Search results for: data security
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26833

Search results for: data security

23503 Human Motion Capture: New Innovations in the Field of Computer Vision

Authors: Najm Alotaibi

Abstract:

Human motion capture has become one of the major area of interest in the field of computer vision. Some of the major application areas that have been rapidly evolving include the advanced human interfaces, virtual reality and security/surveillance systems. This study provides a brief overview of the techniques and applications used for the markerless human motion capture, which deals with analyzing the human motion in the form of mathematical formulations. The major contribution of this research is that it classifies the computer vision based techniques of human motion capture based on the taxonomy, and then breaks its down into four systematically different categories of tracking, initialization, pose estimation and recognition. The detailed descriptions and the relationships descriptions are given for the techniques of tracking and pose estimation. The subcategories of each process are further described. Various hypotheses have been used by the researchers in this domain are surveyed and the evolution of these techniques have been explained. It has been concluded in the survey that most researchers have focused on using the mathematical body models for the markerless motion capture.

Keywords: human motion capture, computer vision, vision-based, tracking

Procedia PDF Downloads 319
23502 Validation of Electrical Field Effect on Electrostatic Desalter Modeling with Experimental Laboratory Data

Authors: Fatemeh Yazdanmehr, Iulian Nistor

Abstract:

The scope of the current study is the evaluation of the electric field effect on electrostatic desalting mathematical modeling with laboratory data. This research study was focused on developing a model for an existing operation desalting unit of one of the Iranian heavy oil field with a 75 MBPD production capacity. The high temperature of inlet oil to dehydration unit reduces the oil recovery, so the mathematical modeling of desalter operation parameters is very significant. The existing production unit operating data has been used for the accuracy of the mathematical desalting plant model. The inlet oil temperature to desalter was decreased from 110 to 80°C, and the desalted electrical field was increased from 0.75 to 2.5 Kv/cm. The model result shows that the desalter parameter changes meet the water-oil specification and also the oil production and consequently annual income is increased. In addition to that, changing desalter operation conditions reduces environmental footprint because of flare gas reduction. Following to specify the accuracy of selected electrostatic desalter electrical field, laboratory data has been used. Experimental data are used to ensure the effect of electrical field change on desalter. Therefore, the lab test is done on a crude oil sample. The results include the dehydration efficiency in the presence of a demulsifier and under electrical field (0.75 Kv) conditions at various temperatures. Comparing lab experimental and electrostatic desalter mathematical model results shows 1-3 percent acceptable error which confirms the validity of desalter specification and operation conditions changes.

Keywords: desalter, electrical field, demulsification, mathematical modeling, water-oil separation

Procedia PDF Downloads 140
23501 Framework to Quantify Customer Experience

Authors: Anant Sharma, Ashwin Rajan

Abstract:

Customer experience is measured today based on defining a set of metrics and KPIs, setting up thresholds and defining triggers across those thresholds. While this is an effective way of measuring against a Key Performance Indicator ( referred to as KPI in the rest of the paper ), this approach cannot capture the various nuances that make up the overall customer experience. Customers consume a product or service at various levels, which is not reflected in metrics like Customer Satisfaction or Net Promoter Score, but also across other measurements like recurring revenue, frequency of service usage, e-learning and depth of usage. Here we explore an alternative method of measuring customer experience by flipping the traditional views. Rather than rolling customers up to a metric, we roll up metrics to hierarchies and then measure customer experience. This method allows any team to quantify customer experience across multiple touchpoints in a customer’s journey. We make use of various data sources which contain information for metrics like CXSAT, NPS, Renewals, and depths of service usage collected across a customer lifecycle. This data can be mined systematically to get linkages between different data points like geographies, business groups, products and time. Additional views can be generated by blending synthetic contexts into the data to show trends and top/bottom types of reports. We have created a framework that allows us to measure customer experience using the above logic.

Keywords: analytics, customers experience, BI, business operations, KPIs, metrics

Procedia PDF Downloads 75
23500 Analysis of Noodle Production Process at Yan Hu Food Manufacturing: Basis for Production Improvement

Authors: Rhadinia Tayag-Relanes, Felina C. Young

Abstract:

This study was conducted to analyze the noodle production process at Yan Hu Food Manufacturing for the basis of production improvement. The study utilized the PDCA approach and record review in the gathering of data for the calendar year 2019 from August to October data of the noodle products miki, canton, and misua. Causal-comparative research was used in this study; it attempts to establish cause-effect relationships among the variables such as descriptive statistics and correlation, both were used to compute the data gathered. The study found that miki, canton, and misua production has different cycle time sets for each production and has different production outputs in every set of its production process and a different number of wastages. The company has not yet established its allowable rejection rate/ wastage; instead, this paper used a 1% wastage limit. The researcher recommended the following: machines used for each process of the noodle product must be consistently maintained and monitored; an assessment of all the production operators by checking their performance statistically based on the output and the machine performance; a root cause analysis for finding the solution must be conducted; and an improvement on the recording system of the input and output of the production process of noodle product should be established to eliminate the poor recording of data.

