Search results for: chemical learning
8304 Study of Chemical and Physical - Mechanical Properties Lime Mortar with Addition of Natural Resins
Authors: I. Poot-Ocejo, H. Silva-Poot, J. C. Cruz, A. Yeladaqui-Tello
Abstract:
Mexico has remarkable archaeological remains mainly in the Maya area, which are critical to the preservation of our cultural heritage, so the authorities have an interest in preserving and restoring these vestiges of the most original way, by employing techniques traditional, which has advantages such as compatibility, durability, strength, uniformity and chemical composition. Recent studies have confirmed the addition of natural resins extracted from the bark of trees, of which Brosium alicastrum (Ramon) has been the most evaluated, besides being one of the most abundant species in the vicinity of the archaeological sites, like that Manilkara Zapota (Chicozapote). Therefore, the objective is to determine if these resins are capable of being employed in archaeological restoration. This study shows the results of the chemical composition and physical-mechanical behavior of mortar mixtures eight made with commercial lime and off by hand, calcium sand, resins added with Brosium alicastrum (Ramon) and Manilkara zapota (Chicozapote), where determined and quantified properties and chemical composition of the resins by X-Ray Fluorescence (XRF), the pH of the material was determined, indicating that both resins are acidic (3.78 and 4.02), and the addition rate maximum was obtained from resins in water by means of ultrasonic baths pulses, being in the case of 10% Manilkara zapota, because it contains up to 40% rubber and for 40% alicastrum Brosium contain less rubber. Through quantitative methodology, the compressive strength 96 specimens of 5 cm x 5 cm x 5 cm of mortar binding, 72 with partial substitution of water mixed with natural resins in proportions 5 to 10% in the case was evaluated of Manilkara Zapota, for Brosium alicastrum 20 and 40%, and 12 artificial resin and 12 without additive (mortars witnesses). 24 specimens likewise glued brick with mortar, for testing shear adhesion was found where, then the microstructure more conducive additions was determined by SEM analysis were prepared sweep. The test results indicate that the addition Manilkara zapota resin in the proportion of 10% 1.5% increase in compressive strength and 1% with respect to adhesion, compared to the control without addition mortar; In the case of Brosium alicastrum results show that compressive strengths and adhesion were insignificant compared to those made with registered by Manilkara zapota mixtures. Mortars containing the natural resins have improvements in physical properties and increase the mechanical strength and adhesion, compared to those who do not, in addition to the components are chemically compatible, therefore have considered that can be employed in Archaeological restoration.Keywords: lime, mortar, natural resins, Manilkara zapota mixtures, Brosium alicastrum
Procedia PDF Downloads 3718303 Nanoprofiling of GaAs Surface in a Combined Low-Temperature Plasma for Microwave Devices
Authors: Victor S. Klimin, Alexey A. Rezvan, Maxim S. Solodovnik, Oleg A. Ageev
Abstract:
In this paper, the problems of existing methods of profiling and surface modification of nanoscale arsenide-gallium structures are analyzed. The use of a combination of methods of local anodic oxidation and plasma chemical etching to solve this problem is considered. The main features that make this technology one of the promising areas of modification and profiling of near-surface layers of solids are demonstrated. In this paper, we studied the effect of formation stress and etching time on the geometrical parameters of the etched layer and the roughness of the etched surface. Experimental dependences of the thickness of the etched layer on the time and stress of formation were obtained. The surface analysis was carried out using atomic force microscopy methods, the corresponding profilograms were constructed from the obtained images, and the roughness of the etched surface was studied accordingly. It was shown that at high formation voltage, the depth of the etched surface increased, this is due to an increase in the number of active particles (oxygen ions and hydroxyl groups) formed as a result of the decomposition of water molecules in an electric field, during the formation of oxide nanostructures on the surface of gallium arsenide. Oxide layers were used as negative masks for subsequent plasma chemical etching by the STE ICPe68 unit. BCl₃ was chosen as the chlorine-containing gas, which differs from analogs in some parameters for the effect of etching of nanostructures based on gallium arsenide in the low-temperature plasma. The gas mixture of reaction chamber consisted of a buffer gas NAr = 100 cm³/min and a chlorine-containing gas NBCl₃ = 15 cm³/min at a pressure P = 2 Pa. The influence of these methods modes, which are formation voltage and etching time, on the roughness and geometric parameters, and corresponding dependences are demonstrated. Probe nanotechnology was used for surface analysis.Keywords: nanostructures, GaAs, plasma chemical etching, modification structures
Procedia PDF Downloads 1458302 Developing Cucurbitacin a Minimum Inhibition Concentration of Meloidogyne Incognita Using a Computer-Based Model
Authors: Zakheleni P. Dube, Phatu W. Mashela
Abstract:
Minimum inhibition concentration (MIC) is the lowest concentration of a chemical that brings about significant inhibition of target organism. The conventional method for establishing the MIC for phytonematicides is tedious. The objective of this study was to use the Curve-fitting Allelochemical Response Data (CARD) to determine the MIC for pure cucurbitacin A on Meloidogyne incognita second-stage juveniles (J2) hatch, immobility and mortality. Meloidogyne incognita eggs and freshly hatched J2 were separately exposed to a series of pure cucurbitacin A concentrations of 0.00, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25 and 2.50 μg.mL⁻¹for 12, 24, 48 and 72 h in an incubator set at 25 ± 2°C. Meloidogyne incognita J2 hatch, immobility and mortality counts were determined using a stereomicroscope and the significant means were subjected to the CARD model. The model exhibited density-dependent growth (DDG) patterns of J2 hatch, immobility and mortality to increasing concentrations of cucurbitacin A. The average MIC for cucurbitacin A on M. incognita J2 hatch, immobility and mortality were 2.2, 0.58 and 0.63 µg.mL⁻¹, respectively. Meloidogyne incognita J2 hatch had the highest average MIC value followed by mortality and immobility had the least. In conclusion, the CARD model was able to generate MIC for cucurbitacin A, hence it could serve as a valuable tool in the chemical-nematode bioassay studies.Keywords: inhibition concentration, phytonematicide, sensitivity index, threshold stimulation, triterpenoids.
