Search results for: neural style transfer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5360

Search results for: neural style transfer

2060 Challenges of Teaching and Learning English Speech Sounds in Five Selected Secondary Schools in Bauchi, Bauchi State, Nigeria

Authors: Mairo Musa Galadima, Phoebe Mshelia

Abstract:

In Nigeria, the national policy of education stipulates that the kindergarten-primary schools and the legislature are to use the three popular Nigerian Languages namely: Hausa, Igbo, and Yoruba. However, the English language seems to be preferred and this calls for this paper. Attempts were made to draw out the challenges faced by learners in understanding English speech sounds and using them to communicate effectively in English; using 5 (five) selected secondary school in Bauchi. It was discovered that challenges abound in the wrong use of stress and intonation, transfer of phonetic features from their first language. Others are inadequately qualified teachers and relevant materials including textbooks. It is recommended that teachers of English should lay more emphasis on the teaching of supra-segmental features and should be encouraged to go for further studies, seminars and refresher courses.

Keywords: stress and intonation, phonetic and challenges, teaching and learning English, secondary schools

Procedia PDF Downloads 352
2059 Visible-Light Induced Photocatalytic Degradation of Dye Molecules over ZnWO4-Bi2WO6 Composite

Authors: Sudarat Issarapanacheewin, Katcharin Wetchakun, Sukon Phanichphant, Wiyong Kangwansupamonkon, Natda Wetchakun

Abstract:

The photocatalytic degradation of Methylene blue (MB) and Rhodamine B (RhB) in the presence of ZnWO4-Bi2WO6 composite under visible light irradiation (λ ≥ 400 nm) were studied in this research. The structural and photophysical properties of ZnWO4-Bi2WO6 composite on the photocatalytic degradation process were investigated. The as-prepared ZnWO4-Bi2WO6 composite photocatalyst exhibits wide absorption in the visible-light region and display superior visible-light-driven photocatalytic activities in degradation of MB and RhB. The enhanced photocatalytic activity was attributed to electron-hole separation with the appropriate band potential and the physicochemical properties of ZnWO4 and Bi2WO6. The main active species for the degradation of organic dyes were investigated to explain the enhancement of photocatalytic performance of ZnWO4-Bi2WO6 composite. The possible photocatalytic degradation pathway of aqueous MB and RhB dyes and charge transfer of ZnWO4-Bi2WO6 composite was proposed.

Keywords: composite, dyes, photocatalytic activity, ZnWO4-Bi2WO6

Procedia PDF Downloads 302
2058 Environmental and Space Travel

Authors: Alimohammad

Abstract:

Man's entry into space is one of the most important results of developments and advances made in information technology. But this human step, like many of his other actions, is not free of danger, as space pollution today has become a major problem for the global community. Paying attention to the issue of preserving the space environment is in the interest of all governments and mankind, and ignoring it can increase the possibility of conflict between countries. What many space powers still do not pay attention to is the freedom to explore and exploit space should be limited by banning pollution of the space environment. Therefore, freedom and prohibition are complementary and should not be considered conflicting concepts. The legal system created by the current space treaties for the effective preservation of the space environment has failed. Customary international law also does not have an effective provision and guarantee of sufficient executions in order to prevent damage to the environment. Considering the responsibility of each generation in the healthy transfer of the environment to the next generation and considering the sustainable development concept, the space environment must also be passed on to future generations in a healthy and undamaged manner. As a result, many environmental policies related to Earth should also be applied to the space environment..

Keywords: law, space, environment, responsibility

Procedia PDF Downloads 85
2057 Modelling of Heating and Evaporation of Biodiesel Fuel Droplets

Authors: Mansour Al Qubeissi, Sergei S. Sazhin, Cyril Crua, Morgan R. Heikal

Abstract:

This paper presents the application of the Discrete Component Model for heating and evaporation to multi-component biodiesel fuel droplets in direct injection internal combustion engines. This model takes into account the effects of temperature gradient, recirculation and species diffusion inside droplets. A distinctive feature of the model used in the analysis is that it is based on the analytical solutions to the temperature and species diffusion equations inside the droplets. Nineteen types of biodiesel fuels are considered. It is shown that a simplistic model, based on the approximation of biodiesel fuel by a single component or ignoring the diffusion of components of biodiesel fuel, leads to noticeable errors in predicted droplet evaporation time and time evolution of droplet surface temperature and radius.

Keywords: heat/mass transfer, biodiesel, multi-component fuel, droplet

Procedia PDF Downloads 567
2056 A Deep Learning-Based Pedestrian Trajectory Prediction Algorithm

Authors: Haozhe Xiang

Abstract:

With the rise of the Internet of Things era, intelligent products are gradually integrating into people's lives. Pedestrian trajectory prediction has become a key issue, which is crucial for the motion path planning of intelligent agents such as autonomous vehicles, robots, and drones. In the current technological context, deep learning technology is becoming increasingly sophisticated and gradually replacing traditional models. The pedestrian trajectory prediction algorithm combining neural networks and attention mechanisms has significantly improved prediction accuracy. Based on in-depth research on deep learning and pedestrian trajectory prediction algorithms, this article focuses on physical environment modeling and learning of historical trajectory time dependence. At the same time, social interaction between pedestrians and scene interaction between pedestrians and the environment were handled. An improved pedestrian trajectory prediction algorithm is proposed by analyzing the existing model architecture. With the help of these improvements, acceptable predicted trajectories were successfully obtained. Experiments on public datasets have demonstrated the algorithm's effectiveness and achieved acceptable results.