Keywords: continuous improvement, process, operations, PDCA

Procedia PDF Downloads 72
23499 The Role of Access Control Techniques in Creating a Safe Cyberspace for Children

Authors: Sara Muslat Alsahali, Nout Mohammed Alqahtani

Abstract:

Digital technology has changed the world, and with the increasing number of children accessing the Internet, it has now become an integral part of children's lives from their early years. With the rapid development of digital technology, the risks children face on the internet also evolve from cyberbullying to misuse, sexual exploitation, and abuse of their private information over the Internet. Digital technology, with its advantages and disadvantages, is now a fact of our life. Therefore, knowledge of how to reduce its risks and maximize its benefits will help shape the growth and future of a new generation of digital citizens. This paper will discuss access control techniques that help to create secure cyberspace where children can be safe without depriving them of their rights and freedom to use the internet and preventing them from its benefits. Also, it sheds light on its challenges and problems by classifying the methods of parental controlling into two possibilities asynchronous and synchronous techniques and choosing YouTube as a case study of access control techniques.

Keywords: access control, cyber security, kids, parental monitoring

Procedia PDF Downloads 137
23498 Improving Cyber Resilience in Mobile Field Hospitals: Towards an Assessment Model

Authors: Nasir Baba Ahmed, Nicolas Daclin, Marc Olivaux, Gilles Dusserre

Abstract:

The Mobile field hospital is critical in terms of managing emergencies in crisis. It is a sub-section of the main hospitals and the health sector, tasked with delivering responsive, immediate, and efficient medical services during a crisis. With the aim to prevent further crisis, the assessment of the cyber assets follows different methods, to distinguish its strengths and weaknesses, and in turn achieve cyber resiliency. The work focuses on assessments of cyber resilience in field hospitals with trends growing in both the field hospital and the health sector in general. This creates opportunities for the adverse attackers and the response improvement objectives for attaining cyber resilience, as the assessments allow users and stakeholders to know the level of risks with regards to its cyber assets. Thus, the purpose is to show the possible threat vectors which open up opportunities, with contrast to current trends in the assessment of the mobile field hospitals’ cyber assets.

Keywords: assessment framework, cyber resilience, cyber security, mobile field hospital

Procedia PDF Downloads 158
23497 Nutrition and Food Safety as Strategic Assets

Authors: Daniel C. S. Lim, W. Y. Tan

Abstract:

The world is facing a growing food crisis. The concerns of food nutritional value, food safety and food security are becoming increasingly real. There is also a direct relationship to the risk of diseases, particularly chronic diseases, to the food we consume. So, there are increasing concerns about the modern day food ecosystem creating foods that can provide the nutritional components for organ function sustenance, as well as, taking a serious view on diet-related diseases. This paper addresses some of the above concerns and gives an overview of the current global situation relating to food nutrition and safety. The paper reviews nutritional aspects of food today compared to those of the last century, compares whole foods found in supermarkets versus those organically grown, as well as population behaviour towards food choices. It provides scientific insights into the effects of some of the global trends such as climate change and other changes environmental changes, and presents what individuals and corporations are doing to use the latest nutritional technologies as strategic assets. Finally, it briefly highlights some of the innovative solutions that are being applied to address several of the above concerns.

Keywords: food crisis, food safety, global trends, nutritional aspects

Procedia PDF Downloads 388
23496 Modelling the Indonesian Goverment Securities Yield Curve Using Nelson-Siegel-Svensson and Support Vector Regression

Authors: Jamilatuzzahro, Rezzy Eko Caraka

Abstract:

The yield curve is the plot of the yield to maturity of zero-coupon bonds against maturity. In practice, the yield curve is not observed but must be extracted from observed bond prices for a set of (usually) incomplete maturities. There exist many methodologies and theory to analyze of yield curve. We use two methods (the Nelson-Siegel Method, the Svensson Method, and the SVR method) in order to construct and compare our zero-coupon yield curves. The objectives of this research were: (i) to study the adequacy of NSS model and SVR to Indonesian government bonds data, (ii) to choose the best optimization or estimation method for NSS model and SVR. To obtain that objective, this research was done by the following steps: data preparation, cleaning or filtering data, modeling, and model evaluation.