Procedia PDF Downloads 1908301 English Learning Motivation in Communicative Competence
Authors: Sebastianus Menggo
Abstract:
The aim of communicative language teaching is to enable learners to communicate in the target language. Each learner is required to perform the micro and macro components in each utterance produced. Utterances produced must be in line with the understanding of competence and performance of each speaker. These are inter-depended. Competence and performance are obliged to be appeared proportionally in creating the utterances. The representative of competence and performance reflects the linguistics identity of a speaker in providing sentences in each certain language community. Each lexicon spoken may lead that interlocutor in comprehending the intentions utterances given. However proportional performance of both components in an utterance needed to be further elaborated. Finding appropriate gap between competence and performance components in a communicative competence must be supported positive response given by the learners.The learners’ inability to keep communicative competence proportionally is caused by inside and outside factors. The inside factors are certain lacks such as lack of self-confidence and lack of motivation which could make students feel ashamed to produce utterances, scared to make mistakes, and have no enough confidence. Knowing learner’s English learning motivation is an urgent variable to be considered in creating conducive atmosphere classroom which will raise the learners to do more toward the achievement of communicative competence. Meanwhile, the outside factor is related with the teacher. The teacher should be able to recognize the students’ problem in creating conducive atmosphere in the classroom that will raise the students’ ability to be an English speaker qualified. Moreover, the aim of this research is to know and describe the English learning motivation affecting students’ communicative competence of 48 students of XI grade of science program at catholic senior of Saint Ignasius Loyola Labuan Bajo, West Flores, Indonesia. Correlation design with purposive procedure applied in this research. Data were collected through questionnaire, interview, and students’ speaking achievement document. Result shows the description of motivation significantly affecting students’ communicative competence.Keywords: communicative, competence, English, learning, motivation
Procedia PDF Downloads 2008300 A Perspective on Teaching Mathematical Concepts to Freshman Economics Students Using 3D-Visualisations
Authors: Muhammad Saqib Manzoor, Camille Dickson-Deane, Prashan Karunaratne
Abstract:
Cobb-Douglas production (utility) function is a fundamental function widely used in economics teaching and research. The key reason is the function's characteristics to describe the actual production using inputs like labour and capital. The characteristics of the function like returns to scale, marginal, and diminishing marginal productivities are covered in the introductory units in both microeconomics and macroeconomics with a 2-dimensional static visualisation of the function. However, less insight is provided regarding three-dimensional surface, changes in the curvature properties due to returns to scale, the linkage of the short-run production function with its long-run counterpart and marginal productivities, the level curves, and the constraint optimisation. Since (freshman) learners have diverse prior knowledge and cognitive skills, the existing “one size fits all” approach is not very helpful. The aim of this study is to bridge this gap by introducing technological intervention with interactive animations of the three-dimensional surface and sequential unveiling of the characteristics mentioned above using Python software. A small classroom intervention has helped students enhance their analytical and visualisation skills towards active and authentic learning of this topic. However, to authenticate the strength of our approach, a quasi-Delphi study will be conducted to ask domain-specific experts, “What value to the learning process in economics is there using a 2-dimensional static visualisation compared to using a 3-dimensional dynamic visualisation?’ Here three perspectives of the intervention were reviewed by a panel comprising of novice students, experienced students, novice instructors, and experienced instructors in an effort to determine the learnings from each type of visualisations within a specific domain of knowledge. The value of this approach is key to suggesting different pedagogical methods which can enhance learning outcomes.Keywords: cobb-douglas production function, quasi-Delphi method, effective teaching and learning, 3D-visualisations
Procedia PDF Downloads 1458299 Effect of Cooling Approaches on Chemical Compositions, Phases, and Acidolysis of Panzhihua Titania Slag
Authors: Bing Song, Kexi Han, Xuewei Lv
Abstract:
Titania slag is a high quality raw material containing titanium in the subsequent process of titanium pigment. The effects of cooling approaches of granulating, water cooling, and air cooling on chemical, phases, and acidolysis of Panzhihua titania slag were investigated. Compared to the original slag which was prepared by the conventional processing route, the results show that the titania slag undergoes oxidation of Ti3+during different cooling ways. The Ti2O3 content is 17.50% in the original slag, but it is 16.55% and 16.84% in water cooled and air-cooled slag, respectively. Especially, the Ti2O3 content in granulated slag is decreased about 27.6%. The content of Fe2O3 in granulated slag is approximately 2.86% also obviously higher than water (<0.5%) or air-cooled slag (<0.5%). Rutile in cooled titania slag was formed because of the oxidation of Ti3+. The rutile phase without a noticeable change in water cooled and air-cooled slag after the titania slag was cooled, but increased significantly in the granulated slag. The rate of sulfuric acid acidolysis of cooled slag is less than the original slag. The rate of acidolysis is 90.61% and 92.46% to the water-cooled slag and air-cooled slag, respectively. However, the rate of acidolysis of the granulated slag is less than that of industry slag about 20%, only 74.72%.Keywords: cooling approaches, titania slag, granulating, sulfuric acid acidolysis
Procedia PDF Downloads 2388298 Artificial Intelligence: Reimagining Education
Authors: Silvia Zanazzi
Abstract:
Artificial intelligence (AI) has become an integral part of our world, transitioning from scientific exploration to practical applications that impact daily life. The emergence of generative AI is reshaping education, prompting new questions about the role of teachers, the nature of learning, and the overall purpose of schooling. While AI offers the potential for optimizing teaching and learning processes, concerns about discrimination and bias arising from training data and algorithmic decisions persist. There is a risk of a disconnect between the rapid development of AI and the goals of building inclusive educational environments. The prevailing discourse on AI in education often prioritizes efficiency and individual skill acquisition. This narrow focus can undermine the importance of collaborative learning and shared experiences. A growing body of research challenges this perspective, advocating for AI that enhances, rather than replaces, human interaction in education. This study aims to examine the relationship between AI and education critically. Reviewing existing research will identify both AI implementation’s potential benefits and risks. The goal is to develop a framework that supports the ethical and effective integration of AI into education, ensuring it serves the needs of all learners. The theoretical reflection will be developed based on a review of national and international scientific literature on artificial intelligence in education. The primary objective is to curate a selection of critical contributions from diverse disciplinary perspectives and/or an