Keywords: deep learning, graph convolutional network, attention mechanism, LSTM

Procedia PDF Downloads 70
2055 Music of a Film City: Interwar Europe in Los Angeles, 1930s

Authors: Alexander Rosenblatt

Abstract:

The musical culture of the city of Los Angeles, as it is seen today, developed not without the influence of outstanding musicians who came from Europe during the period between the world wars. The combination of European modernist ideas with American musical culture, which differed in many ways from European musical culture, led to unique results. During the 1920s and even more so in the 1930s, members of the Austrian-German artistic intelligentsia, particularly those of Jewish origin who felt insecure in their homeland, began to look for a safer place. The United States has become such a place for many, and many of them chose the second largest metropolis—Los Angeles. The most notable figure in this group was the modernist composer Arnold Schoenberg. Other famous musicians were conductors Otto Klemperer and Bruno Walter. The study focused on how these people acclimated to a city whose culture and business revolved around film production; what place the conductors Klemperer and Walter occupied in the city, state, and country; how Schoenberg, whose musical style was little understood by the American public, was able to realize himself; what path he took when he was accepted to two universities as a professor of counterpoint and composition; and whether he revised his own views on the development of Western music. Another aspect was the study of how the composer’s memory was preserved in the universities where he taught. The study is based primarily on materials found in four libraries of two universities located in Los Angeles, UCLA and USC, during my tenure as a visiting scholar at USC Thornton School of Music (August 2023), to be completed during my upcoming visit there in August-September 2024, as well as on interviews with people active in efforts to keep Schoenberg’s memory alive on the USC Campus.

Keywords: los angeles, filmmaking, immigrant musicians, arnold schoenberg, otto klemperer, bruno walter

Procedia PDF Downloads 26
2054 Impact of Ethiopia's Productive Safety Net Program on Household Dietary Diversity and Child Nutrition in Rural Ethiopia

Authors: Tagel Gebrehiwot, Carolina Castilla

Abstract:

Food insecurity and child malnutrition are among the most critical issues in Ethiopia. Accordingly, different reform programs have been carried to improve household food security. The Food Security Program (FSP) (among others) was introduced to combat the persistent food insecurity problem in the country. The FSP combines a safety net component called the Productive Safety Net Program (PSNP) started in 2005. The goal of PSNP is to offer multi-annual transfers, such as food, cash or a combination of both to chronically food insecure households to break the cycle of food aid. Food or cash transfers are the main elements of PSNP. The case for cash transfers builds on the Sen’s analysis of ‘entitlement to food’, where he argues that restoring access to food by improving demand is a more effective and sustainable response to food insecurity than food aid. Cash-based schemes offer a greater choice of use of the transfer and can allow a greater diversity of food choice. It has been proven that dietary diversity is positively associated with the key pillars of food security. Thus, dietary diversity is considered as a measure of household’s capacity to access a variety of food groups. Studies of dietary diversity among Ethiopian rural households are somewhat rare and there is still a dearth of evidence on the impact of PSNP on household dietary diversity. In this paper, we examine the impact of the Ethiopia’s PSNP on household dietary diversity and child nutrition using panel household surveys. We employed different methodologies for identification. We exploit the exogenous increase in kebeles’ PSNP budget to identify the effect of the change in the amount of money households received in transfers between 2012 and 2014 on the change in dietary diversity. We use three different approaches to identify this effect: two-stage least squares, reduced form IV, and generalized propensity score matching using a continuous treatment. The results indicate the increase in PSNP transfers between 2012 and 2014 had no effect on household dietary diversity. Estimates for different household dietary indicators reveal that the effect of the change in the cash transfer received by the household is statistically and economically insignificant. This finding is robust to different identification strategies and the inclusion of control variables that determine eligibility to become a PSNP beneficiary. To identify the effect of PSNP participation on children height-for-age and stunting we use a difference-in-difference approach. We use children between 2 and 5 in 2012 as a baseline because by then they have achieved long-term failure to grow. The treatment group comprises children ages 2 to 5 in 2014 in PSNP participant households. While changes in height-for-age take time, two years of additional transfers among children who were not born or under the age of 2-3 in 2012 have the potential to make a considerable impact on reducing the prevalence of stunting. The results indicate that participation in PSNP had no effect on child nutrition measured as height-for-age or probability of beings stunted, suggesting that PSNP should be designed in a more nutrition-sensitive way.

Keywords: continuous treatment, dietary diversity, impact, nutrition security

Procedia PDF Downloads 335
2053 Solving the Set Covering Problem Using the Binary Cat Swarm Optimization Metaheuristic

Authors: Broderick Crawford, Ricardo Soto, Natalia Berrios, Eduardo Olguin

Abstract:

In this paper, we present a binary cat swarm optimization for solving the Set covering problem. The set covering problem is a well-known NP-hard problem with many practical applications, including those involving scheduling, production planning and location problems. Binary cat swarm optimization is a recent swarm metaheuristic technique based on the behavior of discrete cats. Domestic cats show the ability to hunt and are curious about moving objects. The cats have two modes of behavior: seeking mode and tracing mode. We illustrate this approach with 65 instances of the problem from the OR-Library. Moreover, we solve this problem with 40 new binarization techniques and we select the technical with the best results obtained. Finally, we make a comparison between results obtained in previous studies and the new binarization technique, that is, with roulette wheel as transfer function and V3 as discretization technique.