Keywords: support vector regression, Nelson-Siegel-Svensson, yield curve, Indonesian government

Procedia PDF Downloads 244
23495 Influencers of E-Learning Readiness among Palestinian Secondary School Teachers: An Explorative Study

Authors: Fuad A. A. Trayek, Tunku Badariah Tunku Ahmad, Mohamad Sahari Nordin, Mohammed AM Dwikat

Abstract:

This paper reports on the results of an exploratory factor analysis procedure applied on the e-learning readiness data obtained from a survey of four hundred and seventy-nine (N = 479) teachers from secondary schools in Nablus, Palestine. The data were drawn from a 23-item Likert questionnaire measuring e-learning readiness based on Chapnick's conception of the construct. Principal axis factoring (PAF) with Promax rotation applied on the data extracted four distinct factors supporting four of Chapnick's e-learning readiness dimensions, namely technological readiness, psychological readiness, infrastructure readiness and equipment readiness. Together these four dimensions explained 56% of the variance. These findings provide further support for the construct validity of the items and for the existence of these four factors that measure e-learning readiness.

Keywords: e-learning, e-learning readiness, technological readiness, psychological readiness, principal axis factoring

Procedia PDF Downloads 401
23494 An Attack on the Lucas Based El-Gamal Cryptosystem in the Elliptic Curve Group Over Finite Field Using Greater Common Divisor

Authors: Lee Feng Koo, Tze Jin Wong, Pang Hung Yiu, Nik Mohd Asri Nik Long

Abstract:

Greater common divisor (GCD) attack is an attack that relies on the polynomial structure of the cryptosystem. This attack required two plaintexts differ from a fixed number and encrypted under same modulus. This paper reports a security reaction of Lucas Based El-Gamal Cryptosystem in the Elliptic Curve group over finite field under GCD attack. Lucas Based El-Gamal Cryptosystem in the Elliptic Curve group over finite field was exposed mathematically to the GCD attack using GCD and Dickson polynomial. The result shows that the cryptanalyst is able to get the plaintext without decryption by using GCD attack. Thus, the study concluded that it is highly perilous when two plaintexts have a slight difference from a fixed number in the same Elliptic curve group over finite field.

Keywords: decryption, encryption, elliptic curve, greater common divisor

Procedia PDF Downloads 256
23493 Campaigns of Youth Empowerment and Unemployment In Development Discourses: In the Case of Ethiopia

Authors: Fentie, Belay, Mulat

Abstract:

In today’s high decrement figure of the global economy, nations are facing many economic, social and political challenges; universally, there is high distress of food and other survival insecurity. Further, as a result of conflict, natural disasters, and leadership influences, youths are existentially less empowered and unemployed, especially in developing countries. With this situation to handle well challenges, it’s important to search, investigate and deliberate about youth, unemployment, empowerment and possible management fashions, as youths have the potential to carry and fight such battles. The method adopted is a qualitative analysis of secondary data sources in youth empowerment, unemployment and development as an inclusive framework. Youth unemployment is a major development headache for most African countries. In Ethiopia, following weak youth empowerment, youth unemployment has increased from time to time, and quality education and organization linkage matter as an important constraint. As a management challenge, although accessibility of quality education for Ethiopian youths is an important constraint, the country's youths are fortified deceptively and harassed in a vicious political challenge in their struggle to fetch social and economic changes in the country. Further, thousands of youths are inactivated, criminalized and lost their lives and this makes youths hopeless anger in their lives and pushes them further to be exposed for addictions, prostitution, violence, and illegitimate migrations. This youth challenge wasn’t only destined for African countries; rather, indeed, it was a global burden and headed as a global agenda. As a resolution, the construction of a healthy education system can create independent youths who acquire success and accelerate development. Developing countries should ensue development in the cultivation of empowerment tools through long and short-term education, implementing policy in action, diminishing wide-ranging gaps of (religion, ethnicity & region), and take high youth population as an opportunity and empower them. Further managing and empowering youths to be involved in decision-making, giving political weight and building a network of organizations to easily access job opportunities are important suggestions to save youths in work, for both increasing their income and the country's food security balance.

Keywords: development, Ethiopia, management, unemployment, youth empowerment

Procedia PDF Downloads 59
23492 Iris Detection on RGB Image for Controlling Side Mirror

Authors: Norzalina Othman, Nurul Na’imy Wan, Azliza Mohd Rusli, Wan Noor Syahirah Meor Idris

Abstract:

Iris detection is a process where the position of the eyes is extracted from the face images. It is a current method used for many applications such as for security purpose and drowsiness detection. This paper proposes the use of eyes detection in controlling side mirror of motor vehicles. The eyes detection method aims to make driver easy to adjust the side mirrors automatically. The system will determine the midpoint coordinate of eyes detection on RGB (color) image and the input signal from y-coordinate will send it to controller in order to rotate the angle of side mirror on vehicle. The eye position was cropped and the coordinate of midpoint was successfully detected from the circle of iris detection using Viola Jones detection and circular Hough transform methods on RGB image. The coordinate of midpoint from the experiment are tested using controller to determine the angle of rotation on the side mirrors.

