. Indigenous-centered early learning programs tend to face one of two scaling dilemmas: their program goals are too prescriptive to enable the program to be meaningfully replicated in different cultural/ community settings, or their program goals are too broad to be meaningfully adapted to the unique cultural and contextual needs and desires of Indigenous communities (the “franchise approach”). There are over 600 First Nations communities in Canada representing more than 50 Nations and languages. Consequently, Indigenous early learning programming cannot be applied with a universal or “one size fits all” approach. Sustainable and comprehensive programming must be responsive to each community context, building upon existing strengths and assets to avoid program duplication and irrelevance. Thesis: Community-driven and culturally adapted early childhood programming is critical but cannot be achieved on a large scale within traditional program models that are constrained by prescriptive overarching program goals. Principles, rather than goals, are an effective way to navigate and evaluate complex and dynamic systems. Principles guide an intervention to be adaptable, flexible and scalable. The Martin Family Initiative (MFI) ’s Early Years program engages a principles-based approach to programming. As will be discussed in this paper, this approach enables the program to catalyze existing community-based strengths and organizational assets toward bridging gaps across and disjuncture between Indigenous early learning programs, as well as to scale programming in sustainable, context-responsive and dynamic ways. This paper argues that using a principles-driven and adaptive scaling approach, the Early Years model establishes important learnings for culturally adapted Indigenous early learning programming in Canada. Methodology: The Early Years has leveraged this approach to develop an array of programming with partner organizations and communities across the country. The Early Years began as a singular pilot project in one First Nation. In just three years, it has expanded to five different regions and community organizations. In each context, the program supports the partner organization through different means and to different ends, the extent to which is determined in partnership with each community-based organization: in some cases, this means supporting the organization to build home visiting programming from the ground-up; in others, it means offering organization-specific culturally adapted early learning resources to support the programming that already exists in communities. Principles underpin but do not define the practices of the program in each of these relationships. This paper will explore numerous examples of principles-based adaptability with the context of the Early Years, concluding that the program model offers theadaptability and dynamism necessary to respond to unique and ever-evolving community contexts and needs of Indigenous children today.

Keywords: culturally adapted programming, indigenous early learning, principles-based approach, program scaling

Procedia PDF Downloads 188
2658 Antiulcer Activity of Aloe vera Gel against Indomethacin and Ethanol Induced Gastric Ulcers in Rats

Authors: Jyoti Manandhar Shrestha, Saurab Raj Joshi, Maya Shrestha, Prashanna Shrestha, Kshitij Chaulagain

Abstract:

Background: The widespread use of non-steroidal anti-inflammatory drugs has increased the incidence of ulcer and serious complications, such as perforation and bleeding. Although, the H2 receptor blockers and proton pump inhibitors decrease the acid secretion and promote healing of ulcer, their value in preventing relapse, recurrence, “acid rebound” after cessation of therapy and associated long term adverse effects limit their utility. So to minimize this, the herbal plant Aloe vera having anti-oxidant, anti-inflammatory, mucus secreting, cyto-protective and healing property is believed to cure the peptic ulcer. Objectives: To observe whether oral treatment with Aloe vera gel can prevent peptic ulcer. Indomethacin and ethanol were used to induce gastric ulcers. Thirty six albino rats of either sex were randomly allotted to six groups of six animals each. The negative control was pretreated with normal saline, the positive controls received ranitidine (20 mg/kg) and the test group received Aloe vera gel (300 mg/kg) orally for eight days. Then, after a 24 hour fast Indomethacin (20 mg/kg) or 80% ethanol (2ml) was administered orally to induce ulceration. At the end of the study, the rats were sacrificed, their stomachs opened, the ulcer index studied and tissues sent for histopathological examination. Results: It was observed that, in indomethacin treated group, the ulcer index in control group was 8.167 ± 1.72.In the Aloe vera pretreated animals, the ulcer index was 2.83 ± 1.72 and the standard ranitidine pretreated group ulcer index was 1.67 ± 1.36. In ethanol treated group, the ulcer index in control group was 7.5 ± 2.73. In the Aloe vera pretreated animals, the ulcer index was 2.67 ± 1.75 and the standard ranitidine pretreated group ulcer index was 1.33±1.21. Both ranitidine and Aloe vera gel significantly prevented stomach from gastric ulceration induced by indomethacin and ethanol. Conclusion: The results indicated that Aloe vera gel is effective against indomethacin and ethanol mediated gastric ulcer.

Keywords: Aloe vera gel, ethanol, indomethacin, peptic ulcer, ranitidine

Procedia PDF Downloads 459