Keywords: binary cat swarm optimization, binarization methods, metaheuristic, set covering problem

Procedia PDF Downloads 396
2052 Impact of Transgenic Adipose Derived Stem Cells in the Healing of Spinal Cord Injury of Dogs

Authors: Imdad Ullah Khan, Yongseok Yoon, Kyeung Uk Choi, Kwang Rae Jo, Namyul Kim, Eunbee Lee, Wan Hee Kim, Oh-Kyeong Kweon

Abstract:

The primary spinal cord injury (SCI) causes mechanical damage to the neurons and blood vessels. It leads to secondary SCI, which activates multiple pathological pathways, which expand neuronal damage at the injury site. It is characterized by vascular disruption, ischemia, excitotoxicity, oxidation, inflammation, and apoptotic cell death. It causes nerve demyelination and disruption of axons, which perpetuate a loss of impulse conduction through the injured spinal cord. It also leads to the production of myelin inhibitory molecules, which with a concomitant formation of an astroglial scar, impede axonal regeneration. The pivotal role regarding the neuronal necrosis is played by oxidation and inflammation. During an early stage of spinal cord injury, there occurs an abundant expression of reactive oxygen species (ROS) due to defective mitochondrial metabolism and abundant migration of phagocytes (macrophages, neutrophils). ROS cause lipid peroxidation of the cell membrane, and cell death. Abundant migration of neutrophils, macrophages, and lymphocytes collectively produce pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1beta (IL-1β), matrix metalloproteinase, superoxide dismutase, and myeloperoxidases which synergize neuronal apoptosis. Therefore, it is crucial to control inflammation and oxidation injury to minimize the nerve cell death during secondary spinal cord injury. Therefore, in response to oxidation and inflammation, heme oxygenase-1 (HO-1) is induced by the resident cells to ameliorate the milieu. In the meanwhile, neurotrophic factors are induced to promote neuroregeneration. However, it seems that anti-stress enzyme (HO-1) and neurotrophic factor (BDNF) do not significantly combat the pathological events during secondary spinal cord injury. Therefore, optimum healing can be induced if anti-inflammatory and neurotrophic factors are administered in a higher amount through an exogenous source. During the first experiment, the inflammation and neuroregeneration were selectively targeted. HO-1 expressing MSCs (HO-1 MSCs) and BDNF expressing MSCs (BDNF MSC) were co-transplanted in one group (combination group) of dogs with subacute spinal cord injury to selectively control the expression of inflammatory cytokines by HO-1 and induce neuroregeneration by BDNF. We compared the combination group with the HO-1 MSCs group, BDNF MSCs group, and GFP MSCs group. We found that the combination group showed significant improvement in functional recovery. It showed increased expression of neural markers and growth-associated proteins (GAP-43) than in other groups, which depicts enhanced neuroregeneration/neural sparing due to reduced expression of pro-inflammatory cytokines such as TNF-alpha, IL-6 and COX-2; and increased expression of anti-inflammatory markers such as IL-10 and HO-1. Histopathological study revealed reduced intra-parenchymal fibrosis in the injured spinal cord segment in the combination group than in other groups. Thus it was concluded that selectively targeting the inflammation and neuronal growth with the combined use of HO-1 MSCs and BDNF MSCs more favorably promote healing of the SCI. HO-1 MSCs play a role in controlling the inflammation, which favors the BDNF induced neuroregeneration at the injured spinal cord segment of dogs.

Keywords: HO-1 MSCs, BDNF MSCs, neuroregeneration, inflammation, anti-inflammation, spinal cord injury, dogs

Procedia PDF Downloads 118
2051 SEM Image Classification Using CNN Architectures

Authors: Güzi̇n Ti̇rkeş, Özge Teki̇n, Kerem Kurtuluş, Y. Yekta Yurtseven, Murat Baran

Abstract:

A scanning electron microscope (SEM) is a type of electron microscope mainly used in nanoscience and nanotechnology areas. Automatic image recognition and classification are among the general areas of application concerning SEM. In line with these usages, the present paper proposes a deep learning algorithm that classifies SEM images into nine categories by means of an online application to simplify the process. The NFFA-EUROPE - 100% SEM data set, containing approximately 21,000 images, was used to train and test the algorithm at 80% and 20%, respectively. Validation was carried out using a separate data set obtained from the Middle East Technical University (METU) in Turkey. To increase the accuracy in the results, the Inception ResNet-V2 model was used in view of the Fine-Tuning approach. By using a confusion matrix, it was observed that the coated-surface category has a negative effect on the accuracy of the results since it contains other categories in the data set, thereby confusing the model when detecting category-specific patterns. For this reason, the coated-surface category was removed from the train data set, hence increasing accuracy by up to 96.5%.

Keywords: convolutional neural networks, deep learning, image classification, scanning electron microscope

Procedia PDF Downloads 125
2050 Radiology Information System’s Mechanisms: HL7-MHS & HL7/DICOM Translation

Authors: Kulwinder Singh Mann

Abstract:

The innovative features of information system, known as Radiology Information System (RIS), for electronic medical records has shown a good impact in the hospital. The objective is to help and make their work easier; such as for a physician to access the patient’s data and for a patient to check their bill transparently. The interoperability of RIS with the other intra-hospital information systems it interacts with, dealing with the compatibility and open architecture issues, are accomplished by two novel mechanisms. The first one is the particular message handling system that is applied for the exchange of information, according to the Health Level Seven (HL7) protocol’s specifications and serves the transfer of medical and administrative data among the RIS applications and data store unit. The second one implements the translation of information between the formats that HL7 and Digital Imaging and Communication in Medicine (DICOM) protocols specify, providing the communication between RIS and Picture and Archive Communication System (PACS) which is used for the increasing incorporation of modern medical imaging equipment.