Keywords: iris detection, midpoint coordinates, RGB images, side mirror

Procedia PDF Downloads 423
23491 Design of SAE J2716 Single Edge Nibble Transmission Digital Sensor Interface for Automotive Applications

Authors: Jongbae Lee, Seongsoo Lee

Abstract:

Modern sensors often embed small-size digital controller for sensor control, value calibration, and signal processing. These sensors require digital data communication with host microprocessors, but conventional digital communication protocols are too heavy for price reduction. SAE J2716 SENT (single edge nibble transmission) protocol transmits direct digital waveforms instead of complicated analog modulated signals. In this paper, a SENT interface is designed in Verilog HDL (hardware description language) and implemented in FPGA (field-programmable gate array) evaluation board. The designed SENT interface consists of frame encoder/decoder, configuration register, tick period generator, CRC (cyclic redundancy code) generator/checker, and TX/RX (transmission/reception) buffer. Frame encoder/decoder is implemented as a finite state machine, and it controls whole SENT interface. Configuration register contains various parameters such as operation mode, tick length, CRC option, pause pulse option, and number of nibble data. Tick period generator generates tick signals from input clock. CRC generator/checker generates or checks CRC in the SENT data frame. TX/RX buffer stores transmission/received data. The designed SENT interface can send or receives digital data in 25~65 kbps at 3 us tick. Synthesized in 0.18 um fabrication technologies, it is implemented about 2,500 gates.

Keywords: digital sensor interface, SAE J2716, SENT, verilog HDL

Procedia PDF Downloads 300
23490 Teaching Translation during Covid-19 Outbreak: Challenges and Discoveries

Authors: Rafat Alwazna

Abstract:

Translation teaching is a particular activity that includes translators and interpreters training either inside or outside institutionalised settings, such as universities. It can also serve as a means of teaching other fields, such as foreign languages. Translation teaching began in the twentieth century. Teachers of translation hold the responsibilities of educating students, developing their translation competence and training them to be professional translators. The activity of translation teaching involves various tasks, including curriculum design, course delivery, material writing as well as application and implementation. The present paper addresses translation teaching during COVID-19 outbreak, seeking to find out the challenges encountered by translation teachers in online translation teaching and the discoveries/solutions arrived at to resolve them. The paper makes use of a comprehensive questionnaire, containing closed-ended and open-ended questions to elicit both quantitative as well as qualitative data from about sixty translation teachers who have been teaching translation at BA and MA levels during COVID-19 outbreak. The data shows that about 40% of the participants evaluate their online translation teaching experience during COVID-19 outbreak as enjoyable and exhilarating. On the contrary, no participant has evaluated his/her online translation teaching experience as being not good, nor has any participant evaluated his/her online translation teaching experience as being terrible. The data also presents that about 23.33% of the participants evaluate their online translation teaching experience as very good, and the same percentage applies to those who evaluate their online translation teaching experience as good to some extent. Moreover, the data indicates that around 13.33% of the participants evaluate their online translation teaching experience as good. The data also demonstrates that the majority of the participants have encountered obstacles in online translation teaching and have concurrently proposed solutions to resolve them.

Keywords: online translation teaching, electronic learning platform, COVID-19 outbreak, challenges, solutions

Procedia PDF Downloads 223
23489 Load Forecasting Using Neural Network Integrated with Economic Dispatch Problem

Authors: Mariyam Arif, Ye Liu, Israr Ul Haq, Ahsan Ashfaq

Abstract:

High cost of fossil fuels and intensifying installations of alternate energy generation sources are intimidating main challenges in power systems. Making accurate load forecasting an important and challenging task for optimal energy planning and management at both distribution and generation side. There are many techniques to forecast load but each technique comes with its own limitation and requires data to accurately predict the forecast load. Artificial Neural Network (ANN) is one such technique to efficiently forecast the load. Comparison between two different ranges of input datasets has been applied to dynamic ANN technique using MATLAB Neural Network Toolbox. It has been observed that selection of input data on training of a network has significant effects on forecasted results. Day-wise input data forecasted the load accurately as compared to year-wise input data. The forecasted load is then distributed among the six generators by using the linear programming to get the optimal point of generation. The algorithm is then verified by comparing the results of each generator with their respective generation limits.