inter- and transdisciplinary viewpoint, providing a state-of-the-art overview and a critical analysis of potential future developments. Subsequently, the thematic analysis of these contributions will enable the creation of a framework for understanding and critically analyzing the role of artificial intelligence in schools and education, highlighting promising directions and potential pitfalls. The expected results are (1) a classification of the cognitive biases present in representations of AI in education and the associated risks and (2) a categorization of potentially beneficial interactions between AI applications and teaching and learning processes, including those already in use or under development. While not exhaustive, the proposed framework will serve as a guide for critically exploring the complexity of AI in education. It will help to reframe dystopian visions often associated with technology and facilitate discussions on fostering synergies that balance the ‘dream’ of quality education for all with the realities of AI implementation. The discourse on artificial intelligence in education, highlighting reductionist models rooted in fragmented and utilitarian views of knowledge, has the merit of stimulating the construction of alternative perspectives that can ‘return’ teaching and learning to education, human growth, and the well-being of individuals and communities.Keywords: education, artificial intelligence, teaching, learning
Procedia PDF Downloads 208297 Motivation and Quality Teaching of Chinese Language: Analysis of Secondary School Studies
Authors: Robyn Moloney, HuiLing Xu
Abstract:
Many countries wish to produce Asia-literate citizens, through language education. International contexts of Chinese language education are seeking pedagogical innovation to meet local contextual factors frequently holding back learner success. In multicultural Australia, innovative pedagogy is urgently needed to support motivation in sustained study, with greater strategic integration of technology. This research took a qualitative approach to identify need and solutions. The paper analyses strategies that three secondary school teachers are adopting to meet specific challenges in the Australian context. The data include teacher interviews, classroom observations and student interviews. We highlight the use of task-based learning and differentiated teaching for multilevel classes, and the role which digital technologies play in facilitating both areas. The strategy examples are analysed in reference both to a research-based framework for describing quality teaching, and to current understandings of motivation in language learning. The analysis of data identifies learning featuring deep knowledge, higher-order thinking, engagement, social support, utilisation of background knowledge, and connectedness, all of which work towards the learners having a sense of autonomy and an imagination of becoming an adult Chinese language user.Keywords: Chinese pedagogy, digital technologies, motivation, secondary school
Procedia PDF Downloads 2688296 APP-Based Language Teaching Using Mobile Response System in the Classroom
Authors: Martha Wilson
Abstract:
With the peak of Computer-Assisted Language Learning slowly coming to pass and Mobile-Assisted Language Learning, at times, a bit lacking in the communicative department, we are now faced with a challenging question: How can we engage the interest of our digital native students and, most importantly, sustain it? As previously mentioned, our classrooms are now experiencing an influx of “digital natives” – people who have grown up using and having unlimited access to technology. While modernizing our curriculum and digitalizing our classrooms are necessary in order to accommodate this new learning style, it is a huge financial burden and a massive undertaking for language institutes. Instead, opting for a more compact, simple, yet multidimensional pedagogical tool may be the solution to the issue at hand. This paper aims to give a brief overview into an existing device referred to as Student Response Systems (SRS) and to expand on this notion to include a new prototype of response system that will be designed as a mobile application to eliminate the need for costly hardware and software. Additionally, an analysis into recent attempts by other institutes to develop the Mobile Response System (MRS) and customer reviews of the existing MRSs will be provided, as well as the lessons learned from those projects. Finally, while the new model of MRS is still in its infancy stage, this paper will discuss the implications of incorporating such an application as a tool to support and to enrich traditional techniques and also offer practical classroom applications with the existing response systems that are immediately available on the market.Keywords: app, clickers, mobile app, mobile response system, student response system
Procedia PDF Downloads 3718295 Fair Federated Learning in Wireless Communications
Authors: Shayan Mohajer Hamidi
Abstract:
Federated Learning (FL) has emerged as a promising paradigm for training machine learning models on distributed data without the need for centralized data aggregation. In the realm of wireless communications, FL has the potential to leverage the vast amounts of data generated by wireless devices to improve model performance and enable intelligent applications. However, the fairness aspect of FL in wireless communications remains largely unexplored. This abstract presents an idea for fair federated learning in wireless communications, addressing the challenges of imbalanced data distribution, privacy preservation, and resource allocation. Firstly, the proposed approach aims to tackle the issue of imbalanced data distribution in wireless networks. In typical FL scenarios, the distribution of data across wireless devices can be highly skewed, resulting in unfair model updates. To address this, we propose a weighted aggregation strategy that assigns higher importance to devices with fewer samples during the aggregation process. By incorporating fairness-aware weighting mechanisms, the proposed approach ensures that each participating device's contribution is proportional to its data distribution, thereby mitigating the impact of data imbalance on model performance. Secondly, privacy preservation is a critical concern in federated learning, especially in wireless communications where sensitive user data is involved. The proposed approach incorporates privacy-enhancing techniques, such as differential privacy, to protect user privacy during the model training process. By adding carefully calibrated noise to the gradient updates, the proposed approach ensures that the privacy of individual devices is preserved without compromising the overall model accuracy. Moreover, the approach considers the heterogeneity of devices in terms of computational capabilities and energy constraints, allowing devices to adaptively adjust the level of privacy preservation to strike a balance between privacy and utility. Thirdly, efficient resource allocation is crucial for federated learning in wireless communications, as devices operate under limited bandwidth, energy, and computational resources. The proposed approach leverages optimization techniques to allocate resources effectively among the participating devices, considering factors such as data quality, network conditions, and device capabilities. By intelligently distributing the computational load, communication bandwidth, and energy consumption, the proposed approach minimizes resource wastage and ensures a fair and efficient FL process in wireless networks. To evaluate the performance of the proposed fair federated learning approach, extensive simulations and experiments will be conducted. The experiments will involve a diverse set of wireless devices, ranging from smartphones to Internet of Things (IoT) devices, operating in various scenarios with different data distributions and network conditions. The evaluation metrics will include model accuracy, fairness measures, privacy preservation, and resource utilization. The expected outcomes of this research include improved model performance, fair allocation of resources, enhanced privacy preservation, and a better understanding of the challenges and solutions for fair federated learning in wireless communications. The proposed approach has the potential to revolutionize wireless communication systems by enabling intelligent applications while addressing fairness concerns and preserving user privacy.Keywords: federated learning, wireless communications, fairness, imbalanced data, privacy preservation, resource allocation, differential privacy, optimization