Keywords: RIS, PACS, HIS, HL7, DICOM, messaging service, interoperability, digital images

Procedia PDF Downloads 300
2049 Assessing Sustainability Dimensions of Transportation as a Critical Infrastructure: Jordan as a Case Study

Authors: Malak M. Shatnawi

Abstract:

Infrastructure is the fundamental facility that plays an important part in socio-economic development for modern societies, if such sector is well planned, managed by decision makers in a way that is compatible with the population growth, safety, and national security needs; it will enrich progress, prosperity, awareness, social and economic welfare for any country. Infrastructure is the most important aspect of life because it can provide materials, products, and services that will improve and facilitate living conditions and maintain sustainability at the same time, and in order to study critical infrastructure, in general, we must think sustainability. Otherwise there will be a significant gap. The planning processes for sustainability include urban infrastructure and public transportation are considered the most important sectors for economic development for both developed and developing countries as they are linked to the civilizational and urban development, meanwhile, choosing the appropriate transportation mode that will provide a good level of service, and increase the satisfaction of the potential users is a difficult task. This research paper tries to assess where is Jordan located vs. each transportation sustainability dimensions in aspects related to social, economic and environmental dimensions based on (Zietsman et al. 2006) adopted model for sustainability transportation infrastructure. Measures of performance indicators for each dimensional goal were traced and supported with needed data, figures and statistical findings. The study uses analytical, descriptive style and methodology based on different references and previous studies from secondary data sources to support the case. Recommendations for enhancing sustainability were concluded, and future reform directions were proposed which can be applied to Jordan and generalized for other developing countries with similar circumstances.

Keywords: infrastructure transportation sustainability, economic, social, environmental

Procedia PDF Downloads 249
2048 Graphene Supported Nano Cerium Oxides Hybrid as an Electrocatalyst for Oxygen Reduction Reactions

Authors: Siba Soren, Purnendu Parhi

Abstract:

Today, the world is facing a severe challenge due to depletion of traditional fossil fuels. Scientists across the globe are working for a solution that involves a dramatic shift to practical and environmentally sustainable energy sources. High-capacity energy systems, such as metal-air batteries, fuel cells, are highly desirable to meet the urgent requirement of sustainable energies. Among the fuel cells, Direct methanol fuel cells (DMFCs) are recognized as an ideal power source for mobile applications and have received considerable attention in recent past. In this advanced electrochemical energy conversion technologies, Oxygen Reduction Reaction (ORR) is of utmost importance. However, the poor kinetics of cathodic ORR in DMFCs significantly hampers their possibilities of commercialization. The oxygen is reduced in alkaline medium either through a 4-electron (equation i) or a 2-electron (equation ii) reduction pathway at the cathode ((i) O₂ + 2H₂O + 4e⁻ → 4OH⁻, (ii) O₂ + H₂O + 2e⁻ → OH⁻ + HO₂⁻ ). Due to sluggish ORR kinetics the ability to control the reduction of molecular oxygen electrocatalytically is still limited. The electrocatalytic ORR starts with adsorption of O₂ on the electrode surface followed by O–O bond activation/cleavage and oxide removal. The reaction further involves transfer of 4 electrons and 4 protons. The sluggish kinetics of ORR, on the one hand, demands high loading of precious metal-containing catalysts (e.g., Pt), which unfavorably increases the cost of these electrochemical energy conversion devices. Therefore, synthesis of active electrocatalyst with an increase in ORR performance is need of the hour. In the recent literature, there are many reports on transition metal oxide (TMO) based ORR catalysts for their high activity TMOs are also having drawbacks like low electrical conductivity, which seriously affects the electron transfer process during ORR. It was found that 2D graphene layer is having high electrical conductivity, large surface area, and excellent chemical stability, appeared to be an ultimate choice as support material to enhance the catalytic performance of bare metal oxide. g-C₃N₄ is also another candidate that has been used by the researcher for improving the ORR performance of metal oxides. This material provides more active reaction sites than other N containing carbon materials. Rare earth oxide like CeO₂ is also a good candidate for studying the ORR activity as the metal oxide not only possess unique electronic properties but also possess catalytically active sites. Here we will discuss the ORR performance (in alkaline medium) of N-rGO/C₃N₄ supported nano Cerium Oxides hybrid synthesized by microwave assisted Solvothermal method. These materials exhibit superior electrochemical stability and methanol tolerance capability to that of commercial Pt/C.

Keywords: oxygen reduction reaction, electrocatalyst, cerium oxide, graphene

Procedia PDF Downloads 194
2047 Rheological Characteristics of Ice Slurries Based on Propylene- and Ethylene-Glycol at High Ice Fractions

Authors: Senda Trabelsi, Sébastien Poncet, Michel Poirier

Abstract:

Ice slurries are considered as a promising phase-changing secondary fluids for air-conditioning, packaging or cooling industrial processes. An experimental study has been here carried out to measure the rheological characteristics of ice slurries. Ice slurries consist in a solid phase (flake ice crystals) and a liquid phase. The later is composed of a mixture of liquid water and an additive being here either (1) Propylene-Glycol (PG) or (2) Ethylene-Glycol (EG) used to lower the freezing point of water. Concentrations of 5%, 14% and 24% of both additives are investigated with ice mass fractions ranging from 5% to 85%. The rheological measurements are carried out using a Discovery HR-2 vane-concentric cylinder with four full-length blades. The experimental results show that the behavior of ice slurries is generally non-Newtonian with shear-thinning or shear-thickening behaviors depending on the experimental conditions. In order to determine the consistency and the flow index, the Herschel-Bulkley model is used to describe the behavior of ice slurries. The present results are finally validated against an experimental database found in the literature and the predictions of an Artificial Neural Network model.