Keywords: artificial neural networks, demand-side management, economic dispatch, linear programming, power generation dispatch

Procedia PDF Downloads 189
23488 Gnss Aided Photogrammetry for Digital Mapping

Authors: Muhammad Usman Akram

Abstract:

This research work based on GNSS-Aided Photogrammetry for Digital Mapping. It focuses on topographic survey of an area or site which is to be used in future Planning & development (P&D) or can be used for further, examination, exploration, research and inspection. Survey and Mapping in hard-to-access and hazardous areas are very difficult by using traditional techniques and methodologies; as well it is time consuming, labor intensive and has less precision with limited data. In comparison with the advance techniques it is saving with less manpower and provides more precise output with a wide variety of multiple data sets. In this experimentation, Aerial Photogrammetry technique is used where an UAV flies over an area and captures geocoded images and makes a Three-Dimensional Model (3-D Model), UAV operates on a user specified path or area with various parameters; Flight altitude, Ground sampling distance (GSD), Image overlapping, Camera angle etc. For ground controlling, a network of points on the ground would be observed as a Ground Control point (GCP) using Differential Global Positioning System (DGPS) in PPK or RTK mode. Furthermore, that raw data collected by UAV and DGPS will be processed in various Digital image processing programs and Computer Aided Design software. From which as an output we obtain Points Dense Cloud, Digital Elevation Model (DEM) and Ortho-photo. The imagery is converted into geospatial data by digitizing over Ortho-photo, DEM is further converted into Digital Terrain Model (DTM) for contour generation or digital surface. As a result, we get Digital Map of area to be surveyed. In conclusion, we compared processed data with exact measurements taken on site. The error will be accepted if the amount of error is not breached from survey accuracy limits set by concerned institutions.

Keywords: photogrammetry, post processing kinematics, real time kinematics, manual data inquiry

Procedia PDF Downloads 32
23487 A Comparative Analysis of Hyper-Parameters Using Neural Networks for E-Mail Spam Detection

Authors: Syed Mahbubuz Zaman, A. B. M. Abrar Haque, Mehedi Hassan Nayeem, Misbah Uddin Sagor

Abstract:

Everyday e-mails are being used by millions of people as an effective form of communication over the Internet. Although e-mails allow high-speed communication, there is a constant threat known as spam. Spam e-mail is often called junk e-mails which are unsolicited and sent in bulk. These unsolicited emails cause security concerns among internet users because they are being exposed to inappropriate content. There is no guaranteed way to stop spammers who use static filters as they are bypassed very easily. In this paper, a smart system is proposed that will be using neural networks to approach spam in a different way, and meanwhile, this will also detect the most relevant features that will help to design the spam filter. Also, a comparison of different parameters for different neural network models has been shown to determine which model works best within suitable parameters.

Keywords: long short-term memory, bidirectional long short-term memory, gated recurrent unit, natural language processing, natural language processing

Procedia PDF Downloads 205
23486 Problems and Challenges in Social Economic Research after COVID-19: The Case Study of Province Sindh

Authors: Waleed Baloch

Abstract:

This paper investigates the problems and challenges in social-economic research in the case study of the province of Sindh after the COVID-19 pandemic; the pandemic has significantly impacted various aspects of society and the economy, necessitating a thorough examination of the resulting implications. The study also investigates potential strategies and solutions to mitigate these challenges, ensuring the continuation of robust social and economic research in the region. Through an in-depth analysis of data and interviews with key stakeholders, the study reveals several significant findings. Firstly, researchers encountered difficulties in accessing primary data due to disruptions caused by the pandemic, leading to limitations in the scope and accuracy of their studies. Secondly, the study highlights the challenges faced in conducting fieldwork, such as restrictions on travel and face-to-face interactions, which impacted the ability to gather reliable data. Lastly, the research identifies the need for innovative research methodologies and digital tools to adapt to the new research landscape brought about by the pandemic. The study concludes by proposing recommendations to address these challenges, including utilizing remote data collection methods, leveraging digital technologies for data analysis, and establishing collaborations among researchers to overcome resource constraints. By addressing these issues, researchers in the social economic field can effectively navigate the post-COVID-19 research landscape, facilitating a deeper understanding of the socioeconomic impacts and facilitating evidence-based policy interventions.

Keywords: social economic, sociology, developing economies, COVID-19

Procedia PDF Downloads 63
23485 Smart Meter Incorporating UWB Technology

Authors: T. A. Khan, A. B. Khan, M. Babar, T. A. Taj, Imran Ijaz Imran

Abstract:

Smart Meter is a key element in the evolving concept of Smart Grid, which plays an important role in interaction between the consumer and the supplier. In general, the smart meter is an intelligent digital energy meter that measures the consumption of electrical energy and provides other additional services as compared to the conventional energy meters. One of the important element that makes a meter smart and different is its communication module. Smart meters usually have two way and real-time communication between the consumer and the supplier through which its transfer data and information. In this paper, Ultra Wide Band (UWB) is recommended as communication platform because of its high data-rate and presents the physical layer, which could be easily incorporated in existing Smart Meters. The physical layer is simulated in MATLAB Simulink and the results are provided.