Procedia PDF Downloads 758294 Analysis of Chemical Composition of Raw Milk in Some Farms Animals in El Khoms, Libya
Authors: Dukali Abujnah
Abstract:
This study was undertaken to knowledge the chemical composition of some farm animals (cows ) by using ultrasonic milk analyzer. This method was used first time in our country in the field of milk hygiene to determine and comparison the composition percent of raw milk for farm animals as attempt to protect the health of consumers 240 raw milk samples for each species of animals included in this study for two different season of year first (Novembe 2014 - January 2015) , second from (May – Novembe2015) .The chemical analysis. In this way, a range of building suitable to put in the Libyan market product structures, and milk, for use as a new product or exposure to treatment such as pasteurized milk and long-life may be wider study project..Controls have been implemented in operating in Libya, companies which are part of the business created by the Libyan state. It was created only after the companies that made many of the studies and research carried out on areas of Libya which it was possible to intervene. Although troops spent in recent years, companies have not yet found their balance and milk production has not yet come to those set forth in the action plans, due to problems of various types that will be discussed in this study. We believe that these data have been taken in four years if analyzed properly, can provide more accurate information to farmers in their companies want to take dairy cattle breeding. The total bacterial count was 76 and 38 cfu/ml for locally produced and imported UHT milk respectively. Coliforms were negative for all examined locally produce and imported samples. E. coli were not isolated from any of the examined UHT samples. Aerobic spore-formers count mean count was 49 and 27 cfu/ml for both examined samples respectively. Obtained results show that most of the locally produced UHT milk does not satisfy the suggested Libyan Standards for UHT milk for fat% as well as total bacterial count/ml. Economical and public health importance of the obtained results were discussed, and control measures for improving the quality of UHT locally made milk were also discussed.Keywords: locally, UHT milks, farms animals, raw milk analysis milk
Procedia PDF Downloads 2858293 The Impact of Teacher's Emotional Intelligence on Students' Motivation to Learn
Authors: Marla Wendy Spergel
Abstract:
The purpose of this qualitative study is to showcase graduated high school students’ to voice on the impact past teachers had on their motivation to learn, and if this impact has affected their post-high-school lives. Through a focus group strategy, 21 graduated high school alumni participated in three separate focus groups. Participants discussed their former teacher’s emotional intelligence skills, which influenced their motivation to learn or not. A focused review of the literature revealed that teachers are a major factor in a student’s motivation to learn. This research was guided by Bandura’s Social Cognitive Theory of Motivation and constructs related to learning and motivation from Carl Rogers’ Humanistic Views of Personality, and from Brain-Based Learning perspectives with a major focus on the area of Emotional Intelligence. Findings revealed that the majority of participants identified teachers who most motivated them to learn and demonstrated skills associated with emotional intelligence. An important and disturbing finding relates to the saliency of negative experiences. Further work is recommended to expand this line of study in Higher Education, perform a long-term study to better gain insight into long-term benefits attributable to experiencing positive teachers, study the negative impact teachers have on students’ motivation to learn, specifically focusing on student anxiety and acquired helplessness.Keywords: emotional intelligence, learning, motivation, pedagogy
Procedia PDF Downloads 1578292 Artificial Intelligence in Vietnamese Higher Education: Benefits, Challenges and Ethics
Authors: Duong Van Thanh
Abstract:
Artificial Intelligence (AI) has been recently a new trend in Higher Education systems globally as well as in the Vietnamese Higher Education. This study explores the benefits and challenges in applications of AI in 02 selected universities, ie. Vietnam National Universities in Hanoi Capital and the University of Economics in Ho Chi Minh City. Particularly, this paper focuses on how the ethics of Artificial Intelligence have been addressed among faculty members at these two universities. The AI ethical issues include the access and inclusion, privacy and security, transparency and accountability. AI-powered educational technology has the potential to improve access and inclusion for students with disabilities or other learning needs. However, there is a risk that AI-based systems may not be accessible to all students and may even exacerbate existing inequalities. AI applications can be opaque and difficult to understand, making it challenging to hold them accountable for their decisions and actions. It is important to consider the benefits that adopting AI-systems bring to the institutions, teaching, and learning. And it is equally important to recognize the drawbacks of using AI in education and to take the necessary steps to mitigate any negative impact. The results of this study present a critical concern in higher education in Vietnam, where AI systems may be used to make important decisions about students’ learning and academic progress. The authors of this study attempt to make some recommendation that the AI-system in higher education system is frequently checked by a human in charge to verify that everything is working as it should or if the system needs some retraining or adjustments.Keywords: artificial intelligence, ethics, challenges, vietnam
Procedia PDF Downloads 1278291 Vision-Based Daily Routine Recognition for Healthcare with Transfer Learning
Authors: Bruce X. B. Yu, Yan Liu, Keith C. C. Chan
Abstract:
We propose to record Activities of Daily Living (ADLs) of elderly people using a vision-based system so as to provide better assistive and personalization technologies. Current ADL-related research is based on data collected with help from non-elderly subjects in laboratory environments and the activities performed are predetermined for the sole purpose of data collection. To obtain more realistic datasets for the application, we recorded ADLs for the elderly with data collected from real-world environment involving real elderly subjects. Motivated by the need to collect data for more effective research related to elderly care, we chose to collect data in the room of an elderly person. Specifically, we installed Kinect, a vision-based sensor on the ceiling, to capture the activities that the elderly subject performs in the morning every day. Based on the data, we identified 12 morning activities that the elderly person performs daily. To recognize these activities, we created a HARELCARE framework to investigate into the effectiveness of existing Human Activity Recognition (HAR) algorithms and propose the use of a transfer learning algorithm for HAR. We compared the performance, in terms of accuracy, and training progress. Although the collected dataset is relatively small, the proposed algorithm has a good potential to be applied to all daily routine activities for healthcare purposes such as evidence-based diagnosis and treatment.Keywords: daily activity recognition, healthcare, IoT sensors, transfer learning