Keywords: ice slurry, propylene-glycol, ethylene-glycol, rheology

Procedia PDF Downloads 262
2046 Generating Insights from Data Using a Hybrid Approach

Authors: Allmin Susaiyah, Aki Härmä, Milan Petković

Abstract:

Automatic generation of insights from data using insight mining systems (IMS) is useful in many applications, such as personal health tracking, patient monitoring, and business process management. Existing IMS face challenges in controlling insight extraction, scaling to large databases, and generalising to unseen domains. In this work, we propose a hybrid approach consisting of rule-based and neural components for generating insights from data while overcoming the aforementioned challenges. Firstly, a rule-based data 2CNL component is used to extract statistically significant insights from data and represent them in a controlled natural language (CNL). Secondly, a BERTSum-based CNL2NL component is used to convert these CNLs into natural language texts. We improve the model using task-specific and domain-specific fine-tuning. Our approach has been evaluated using statistical techniques and standard evaluation metrics. We overcame the aforementioned challenges and observed significant improvement with domain-specific fine-tuning.

Keywords: data mining, insight mining, natural language generation, pre-trained language models

Procedia PDF Downloads 119
2045 Frequency Recognition Models for Steady State Visual Evoked Potential Based Brain Computer Interfaces (BCIs)

Authors: Zeki Oralhan, Mahmut Tokmakçı

Abstract:

SSVEP based brain computer interface (BCI) systems have been preferred, because of high information transfer rate (ITR) and practical use. ITR is the parameter of BCI overall performance. For high ITR value, one of specification BCI system is that has high accuracy. In this study, we investigated to recognize SSVEP with shorter time and lower error rate. In the experiment, there were 8 flickers on light crystal display (LCD). Participants gazed to flicker which had 12 Hz frequency and 50% duty cycle ratio on the LCD during 10 seconds. During the experiment, EEG signals were acquired via EEG device. The EEG data was filtered in preprocessing session. After that Canonical Correlation Analysis (CCA), Multiset CCA (MsetCCA), phase constrained CCA (PCCA), and Multiway CCA (MwayCCA) methods were applied on data. The highest average accuracy value was reached when MsetCCA was applied.

Keywords: brain computer interface, canonical correlation analysis, human computer interaction, SSVEP

Procedia PDF Downloads 266
2044 A New Method to Reduce 5G Application Layer Payload Size

Authors: Gui Yang Wu, Bo Wang, Xin Wang

Abstract:

Nowadays, 5G service-based interface architecture uses text-based payload like JSON to transfer business data between network functions, which has obvious advantages as internet services but causes unnecessarily larger traffic. In this paper, a new 5G application payload size reduction method is presented to provides the mechanism to negotiate about new capability between network functions when network communication starts up and how 5G application data are reduced according to negotiated information with peer network function. Without losing the advantages of 5G text-based payload, this method demonstrates an excellent result on application payload size reduction and does not increase the usage quota of computing resource. Implementation of this method does not impact any standards or specifications and not change any encoding or decoding functionality too. In a real 5G network, this method will contribute to network efficiency and eventually save considerable computing resources.

Keywords: 5G, JSON, payload size, service-based interface

Procedia PDF Downloads 181
2043 Application of Support Vector Machines in Forecasting Non-Residential

Authors: Wiwat Kittinaraporn, Napat Harnpornchai, Sutja Boonyachut

Abstract:

This paper deals with the application of a novel neural network technique, so-called Support Vector Machine (SVM). The objective of this study is to explore the variable and parameter of forecasting factors in the construction industry to build up forecasting model for construction quantity in Thailand. The scope of the research is to study the non-residential construction quantity in Thailand. There are 44 sets of yearly data available, ranging from 1965 to 2009. The correlation between economic indicators and construction demand with the lag of one year was developed by Apichat Buakla. The selected variables are used to develop SVM models to forecast the non-residential construction quantity in Thailand. The parameters are selected by using ten-fold cross-validation method. The results are indicated in term of Mean Absolute Percentage Error (MAPE). The MAPE value for the non-residential construction quantity predicted by Epsilon-SVR in corporation with Radial Basis Function (RBF) of kernel function type is 5.90. Analysis of the experimental results show that the support vector machine modelling technique can be applied to forecast construction quantity time series which is useful for decision planning and management purpose.