Keywords: Ultra Wide Band (UWB), Smart Meter, MATLAB, transfer data

Procedia PDF Downloads 516
23484 Qualitative Approaches to Mindfulness Meditation Practices in Higher Education

Authors: Patrizia Barroero, Saliha Yagoubi

Abstract:

Mindfulness meditation practices in the context of higher education are becoming more and more common. Some of the reported benefits of mediation interventions and workshops include: improved focus, general well-being, diminished stress, and even increased resilience and grit. A series of workshops free to students, faculty, and staff was offered twice a week over two semesters at Hudson County Community College, New Jersey. The results of an exploratory study based on participants’ subjective reactions to these workshops will be presented. A qualitative approach was used to collect and analyze the data and a hermeneutic phenomenological perspective served as a framework for the research design and data collection and analysis. The data collected includes three recorded videos of semi-structured interviews and several written surveys submitted by volunteer participants.

Keywords: mindfulness meditation practices, stress reduction, resilience, grit, higher education success, qualitative research

Procedia PDF Downloads 75
23483 Integrated Nested Laplace Approximations For Quantile Regression

Authors: Kajingulu Malandala, Ranganai Edmore

Abstract:

The asymmetric Laplace distribution (ADL) is commonly used as the likelihood function of the Bayesian quantile regression, and it offers different families of likelihood method for quantile regression. Notwithstanding their popularity and practicality, ADL is not smooth and thus making it difficult to maximize its likelihood. Furthermore, Bayesian inference is time consuming and the selection of likelihood may mislead the inference, as the Bayes theorem does not automatically establish the posterior inference. Furthermore, ADL does not account for greater skewness and Kurtosis. This paper develops a new aspect of quantile regression approach for count data based on inverse of the cumulative density function of the Poisson, binomial and Delaporte distributions using the integrated nested Laplace Approximations. Our result validates the benefit of using the integrated nested Laplace Approximations and support the approach for count data.

Keywords: quantile regression, Delaporte distribution, count data, integrated nested Laplace approximation

Procedia PDF Downloads 163
23482 Measuring Flood Risk concerning with the Flood Protection Embankment in Big Flooding Events of Dhaka Metropolitan Zone

Authors: Marju Ben Sayed, Shigeko Haruyama

Abstract:

Among all kinds of natural disaster, the flood is a common feature in rapidly urbanizing Dhaka city. In this research, assessment of flood risk of Dhaka metropolitan area has been investigated by using an integrated approach of GIS, remote sensing and socio-economic data. The purpose of the study is to measure the flooding risk concerning with the flood protection embankment in big flooding events (1988, 1998 and 2004) and urbanization of Dhaka metropolitan zone. In this research, we considered the Dhaka city into two parts; East Dhaka (outside the flood protection embankment) and West Dhaka (inside the flood protection embankment). Using statistical data, we explored the socio-economic status of the study area population by comparing the density of population, land price and income level. We have drawn the cross section profile of the flood protection embankment into three different points for realizing the flooding risk in the study area, especially in the big flooding year (1988, 1998 and 2004). According to the physical condition of the study area, the land use/land cover map has been classified into five classes. Comparing with each land cover unit, historical weather station data and the socio-economic data, the flooding risk has been evaluated. Moreover, we compared between DEM data and each land cover units to find out the relationship with flood. It is expected that, this study could contribute to effective flood forecasting, relief and emergency management for a future flood event in Dhaka city.

Keywords: land use, land cover change, socio-economic, Dhaka city, GIS, flood

Procedia PDF Downloads 296
23481 Iterative Method for Lung Tumor Localization in 4D CT

Authors: Sarah K. Hagi, Majdi Alnowaimi

Abstract:

In the last decade, there were immense advancements in the medical imaging modalities. These advancements can scan a whole volume of the lung organ in high resolution images within a short time. According to this performance, the physicians can clearly identify the complicated anatomical and pathological structures of lung. Therefore, these advancements give large opportunities for more advance of all types of lung cancer treatment available and will increase the survival rate. However, lung cancer is still one of the major causes of death with around 19% of all the cancer patients. Several factors may affect survival rate. One of the serious effects is the breathing process, which can affect the accuracy of diagnosis and lung tumor treatment plan. We have therefore developed a semi automated algorithm to localize the 3D lung tumor positions across all respiratory data during respiratory motion. The algorithm can be divided into two stages. First, a lung tumor segmentation for the first phase of the 4D computed tomography (CT). Lung tumor segmentation is performed using an active contours method. Then, localize the tumor 3D position across all next phases using a 12 degrees of freedom of an affine transformation. Two data set where used in this study, a compute simulate for 4D CT using extended cardiac-torso (XCAT) phantom and 4D CT clinical data sets. The result and error calculation is presented as root mean square error (RMSE). The average error in data sets is 0.94 mm ± 0.36. Finally, evaluation and quantitative comparison of the results with a state-of-the-art registration algorithm was introduced. The results obtained from the proposed localization algorithm show a promising result to localize alung tumor in 4D CT data.