Procedia PDF Downloads 1328290 Hybrid Artificial Bee Colony and Least Squares Method for Rule-Based Systems Learning
Authors: Ahcene Habbi, Yassine Boudouaoui
Abstract:
This paper deals with the problem of automatic rule generation for fuzzy systems design. The proposed approach is based on hybrid artificial bee colony (ABC) optimization and weighted least squares (LS) method and aims to find the structure and parameters of fuzzy systems simultaneously. More precisely, two ABC based fuzzy modeling strategies are presented and compared. The first strategy uses global optimization to learn fuzzy models, the second one hybridizes ABC and weighted least squares estimate method. The performances of the proposed ABC and ABC-LS fuzzy modeling strategies are evaluated on complex modeling problems and compared to other advanced modeling methods.Keywords: automatic design, learning, fuzzy rules, hybrid, swarm optimization
Procedia PDF Downloads 4378289 Training for Digital Manufacturing: A Multilevel Teaching Model
Authors: Luís Rocha, Adam Gąska, Enrico Savio, Michael Marxer, Christoph Battaglia
Abstract:
The changes observed in the last years in the field of manufacturing and production engineering, popularly known as "Fourth Industry Revolution", utilizes the achievements in the different areas of computer sciences, introducing new solutions at almost every stage of the production process, just to mention such concepts as mass customization, cloud computing, knowledge-based engineering, virtual reality, rapid prototyping, or virtual models of measuring systems. To effectively speed up the production process and make it more flexible, it is necessary to tighten the bonds connecting individual stages of the production process and to raise the awareness and knowledge of employees of individual sectors about the nature and specificity of work in other stages. It is important to discover and develop a suitable education method adapted to the specificities of each stage of the production process, becoming an extremely crucial issue to exploit the potential of the fourth industrial revolution properly. Because of it, the project “Train4Dim” (T4D) intends to develop complex training material for digital manufacturing, including content for design, manufacturing, and quality control, with a focus on coordinate metrology and portable measuring systems. In this paper, the authors present an approach to using an active learning methodology for digital manufacturing. T4D main objective is to develop a multi-degree (apprenticeship up to master’s degree studies) and educational approach that can be adapted to different teaching levels. It’s also described the process of creating the underneath methodology. The paper will share the steps to achieve the aims of the project (training model for digital manufacturing): 1) surveying the stakeholders, 2) Defining the learning aims, 3) producing all contents and curriculum, 4) training for tutors, and 5) Pilot courses test and improvements.Keywords: learning, Industry 4.0, active learning, digital manufacturing
Procedia PDF Downloads 978288 An Evaluation of English Collocation Usage Barriers Faced by College Students of Rawalpindi
Authors: Sobia Rana
Abstract:
The study intends to explain the problems of English collocational use faced by college students in Rawalpindi, Pakistan and recommends some authentic ways that will help in removing the learning barriers in light of the concerning methodological issues. It will not only help the students to improve their knowledge of the phenomena but will also enlighten the target teachers about the significance of authentic collocational use and how it naturalizes both written and spoken expressions. Data from both the students and teachers have been collected with the help of open/close-ended questionnaires to unearth the genuine cause/s and supplement them with the required solutions rooted in the actual problems. The students fail to use authentic collocations owing to multiple reasons: lack of awareness about English collocational use, improper teaching methodologies, and inexpert teachers.Keywords: English collocational use, teaching methodologies, English learning barriers, vocabulary acquisition, college students of Rawalpindi
Procedia PDF Downloads 828287 High-Fidelity Materials Screening with a Multi-Fidelity Graph Neural Network and Semi-Supervised Learning
Authors: Akeel A. Shah, Tong Zhang
Abstract:
Computational approaches to learning the properties of materials are commonplace, motivated by the need to screen or design materials for a given application, e.g., semiconductors and energy storage. Experimental approaches can be both time consuming and costly. Unfortunately, computational approaches such as ab-initio electronic structure calculations and classical or ab-initio molecular dynamics are themselves can be too slow for the rapid evaluation of materials, often involving thousands to hundreds of thousands of candidates. Machine learning assisted approaches have been developed to overcome the time limitations of purely physics-based approaches. These approaches, on the other hand, require large volumes of data for training (hundreds of thousands on many standard data sets such as QM7b). This means that they are limited by how quickly such a large data set of physics-based simulations can be established. At high fidelity, such as configuration interaction, composite methods such as G4, and coupled cluster theory, gathering such a large data set can become infeasible, which can compromise the accuracy of the predictions - many applications require high accuracy, for example band structures and energy levels in semiconductor materials and the energetics of charge transfer in energy storage materials. In order to circumvent this problem, multi-fidelity approaches can be adopted, for example the Δ-ML method, which learns a high-fidelity output from a low-fidelity result such as Hartree-Fock or density functional theory (DFT). The general strategy is to learn a map between the low and high fidelity outputs, so that the high-fidelity output is obtained a simple sum of the physics-based low-fidelity and correction, Although this requires a low-fidelity calculation, it typically requires far fewer high-fidelity results to learn the correction map, and furthermore, the low-fidelity result, such as Hartree-Fock or semi-empirical ZINDO, is typically quick to obtain, For high-fidelity outputs the result can be an order of magnitude or more in speed up. In this work, a new multi-fidelity approach is developed, based on a graph convolutional network (GCN) combined with semi-supervised learning. The GCN allows for the material or molecule to be represented as a graph, which is known to improve accuracy, for example SchNet and MEGNET. The graph incorporates information regarding the numbers of, types and properties of atoms; the types of bonds; and bond angles. They key to the accuracy in multi-fidelity methods, however, is the incorporation of low-fidelity output to learn the high-fidelity equivalent, in this case by learning their difference. Semi-supervised learning is employed to allow for different numbers of low and high-fidelity training points, by using an additional GCN-based low-fidelity map to predict high fidelity outputs. It is shown on 4 different data sets that a significant (at least one order of magnitude) increase in accuracy is obtained, using one to two orders of magnitude fewer low and high fidelity training points. One of the data sets is developed in this work, pertaining to 1000 simulations of quinone molecules (up to 24 atoms) at 5 different levels of fidelity, furnishing the energy, dipole moment and HOMO/LUMO.Keywords: .materials screening, computational materials, machine learning, multi-fidelity, graph convolutional network, semi-supervised learning