Keywords: forecasting, non-residential, construction, support vector machines

Procedia PDF Downloads 434
2042 Research on the Aesthetic Characteristics of Calligraphy Art Under The Cross-Cultural Background Based on Eye Tracking

Authors: Liu Yang

Abstract:

Calligraphy has a unique aesthetic value in Chinese traditional culture. Calligraphy reflects the physical beauty and the dynamic beauty of things through the structure of writing and the order of strokes to standardize the style of writing. In recent years, Chinese researchers have carried out research on the appreciation of calligraphy works from the perspective of psychology, such as how Chinese people appreciate the beauty of stippled lines, the beauty of virtual and real, and the beauty of the composition. However, there is currently no domestic research on how foreigners appreciate Chinese calligraphy. People's appreciation of calligraphy is mainly in the form of visual perception, and psychologists have been working on the use of eye trackers to record eye tracking data to explore the relationship between eye tracking and psychological activities. The purpose of this experimental study is to use eye tracking recorders to analyze the eye gaze trajectories of college students with different cultural backgrounds when they appreciate the same calligraphy work to reveal the differences in cognitive processing with different cultural backgrounds. It was found that Chinese students perceived calligraphy as words when viewing calligraphy works, so they first noticed fonts with easily recognizable glyphs, and the overall viewed time was short. Foreign students perceived calligraphy works as graphics, and they first noticed novel and abstract fonts, and the overall viewing time is longer. The understanding of calligraphy content has a certain influence on the appreciation of calligraphy works by foreign students. It is shown that when foreign students who understand the content of calligraphy works. The eye tracking path is more consistent with the calligraphy writing path, and it helps to develop associations with calligraphy works to better understand the connotation of calligraphy works. This result helps us understand the impact of cultural background differences on calligraphy appreciation and helps us to take more effective strategies to help foreign audiences understand Chinese calligraphy art.

Keywords: Chinese calligraphy, eye-tracking, cross-cultural, cultural communication

Procedia PDF Downloads 107
2041 E-Learning Recommender System Based on Collaborative Filtering and Ontology

Authors: John Tarus, Zhendong Niu, Bakhti Khadidja

Abstract:

In recent years, e-learning recommender systems has attracted great attention as a solution towards addressing the problem of information overload in e-learning environments and providing relevant recommendations to online learners. E-learning recommenders continue to play an increasing educational role in aiding learners to find appropriate learning materials to support the achievement of their learning goals. Although general recommender systems have recorded significant success in solving the problem of information overload in e-commerce domains and providing accurate recommendations, e-learning recommender systems on the other hand still face some issues arising from differences in learner characteristics such as learning style, skill level and study level. Conventional recommendation techniques such as collaborative filtering and content-based deal with only two types of entities namely users and items with their ratings. These conventional recommender systems do not take into account the learner characteristics in their recommendation process. Therefore, conventional recommendation techniques cannot make accurate and personalized recommendations in e-learning environment. In this paper, we propose a recommendation technique combining collaborative filtering and ontology to recommend personalized learning materials to online learners. Ontology is used to incorporate the learner characteristics into the recommendation process alongside the ratings while collaborate filtering predicts ratings and generate recommendations. Furthermore, ontological knowledge is used by the recommender system at the initial stages in the absence of ratings to alleviate the cold-start problem. Evaluation results show that our proposed recommendation technique outperforms collaborative filtering on its own in terms of personalization and recommendation accuracy.

Keywords: collaborative filtering, e-learning, ontology, recommender system

Procedia PDF Downloads 380
2040 Square Wave Anodic Stripping Voltammetry of Copper (II) at the Tetracarbonylmolybdenum(0) MWCNT Paste Electrode

Authors: Illyas Isa, Mohamad Idris Saidin, Mustaffa Ahmad, Norhayati Hashim

Abstract:

A highly selective and sensitive electrode for determination of trace amounts of Cu (II) using square wave anodic stripping voltammetry (SWASV) was proposed. The electrode was made of the paste of multiwall carbon nanotubes (MWCNT) and 2,6–diacetylpyridine-di-(1R)–(-)–fenchone diazine tetracarbonylmolybdenum(0) at 100:5 (w/w). Under optimal conditions the electrode showed a linear relationship with concentration in the range of 1.0 × 10–10 to 1.0 × 10– 6 M Cu (II) and limit of detection 8.0 × 10–11 M Cu (II). The relative standard deviation (n = 5) of response to 1.0 × 10–6 M Cu(II) was 0.036. The interferences of cations such as Ni(II), Mg(II), Cd(II), Co(II), Hg(II), and Zn(II) (in 10 and 100-folds concentration) are negligible except from Pb (II). Electrochemical impedance spectroscopy (EIS) showed that the charge transfer at the electrode-solution interface was favorable. Result of analysis of Cu(II) in several water samples agreed well with those obtained by inductively coupled plasma-optical emission spectrometry (ICP-OES). The proposed electrode was then recommended as an alternative to spectroscopic technique in analyzing Cu (II).

Keywords: chemically modified electrode, Cu(II), Square wave anodic stripping voltammetry, tetracarbonylmolybdenum(0)

Procedia PDF Downloads 262
2039 A Deep Learning Based Method for Faster 3D Structural Topology Optimization

Authors: Arya Prakash Padhi, Anupam Chakrabarti, Rajib Chowdhury

Abstract:

Topology or layout optimization often gives better performing economic structures and is very helpful in the conceptual design phase. But traditionally it is being done in finite element-based optimization schemes which, although gives a good result, is very time-consuming especially in 3D structures. Among other alternatives machine learning, especially deep learning-based methods, have a very good potential in resolving this computational issue. Here convolutional neural network (3D-CNN) based variational auto encoder (VAE) is trained using a dataset generated from commercially available topology optimization code ABAQUS Tosca using solid isotropic material with penalization (SIMP) method for compliance minimization. The encoded data in latent space is then fed to a 3D generative adversarial network (3D-GAN) to generate the outcome in 64x64x64 size. Here the network consists of 3D volumetric CNN with rectified linear unit (ReLU) activation in between and sigmoid activation in the end. The proposed network is seen to provide almost optimal results with significantly reduced computational time, as there is no iteration involved.