Keywords: automated algorithm , computed tomography, lung tumor, tumor localization

Procedia PDF Downloads 602
23480 Incorporating Anomaly Detection in a Digital Twin Scenario Using Symbolic Regression

Authors: Manuel Alves, Angelica Reis, Armindo Lobo, Valdemar Leiras

Abstract:

In industry 4.0, it is common to have a lot of sensor data. In this deluge of data, hints of possible problems are difficult to spot. The digital twin concept aims to help answer this problem, but it is mainly used as a monitoring tool to handle the visualisation of data. Failure detection is of paramount importance in any industry, and it consumes a lot of resources. Any improvement in this regard is of tangible value to the organisation. The aim of this paper is to add the ability to forecast test failures, curtailing detection times. To achieve this, several anomaly detection algorithms were compared with a symbolic regression approach. To this end, Isolation Forest, One-Class SVM and an auto-encoder have been explored. For the symbolic regression PySR library was used. The first results show that this approach is valid and can be added to the tools available in this context as a low resource anomaly detection method since, after training, the only requirement is the calculation of a polynomial, a useful feature in the digital twin context.

Keywords: anomaly detection, digital twin, industry 4.0, symbolic regression

Procedia PDF Downloads 120
23479 Re-Constructing the Research Design: Dealing with Problems and Re-Establishing the Method in User-Centered Research

Authors: Kerem Rızvanoğlu, Serhat Güney, Emre Kızılkaya, Betül Aydoğan, Ayşegül Boyalı, Onurcan Güden

Abstract:

This study addresses the re-construction and implementation process of the methodological framework developed to evaluate how locative media applications accompany the urban experiences of international students coming to Istanbul with exchange programs in 2022. The research design was built on a three-stage model. The research team conducted a qualitative questionnaire in the first stage to gain exploratory data. These data were then used to form three persona groups representing the sample by applying cluster analysis. In the second phase, a semi-structured digital diary study was carried out on a gamified task list with a sample selected from the persona groups. This stage proved to be the most difficult to obtaining valid data from the participant group. The research team re-evaluated the design of this second phase to reach the participants who will perform the tasks given by the research team while sharing their momentary city experiences, to ensure the daily data flow for two weeks, and to increase the quality of the obtained data. The final stage, which follows to elaborate on the findings, is the “Walk & Talk,” which is completed with face-to-face and in-depth interviews. It has been seen that the multiple methods used in the research process contribute to the depth and data diversity of the research conducted in the context of urban experience and locative technologies. In addition, by adapting the research design to the experiences of the users included in the sample, the differences and similarities between the initial research design and the research applied are shown.

Keywords: digital diary study, gamification, multi-model research, persona analysis, research design for urban experience, user-centered research, “Walk & Talk”

Procedia PDF Downloads 171
23478 Heterogeneous-Resolution and Multi-Source Terrain Builder for CesiumJS WebGL Virtual Globe

Authors: Umberto Di Staso, Marco Soave, Alessio Giori, Federico Prandi, Raffaele De Amicis

Abstract:

The increasing availability of information about earth surface elevation (Digital Elevation Models DEM) generated from different sources (remote sensing, Aerial Images, Lidar) poses the question about how to integrate and make available to the most than possible audience this huge amount of data. In order to exploit the potential of 3D elevation representation the quality of data management plays a fundamental role. Due to the high acquisition costs and the huge amount of generated data, highresolution terrain surveys tend to be small or medium sized and available on limited portion of earth. Here comes the need to merge large-scale height maps that typically are made available for free at worldwide level, with very specific high resolute datasets. One the other hand, the third dimension increases the user experience and the data representation quality, unlocking new possibilities in data analysis for civil protection, real estate, urban planning, environment monitoring, etc. The open-source 3D virtual globes, which are trending topics in Geovisual Analytics, aim at improving the visualization of geographical data provided by standard web services or with proprietary formats. Typically, 3D Virtual globes like do not offer an open-source tool that allows the generation of a terrain elevation data structure starting from heterogeneous-resolution terrain datasets. This paper describes a technological solution aimed to set up a so-called “Terrain Builder”. This tool is able to merge heterogeneous-resolution datasets, and to provide a multi-resolution worldwide terrain services fully compatible with CesiumJS and therefore accessible via web using traditional browser without any additional plug-in.