Procedia PDF Downloads 418286 Autism Disease Detection Using Transfer Learning Techniques: Performance Comparison between Central Processing Unit vs. Graphics Processing Unit Functions for Neural Networks
Authors: Mst Shapna Akter, Hossain Shahriar
Abstract:
Neural network approaches are machine learning methods used in many domains, such as healthcare and cyber security. Neural networks are mostly known for dealing with image datasets. While training with the images, several fundamental mathematical operations are carried out in the Neural Network. The operation includes a number of algebraic and mathematical functions, including derivative, convolution, and matrix inversion and transposition. Such operations require higher processing power than is typically needed for computer usage. Central Processing Unit (CPU) is not appropriate for a large image size of the dataset as it is built with serial processing. While Graphics Processing Unit (GPU) has parallel processing capabilities and, therefore, has higher speed. This paper uses advanced Neural Network techniques such as VGG16, Resnet50, Densenet, Inceptionv3, Xception, Mobilenet, XGBOOST-VGG16, and our proposed models to compare CPU and GPU resources. A system for classifying autism disease using face images of an autistic and non-autistic child was used to compare performance during testing. We used evaluation matrices such as Accuracy, F1 score, Precision, Recall, and Execution time. It has been observed that GPU runs faster than the CPU in all tests performed. Moreover, the performance of the Neural Network models in terms of accuracy increases on GPU compared to CPU.Keywords: autism disease, neural network, CPU, GPU, transfer learning
Procedia PDF Downloads 1188285 An Improved Discrete Version of Teaching–Learning-Based Optimization for Supply Chain Network Design
Authors: Ehsan Yadegari
Abstract:
While there are several metaheuristics and exact approaches to solving the Supply Chain Network Design (SCND) problem, there still remains an unfilled gap in using the Teaching-Learning-Based Optimization (TLBO) algorithm. The algorithm has demonstrated desirable results with problems with complicated combinational optimization. The present study introduces a Discrete Self-Study TLBO (DSS-TLBO) with priority-based solution representation that can solve a supply chain network configuration model to lower the total expenses of establishing facilities and the flow of materials. The network features four layers, namely suppliers, plants, distribution centers (DCs), and customer zones. It is designed to meet the customer’s demand through transporting the material between layers of network and providing facilities in the best economic Potential locations. To have a higher quality of the solution and increase the speed of TLBO, a distinct operator was introduced that ensures self-adaptation (self-study) in the algorithm based on the four types of local search. In addition, while TLBO is used in continuous solution representation and priority-based solution representation is discrete, a few modifications were added to the algorithm to remove the solutions that are infeasible. As shown by the results of experiments, the superiority of DSS-TLBO compared to pure TLBO, genetic algorithm (GA) and firefly Algorithm (FA) was established.Keywords: supply chain network design, teaching–learning-based optimization, improved metaheuristics, discrete solution representation
Procedia PDF Downloads 528284 Overcoming Usability Challenges of Educational Math Apps: Designing and Testing a Mobile Graphing Calculator
Authors: M. Tomaschko
Abstract:
The integration of technology in educational settings has gained a lot of interest. Especially the use of mobile devices and accompanying mobile applications can offer great potentials to complement traditional education with new technologies and enrich students’ learning in various ways. Nevertheless, the usability of the deployed mathematics application is an indicative factor to exploit the full potential of technology enhanced learning because directing cognitive load toward using an application will likely inhibit effective learning. For this reason, the purpose of this research study is the identification of possible usability issues of the mobile GeoGebra Graphing Calculator application. Therefore, eye tracking in combination with task scenarios, think aloud method, and a SUS questionnaire were used. Based on the revealed usability issues, the mobile application was iteratively redesigned and assessed in order to verify the success of the usability improvements. In this paper, the identified usability issues are presented, and recommendations on how to overcome these concerns are provided. The main findings relate to the conception of a mathematics keyboard and the interaction design in relation to an equation editor, as well as the representation of geometrical construction tools. In total, 12 recommendations were formed to improve the usability of a mobile graphing calculator application. The benefit to be gained from this research study is not only the improvement of the usability of the existing GeoGebra Graphing Calculator application but also to provide helpful hints that could be considered from designers and developers of mobile math applications.Keywords: GeoGebra, graphing calculator, math education, smartphone, usability
Procedia PDF Downloads 1348283 Effective Teaching Pyramid and Its Impact on Enhancing the Participation of Students in Swimming Classes
Authors: Salam M. H. Kareem
Abstract:
Instructional or teaching procedures and their proper sequence are essential for high-quality learning outcomes. These actions are the path that the teacher takes during the learning process after setting the learning objectives. Teachers and specialists in the education field should include teaching procedures with putting in place an effective mechanism for the procedure’s implementation to achieve a logical sequence with the desired output of overall education process. Determining the sequence of these actions may be a strategic process outlined by a strategic educational plan or drawn by teachers with a high level of experience, enabling them to determine those logical procedures. While specific actions may be necessary for a specific form, many Physical Education (PE) teachers can work out on various sports disciplines. This study was conducted to investigate the impact of using the teaching sequence of the teaching pyramid in raising the level of enjoyment in swimming classes. Four months later of teaching swimming skills to the control and experimental groups of the study, we figured that using the tools shown in the teaching pyramid with the experimental group led to statistically significant differences in the positive tendencies of students to participate in the swimming classes by using the traditional procedures of teaching and using of successive procedures in the teaching pyramid, and in favor of the teaching pyramid, The students are influenced by enhancing their tendency to participate in swimming classes when the teaching procedures followed are sensitive to individual differences and are based on the element of pleasure in learning, and less positive levels of the tendency of students when using traditional teaching procedures, by getting the level of skills' requirements higher and more difficult to perform. The level of positive tendencies of students when using successive procedures in the teaching pyramid was increased, by getting the level of skills' requirements higher and more difficult to perform, because of the high level of motivation and the desire to challenge the self-provided by the teaching pyramid.Keywords: physical education, swimming classes, teaching process, teaching pyramid
Procedia PDF Downloads 1478282 Learning Activities in Teaching Nihon-Go in the Philippines: Basis for a Proposed Action Plan
Authors: Esperanza C. Santos
Abstract:
Japanese Language was traditionally considered as a means of imparting culture and training aesthetic experience in students and therefore as something beyond the practical aims of language teaching and learning. Due to the complexity of foreign languages, lots of language learners and teachers shared deep reservations about the potentials of foreign language in enhancing the communication skills of the students. In spite of the arguments against the use of Foreign Language (Nihon-go) in the classroom, the researcher strongly support the use of Nihon-go in teaching communication skills as the researcher believes that Nihon-go is a valuable resource to be exploited in the classroom in order to help the students explore the language in an interesting and challenging way. The focus of this research is to find out the relationship between the preferences, opinions, and perceptions with the communication skills. This study also identifies the significance of the relationship between preferences, opinions and perceptions and communications skills in the activities employed in Foreign language (Nihon-go) among the junior and senior students in Foreign Language 2 at the Imus Institute, Imus Cavite during the academic year 2013-2014. The results of the study are expected to encourage further studies that particularly focused on the communication skills as brought about by the identified factors namely: preferences, opinions, and perceptions on the benefits factor namely the language acquisition; access to Japanese culture and students' interpretative ability. Therefore, this research is in its quest for the issues and concerns on how to effectively teach different learning activities in a Nihon-go class.Keywords: preferences, opinions, perceptions, language acquisition
Procedia PDF Downloads 3098281 Structural and Optical Properties of Silver Sulfide/Reduced Graphene Oxide Nanocomposite
Authors: Oyugi Ngure Robert, Kallen Mulilo Nalyanya, Tabitha A. Amollo
Abstract:
Nanomaterials have attracted significant attention in research because of their exemplary properties, making them suitable for diverse applications. This paper reports the successful synthesis as well as the structural properties of silver sulfide/reduced graphene oxide (Ag_2 S-rGO) nanocomposite. The nanocomposite was synthesized by the chemical reduction method. Scanning electron microscopy (SEM) showed that the reduced graphene oxide (rGO) sheets were intercalated within the Ag_2 S nanoparticles during the chemical reduction process. The SEM images also showed that Ag_2 S had the shape of nanowires. Further, SEM energy dispersive X-ray (SEM EDX) showed that Ag_2 S-rGO is mainly composed of C, Ag, O, and S. X-ray diffraction analysis manifested a high crystallinity for the nanowire-shaped Ag2S nanoparticles with a d-spacing ranging between 1.0 Å and 5.2 Å. Thermal gravimetric analysis (TGA) showed that rGO enhances the thermal stability of the nanocomposite. Ag_2 S-rGO nanocomposite exhibited strong optical absorption in the UV region. The formed nanocomposite is dispersible in polar and non-polar solvents, qualifying it for solution-based device processing.Keywords: silver sulfide, reduced graphene oxide, nanocomposite, structural properties, optical properties
Procedia PDF Downloads 1008280 A Non-Destructive Estimation Method for Internal Time in Perilla Leaf Using Hyperspectral Data
Authors: Shogo Nagano, Yusuke Tanigaki, Hirokazu Fukuda
Abstract:
Vegetables harvested early in the morning or late in the afternoon are valued in plant production, and so the time of harvest is important. The biological functions known as circadian clocks have a significant effect on this harvest timing. The purpose of this study was to non-destructively estimate the circadian clock and so construct a method for determining a suitable harvest time. We took eight samples of green busil (Perilla frutescens var. crispa) every 4 hours, six times for 1 day and analyzed all samples at the same time. A hyperspectral camera was used to collect spectrum intensities at 141 different wavelengths (350–1050 nm). Calculation of correlations between spectrum intensity of each wavelength and harvest time suggested the suitability of the hyperspectral camera for non-destructive estimation. However, even the highest correlated wavelength had a weak correlation, so we used machine learning to raise the accuracy of estimation and constructed a machine learning model to estimate the internal time of the circadian clock. Artificial neural networks (ANN) were used for machine learning because this is an effective analysis method for large amounts of data. Using the estimation model resulted in an error between estimated and real times of 3 min. The estimations were made in less than 2 hours. Thus, we successfully demonstrated this method of non-destructively estimating internal time.Keywords: artificial neural network (ANN), circadian clock, green busil, hyperspectral camera, non-destructive evaluation
Procedia PDF Downloads 2998279 Enhanced Magnetic Hyperthermic Efficiency of Ferrite Based Nanoparticles
Authors: J. P. Borah, R. D. Raland
Abstract:
Hyperthermia is one of many techniques used destroys cancerous cell. It uses the physical methods to heat certain organ or tissue delivering an adequate temperature in an appropriate period of time, to the entire tumor volume for achieving optimal therapeutic results. Magnetic Metal ferrites nanoparticles (MFe₂O₄ where M = Mn, Zn, Ni, Co, Mg, etc.) are one of the most potential candidates for hyperthermia due to their tunability, biocompatibility, chemical stability and notable ability to mediate high rate of heat induction. However, to obtain the desirable properties for these applications, it is important to optimize their chemical composition, structure and magnetic properties. These properties are mainly sensitive to cation distribution of tetrahedral and octahedral sites. Among the ferrites, zinc ferrite (ZnFe₂O₄) and Manganese ferrite ((MnFe₂O₄) is one of a strong candidate for hyperthermia application because Mn and zinc have a non-magnetic cation and therefore the magnetic property is determined only by the cation distribution of iron, which provides a better platform to manipulate or tailor the properties. In this talk, influence of doping and surfactant towards cation re-distribution leading to an enhancement of magnetic properties of ferrite nanoparticles will be demonstrated. The efficiency of heat generation in association with the enhanced magnetic property is also well discussed in this talk.Keywords: magnetic nanoparticle, hyperthermia, x-ray diffraction, TEM study
Procedia PDF Downloads 1648278 Contributions of Natural and Human Activities to Urban Surface Runoff with Different Hydrological Scenarios (Orléans, France)
Authors: Al-Juhaishi Mohammed, Mikael Motelica-Heino, Fabrice Muller, Audrey Guirimand-Dufour, Christian Défarge
Abstract:
This study aims at improving the urban hydrological cycle of the Orléans agglomeration (France) and understanding the relationship between physical and chemical parameters of urban surface runoff and the hydrological conditions. In particular water quality parameters such as pH, conductivity, total dissolved solids, major dissolved cations and anions, and chemical and biological oxygen demands were monitored for three types of urban water discharges (wastewater treatment plant output (WWTP), storm overflow and stormwater outfall) under two hydrologic scenarii (dry and wet weather). The first results were obtained over a period of five months.Each investigated (Ormes and l’Egoutier) outfall represents an urban runoff source that receives water from runoff roads, gutters, the irrigation of gardens and other sources of flow over the Earth’s surface that drains in its catchments and carries it to the Loire River. In wet weather conditions there is rain water runoff and an additional input from the roof gutters that have entered the stormwater system during rainfall. For the comparison the results La Chilesse is a storm overflow that was selected in our study as a potential source of waste water which is located before the (WWTP).The comparison of the physical-chemical parameters (total dissolved solids, turbidity, pH, conductivity, dissolved organic carbon (DOC), concentration of major cations and anions) together with the chemical oxygen demand (COD) and biological oxygen demand (BOD) helped to characterize sources of runoff waters in the different watersheds. It also helped to highlight the infiltration of wastewater in some stormwater systems that reject directly in the Loire River. The values of the conductivity measured in the outflow of Ormes were always higher than those measured in the other two outlets. The results showed a temporal variation for the Ormes outfall of conductivity from 1465 µS cm-1 in the dry weather flow to 650 µS cm-1 in the wet weather flow and also a spatial variation in the wet weather flow from 650 µS cm-1 in the Ormes outfall to 281 μS cm-1 in L’Egouttier outfall. The ultimate BOD (BOD28) showed a significant decrease in La Corne outfall from 210 mg L-1 in the wet weather flow to 75 mg L-1 in the dry weather flow because of the nutrient load that was transported by the runoff.Keywords: BOD, COD, the Loire River, urban hydrology, urban dry and wet weather discharges, macronutrients
Procedia PDF Downloads 2668277 Formation of ZnS/ZnO Heterojunction for Photocatalytic Hydrogen Evolution Using Partial Oxidation and Chemical Precipitation Synthesis Methods
Authors: Saba Didarataee, Abbas Ali Khodadadi, Yadollah Mortazavi, Fatemeh Mousavi
Abstract:
Photocatalytic water splitting is one of the most attractive alternative methods for hydrogen evolution. A variety of nanoparticle engineering techniques were introduced to improve the activity of semiconductor photocatalysts. Among these methods, heterojunction formation is an appealing method due to its ability to effectively preventing electron-hole recombination and improving photocatalytic activity. Reaching an optimal ratio of the two target semiconductors for the formation of heterojunctions is still an open question. Considering environmental issues as well as the cost and availability, ZnS and ZnO are frequently studied as potential choices. In this study, first, the ZnS nanoparticle was synthesized in a hydrothermal process; the formation of ZnS nanorods with a diameter of 14-30 nm was confirmed by field emission scanning electron microscope (FESEM). Then two different methods, partial oxidation and chemical precipitation were employed to construct ZnS/ZnO core-shell heterojunction. X-ray diffraction (XRD), BET, and diffuse reflectance spectroscopy (DRS) analysis were carried out to determine crystallite phase, surface area, and bandgap of photocatalysts. Furthermore, the temperature of oxidation was specified by a temperature programmed oxidation (TPO) and was fixed at 510℃, at which mild oxidation occurred. The bandgap was calculated by the Kubelka-Munk method and decreased by increasing oxide content from 3.53 (pure ZnS) to 3.18 (pure ZnO). The optimal samples were determined by testing the photocatalytic activity of hydrogen evolution in a quartz photoreactor with side irradiation of UVC lamps with a wavelength of 254 nm. In both procedures, it was observed that the photocatalytic activity of the ZnS/ZnO composite was sensibly higher than the pure ZnS and ZnO, which is attributed to forming a type-II heterostructure. The best ratio of oxide to sulfide was 0.24 and 0.37 in partial oxidation and chemical precipitation, respectively. The highest hydrogen evolution was 1081 µmol/gr.h, gained from partial oxidizing of ZnS nanoparticles at 510℃ for 30 minutes.Keywords: heterostructure, hydrogen, partial oxidation, photocatalyst, water splitting, ZnS
Procedia PDF Downloads 1288276 Impact Location From Instrumented Mouthguard Kinematic Data In Rugby
Authors: Jazim Sohail, Filipe Teixeira-Dias
Abstract:
Mild traumatic brain injury (mTBI) within non-helmeted contact sports is a growing concern due to the serious risk of potential injury. Extensive research is being conducted looking into head kinematics in non-helmeted contact sports utilizing instrumented mouthguards that allow researchers to record accelerations and velocities of the head during and after an impact. This does not, however, allow the location of the impact on the head, and its magnitude and orientation, to be determined. This research proposes and validates two methods to quantify impact locations from instrumented mouthguard kinematic data, one using rigid body dynamics, the other utilizing machine learning. The rigid body dynamics technique focuses on establishing and matching moments from Euler’s and torque equations in order to find the impact location on the head. The methodology is validated with impact data collected from a lab test with the dummy head fitted with an instrumented mouthguard. Additionally, a Hybrid III Dummy head finite element model was utilized to create synthetic kinematic data sets for impacts from varying locations to validate the impact location algorithm. The algorithm calculates accurate impact locations; however, it will require preprocessing of live data, which is currently being done by cross-referencing data timestamps to video footage. The machine learning technique focuses on eliminating the preprocessing aspect by establishing trends within time-series signals from instrumented mouthguards to determine the impact location on the head. An unsupervised learning technique is used to cluster together impacts within similar regions from an entire time-series signal. The kinematic signals established from mouthguards are converted to the frequency domain before using a clustering algorithm to cluster together similar signals within a time series that may span the length of a game. Impacts are clustered within predetermined location bins. The same Hybrid III Dummy finite element model is used to create impacts that closely replicate on-field impacts in order to create synthetic time-series datasets consisting of impacts in varying locations. These time-series data sets are used to validate the machine learning technique. The rigid body dynamics technique provides a good method to establish accurate impact location of impact signals that have already been labeled as true impacts and filtered out of the entire time series. However, the machine learning technique provides a method that can be implemented with long time series signal data but will provide impact location within predetermined regions on the head. Additionally, the machine learning technique can be used to eliminate false impacts captured by sensors saving additional time for data scientists using instrumented mouthguard kinematic data as validating true impacts with video footage would not be required.Keywords: head impacts, impact location, instrumented mouthguard, machine learning, mTBI
Procedia PDF Downloads 2178275 Determination of the Gain in Learning the Free-Fall Motion of Bodies by Applying the Resource of Previous Concepts
Authors: Ricardo Merlo
Abstract:
In this paper, we analyzed the different didactic proposals for teaching about the free fall motion of bodies available online. An important aspect was the interpretation of the direction and sense of the acceleration of gravity and of the falling velocity of a body, which is why we found different applications of the Cartesian reference system used and also different graphical presentations of the velocity as a function of time and of the distance traveled vertically by the body in the period of time that it was dropped from a height h0. In this framework, a survey of previous concepts was applied to a voluntary group of first-year university students of an Engineering degree before and after the development of the class of the subject in question. Then, Hake's index (0.52) was determined, which resulted in an average learning gain from the meaningful use of the reference system and the respective graphs of v=ƒ (t) and h=ƒ (t).Keywords: didactic gain, free–fall, physics teaching, previous knowledge
Procedia PDF Downloads 163