Keywords: 3D generative adversarial network, deep learning, structural topology optimization, variational auto encoder

Procedia PDF Downloads 174
2038 Singular Value Decomposition Based Optimisation of Design Parameters of a Gearbox

Authors: Mehmet Bozca

Abstract:

Singular value decomposition based optimisation of geometric design parameters of a 5-speed gearbox is studied. During the optimisation, a four-degree-of freedom torsional vibration model of the pinion gear-wheel gear system is obtained and the minimum singular value of the transfer matrix is considered as the objective functions. The computational cost of the associated singular value problems is quite low for the objective function, because it is only necessary to compute the largest and smallest singular values (µmax and µmin) that can be achieved by using selective eigenvalue solvers; the other singular values are not needed. The design parameters are optimised under several constraints that include bending stress, contact stress and constant distance between gear centres. Thus, by optimising the geometric parameters of the gearbox such as, the module, number of teeth and face width it is possible to obtain a light-weight-gearbox structure. It is concluded that the all optimised geometric design parameters also satisfy all constraints.

Keywords: Singular value, optimisation, gearbox, torsional vibration

Procedia PDF Downloads 360
2037 Recognition of Gene Names from Gene Pathway Figures Using Siamese Network

Authors: Muhammad Azam, Micheal Olaolu Arowolo, Fei He, Mihail Popescu, Dong Xu

Abstract:

The number of biological papers is growing quickly, which means that the number of biological pathway figures in those papers is also increasing quickly. Each pathway figure shows extensive biological information, like the names of genes and how the genes are related. However, manually annotating pathway figures takes a lot of time and work. Even though using advanced image understanding models could speed up the process of curation, these models still need to be made more accurate. To improve gene name recognition from pathway figures, we applied a Siamese network to map image segments to a library of pictures containing known genes in a similar way to person recognition from photos in many photo applications. We used a triple loss function and a triplet spatial pyramid pooling network by combining the triplet convolution neural network and the spatial pyramid pooling (TSPP-Net). We compared VGG19 and VGG16 as the Siamese network model. VGG16 achieved better performance with an accuracy of 93%, which is much higher than OCR results.

Keywords: biological pathway, image understanding, gene name recognition, object detection, Siamese network, VGG

Procedia PDF Downloads 291
2036 Urban Stratification as a Basis for Analyzing Political Instability: Evidence from Syrian Cities

Authors: Munqeth Othman Agha

Abstract:

The historical formation of urban centres in the eastern Arab world was shaped by rapid urbanization and sudden transformation from the age of the pre-industrial to a post-industrial economy, coupled with uneven development, informal urban expansion, and constant surges in unemployment and poverty rates. The city was stratified accordingly as overlapping layers of division and inequality that have been built on top of each other, creating complex horizontal and vertical divisions based on economic, social, political, and ethno-sectarian basis. This has been further exacerbated during the neoliberal era, which transferred the city into a sort of dual city that is inhabited by heterogeneous and often antagonistic social groups. Economic deprivation combined with a growing sense of marginalization and inequality across the city planted the seeds of political instability, outbreaking in 2011. Unlike other popular uprisings that occupy central squares, as in Egypt and Tunisia, the Syrian uprising in 2011 took place mainly within inner streets and neighborhood squares, mobilizing primarily on more or less upon the lines of stratification. This has emphasized the role of micro-urban and social settings in shaping mobilization and resistance tactics, which necessitates us to understand the way the city was stratified and place it at the center of the city-conflict nexus analysis. This research aims to understand to what extent pre-conflict urban stratification lines played a role in determining the different trajectories of three cities’ neighborhoods (Homs, Dara’a and Deir-ez-Zor). The main argument of the paper is that the way the Syrian city has been stratified creates various social groups within the city who have enjoyed different levels of accessibility to life chances, material resources and social statuses. This determines their relationship with other social groups in the city and, more importantly, their relationship with the state. The advent of a political opportunity will be depicted differently across the city’s different social groups according to their perceived interests and threats, which consequently leads to either political mobilization or demobilization. Several factors, including the type of social structures, built environment, and state response, determine the ability of social actors to transfer the repertoire of contention to collective action or transfer from social actors to political actors. The research uses urban stratification lines as the basis for understanding the different patterns of political upheavals in urban areas while explaining why neighborhoods with different social and urban environment settings had different abilities and capacities to mobilize, resist state repression and then descend into a military conflict. It particularly traces the transformation from social groups to social actors and political actors by applying the Explaining-outcome Process-Tracing method to depict the causal mechanisms that led to including or excluding different neighborhoods from each stage of the uprising, namely mobilization (M1), response (M2), and control (M3).

Keywords: urban stratification, syrian conflict, social movement, process tracing, divided city

Procedia PDF Downloads 73
2035 Rationalizing the Utilization of Interactive Engagement Strategies in Teaching Specialized Science Courses of STEM and GA Strands in the Academic Track of Philippine Senior High School Curriculum

Authors: Raul G. Angeles

Abstract:

The Philippine government instituted major reforms in its educational system. The Department of Education pushes the K to 12 program that makes kindergarten mandatory and adds two years of senior high school to the country's basic education. In essence, the students’ stay in basic education particularly those who are supposedly going to college is extended. The majority of the students expressed that they will be taking the Academic Track of the Senior High School curriculum specifically the Science, Technology, Engineering and Mathematics (STEM) and General Academic (GA) strands. Almost certainly, instruction should match the students' styles and thus through this descriptive study a city survey was conducted to explore the teaching strategies preferences of junior high school students and teachers who will be promoted to senior high school during the Academic Year 2016-2017. This study was conducted in selected public and private secondary schools in Metro Manila. Questionnaires were distributed to students and teachers; and series of follow-up interviews were also carried out to generate additional information. Preferences of students are centered on employing innovations such as technology, cooperative and problem-based learning. While the students will still be covered by basic education their interests in science are sparking to a point where the usual teaching styles may no longer work to them and for that cause, altering the teaching methods is recommended to create a teacher-student style matching. Other effective strategies must likewise be implemented.