Keywords: Terrain Builder, WebGL, Virtual Globe, CesiumJS, Tiled Map Service, TMS, Height-Map, Regular Grid, Geovisual Analytics, DTM

Procedia PDF Downloads 426
23477 Pantograph-Catenary Contact Force: Features Evaluation for Catenary Diagnostics

Authors: Mehdi Brahimi, Kamal Medjaher, Noureddine Zerhouni, Mohammed Leouatni

Abstract:

The Prognostics and Health Management is a system engineering discipline which provides solutions and models to the implantation of a predictive maintenance. The approach is based on extracting useful information from monitoring data to assess the “health” state of an industrial equipment or an asset. In this paper, we examine multiple extracted features from Pantograph-Catenary contact force in order to select the most relevant ones to achieve a diagnostics function. The feature extraction methodology is based on simulation data generated thanks to a Pantograph-Catenary simulation software called INPAC and measurement data. The feature extraction method is based on both statistical and signal processing analyses. The feature selection method is based on statistical criteria.

Keywords: catenary/pantograph interaction, diagnostics, Prognostics and Health Management (PHM), quality of current collection

Procedia PDF Downloads 290
23476 GRABTAXI: A Taxi Revolution in Thailand

Authors: Danuvasin Charoen

Abstract:

The study investigates the business process and business model of GRABTAXI. The paper also discusses how the company implemented strategies to gain competitive advantages. The data is derived from the analysis of secondary data and the in-depth interviews among staffs, taxi drivers, and key customers. The findings indicated that the company’s competitive advantages come from being the first mover, emphasising on the ease of use and tangible benefits of application, and using network effect strategy.

Keywords: taxi, mobile application, innovative business model, Thailand

Procedia PDF Downloads 299
23475 A Pervasive System Architecture for Smart Environments in Internet of Things Context

Authors: Patrick Santos, João Casal, João Santos Luis Varandas, Tiago Alves, Carlos Romeiro, Sérgio Lourenço

Abstract:

Nowadays, technology makes it possible to, in one hand, communicate with various objects of the daily life through the Internet, and in the other, put these objects interacting with each other through this channel. Simultaneously, with the raise of smartphones as the most ubiquitous technology on persons lives, emerge new agents for these devices - Intelligent Personal Assistants. These agents have the goal of helping the user manage and organize his information as well as supporting the user in his/her day-to-day tasks. Moreover, other emergent concept is the Cloud Computing, which allows computation and storage to get out of the users devices, bringing benefits in terms of performance, security, interoperability and others. Connecting these three paradigms, in this work we propose an architecture for an intelligent system which provides an interface that assists the user on smart environments, informing, suggesting actions and allowing to manage the objects of his/her daily life.

Keywords: internet of things, cloud, intelligent personal assistant, architecture

Procedia PDF Downloads 514
23474 Developing a DNN Model for the Production of Biogas From a Hybrid BO-TPE System in an Anaerobic Wastewater Treatment Plant

Authors: Hadjer Sadoune, Liza Lamini, Scherazade Krim, Amel Djouadi, Rachida Rihani

Abstract:

Deep neural networks are highly regarded for their accuracy in predicting intricate fermentation processes. Their ability to learn from a large amount of datasets through artificial intelligence makes them particularly effective models. The primary obstacle in improving the performance of these models is to carefully choose the suitable hyperparameters, including the neural network architecture (number of hidden layers and hidden units), activation function, optimizer, learning rate, and other relevant factors. This study predicts biogas production from real wastewater treatment plant data using a sophisticated approach: hybrid Bayesian optimization with a tree-structured Parzen estimator (BO-TPE) for an optimised deep neural network (DNN) model. The plant utilizes an Upflow Anaerobic Sludge Blanket (UASB) digester that treats industrial wastewater from soft drinks and breweries. The digester has a working volume of 1574 m3 and a total volume of 1914 m3. Its internal diameter and height were 19 and 7.14 m, respectively. The data preprocessing was conducted with meticulous attention to preserving data quality while avoiding data reduction. Three normalization techniques were applied to the pre-processed data (MinMaxScaler, RobustScaler and StandardScaler) and compared with the Non-Normalized data. The RobustScaler approach has strong predictive ability for estimating the volume of biogas produced. The highest predicted biogas volume was 2236.105 Nm³/d, with coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) values of 0.712, 164.610, and 223.429, respectively.

Keywords: anaerobic digestion, biogas production, deep neural network, hybrid bo-tpe, hyperparameters tuning

Procedia PDF Downloads 38