Keywords: curriculum development, effective teaching strategies, problem-based learning, senior high school, science education, technology

Procedia PDF Downloads 259
2034 Synthesis of NiNW/ Cellulose Nano Hybrid via Liquid-Phase Reduction

Authors: Siti Rahmah Shamsuri, Eiichiro Matsubara, Shohei Shiomi

Abstract:

The 1D nanomaterial is far surpassed the 0D nanomaterial. It does not just offer most of the benefit of the 0D nanomaterial such as the large surface area, a great number of active site and an efficient interfacial charge transfer but also can assemble into free-standing and flexible electrode due to their high aspect ratio. Thus, it is essential to develop a simple and ease synthesis of this 1D nanomaterial for the practical application. Here, nickel nanowire/cellulose hybrid has been successfully fabricated via a simple liquid-phase method with the assist of the magnetic field. A finer nickel nanowire was heterogeneously nucleated on the surface of the cellulose fiber, which demonstrated the effect of the hydroxyl group on the cellulose structure. The result of the nickel nanowire size was found to vary from 66-114 nm. A detailed discussion on the mechanism of the nickel nanowire/ cellulose hybrid formation is also shown in this paper.

Keywords: cellulose nanofiber, liquid-phase reduction, metal nanowire, nano hybrid material

Procedia PDF Downloads 340
2033 Swirling Flows with Heat Transfer in a Cylindrical under Axial Magnetic Field

Authors: B. Mahfoud, R. Harouz

Abstract:

The present work examine numerically the effect of axial magnetic field on mixed convection through a cylindrical cavity, filled with a liquid metal and having a rotating top and bottom disks. Effects of Richardson number (Ri = 0, 0.5, 1, and 2) and Hartman number (Ha = 0, 5, 10, and 20) on temperature and flow fields were analyzed. The basic state of this system is steady and axisymmetric, when the counter-rotation is sufficiently large, producing a free shear layer. This shear layer is unstable and different complex flows appear successively: steady states with an azimuthal wavenumber of 1; travelling waves and steady states with an azimuthal wavenumber of 2. Mixed modes and azimuthal wavenumber of 3 are also found with increasing Hartmann number. The stability diagram (Recr-Ha) corresponding to the axisymmetric-three-dimensional transition for increasing values of the axial magnetic field is obtained.

Keywords: axisymmetric, counter-rotating, instabilities, magnetohydrodynamic, magnetic field, wavenumber

Procedia PDF Downloads 548
2032 Development of an Online Raw-Vegan Eating Program to Reduce Sugar Intake

Authors: Sara D. Garduno-Diaz, Lorena Loriato

Abstract:

Food selection is one of the main modifiable risk factors for the avoidance of several detrimental health conditions. Excessive and regular sugar intake has been identified as highly unfavorable, yet a highly occurring practice. A proposed approach to modify this eating practice is the online program developed here. The program targets a modification of mindset and lifestyle habits around food, through a four week raw-vegan guided eating program. While the focus of the program is to set up sustainable changes in sugar intake reduction, it also aims to promote a plant-based eating style. Three pilot sessions have been run with participants from seven different countries. Participants are guided through the program via a combination of daily e-mails, a 24-hour support platform, and by-weekly remote live sessions. Meal preparation techniques, as well as cooking instructions, are provided, following set menus developed by a team of professional chefs and nutritionists. Goal setting, as well as alternatives to specific food-related challenges, is addressed. While the program is intended for both women and men, the majority of participants to date have been female. Feedback has been positive, with changes in eating habits have included an elimination of added sugars, an increase in home cooking and vegetable intake, and a reduction in foods of animal origin. Difficulties in following the program have been reported as unavailability of certain ingredients depending on the country of residence of the participants, social and cultural hurdles, and time restrictions. Nevertheless, the results obtained to date indicate this to be a highly interactive program with the potential to be scaled up and applied to various populations as a public health measure on the way to better health.

Keywords: eating habits, food addiction, nutrition education, plant-based, remote practice

Procedia PDF Downloads 108
2031 Learning from Small Amount of Medical Data with Noisy Labels: A Meta-Learning Approach

Authors: Gorkem Algan, Ilkay Ulusoy, Saban Gonul, Banu Turgut, Berker Bakbak

Abstract:

Computer vision systems recently made a big leap thanks to deep neural networks. However, these systems require correctly labeled large datasets in order to be trained properly, which is very difficult to obtain for medical applications. Two main reasons for label noise in medical applications are the high complexity of the data and conflicting opinions of experts. Moreover, medical imaging datasets are commonly tiny, which makes each data very important in learning. As a result, if not handled properly, label noise significantly degrades the performance. Therefore, a label-noise-robust learning algorithm that makes use of the meta-learning paradigm is proposed in this article. The proposed solution is tested on retinopathy of prematurity (ROP) dataset with a very high label noise of 68%. Results show that the proposed algorithm significantly improves the classification algorithm's performance in the presence of noisy labels.

Keywords: deep learning, label noise, robust learning, meta-learning, retinopathy of prematurity

Procedia PDF Downloads 161