Search results for: winkler model (beam on elastic foundation)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19054

Search results for: winkler model (beam on elastic foundation)

15784 Mathematical Modeling of District Cooling Systems

Authors: Dana Alghool, Tarek ElMekkawy, Mohamed Haouari, Adel Elomari

Abstract:

District cooling systems have captured the attentions of many researchers recently due to the enormous benefits offered by such system in comparison with traditional cooling technologies. It is considered a major component of urban cities due to the significant reduction of energy consumption. This paper aims to find the optimal design and operation of district cooling systems by developing a mixed integer linear programming model to minimize the annual total system cost and satisfy the end-user cooling demand. The proposed model is experimented with different cooling demand scenarios. The results of the very high cooling demand scenario are only presented in this paper. A sensitivity analysis on different parameters of the model was performed.

Keywords: Annual Cooling Demand, Compression Chiller, Mathematical Modeling, District Cooling Systems, Optimization

Procedia PDF Downloads 205
15783 Optimised Path Recommendation for a Real Time Process

Authors: Likewin Thomas, M. V. Manoj Kumar, B. Annappa

Abstract:

Traditional execution process follows the path of execution drawn by the process analyst without observing the behaviour of resource and other real-time constraints. Identifying process model, predicting the behaviour of resource and recommending the optimal path of execution for a real time process is challenging. The proposed AlfyMiner: αyM iner gives a new dimension in process execution with the novel techniques Process Model Analyser: PMAMiner and Resource behaviour Analyser: RBAMiner for recommending the probable path of execution. PMAMiner discovers next probable activity for currently executing activity in an online process using variant matching technique to identify the set of next probable activity, among which the next probable activity is discovered using decision tree model. RBAMiner identifies the resource suitable for performing the discovered next probable activity and observe the behaviour based on; load and performance using polynomial regression model, and waiting time using queueing theory. Based on the observed behaviour αyM iner recommend the probable path of execution with; next probable activity and the best suitable resource for performing it. Experiments were conducted on process logs of CoSeLoG Project1 and 72% of accuracy is obtained in identifying and recommending next probable activity and the efficiency of resource performance was optimised by 59% by decreasing their load.

Keywords: cross-organization process mining, process behaviour, path of execution, polynomial regression model

Procedia PDF Downloads 337
15782 Functionally Graded MEMS Piezoelectric Energy Harvester with Magnetic Tip Mass

Authors: M. Derayatifar, M. Packirisamy, R.B. Bhat

Abstract:

Role of piezoelectric energy harvesters has gained interest in supplying power for micro devices such as health monitoring sensors. In this study, in order to enhance the piezoelectric energy harvesting in capturing energy from broader range of excitation and to improve the mechanical and electrical responses, bimorph piezoelectric energy harvester beam with magnetic mass attached at the end is presented. In view of overcoming the brittleness of piezo-ceramics, functionally graded piezoelectric layers comprising of both piezo-ceramic and piezo-polymer is employed. The nonlinear equations of motions are derived using energy method and then solved analytically using perturbation scheme. The frequency responses of the forced vibration case are obtained for the near resonance case. The nonlinear dynamic responses of the MEMS scaled functionally graded piezoelectric energy harvester in this paper may be utilized in different design scenarios to increase the efficiency of the harvester.

Keywords: energy harvesting, functionally graded piezoelectric material, magnetic force, MEMS (micro-electro-mechanical systems) piezoelectric, perturbation method

Procedia PDF Downloads 196
15781 Kinetic Modeling Study and Scale-Up of Niogas Generation Using Garden Grass and Cattle Dung as Feedstock

Authors: Tumisang Seodigeng, Hilary Rutto

Abstract:

In this study we investigate the use of a laboratory batch digester to derive kinetic parameters for anaerobic digestion of garden grass and cattle dung. Laboratory experimental data from a 5 liter batch digester operating at mesophilic temperature of 32 C is used to derive parameters for Michaelis-Menten kinetic model. These fitted kinetics are further used to predict the scale-up parameters of a batch digester using DynoChem modeling and scale-up software. The scale-up model results are compared with performance data from 20 liter, 50 liter, and 200 liter batch digesters. Michaelis-Menten kinetic model shows to be a very good and easy to use model for kinetic parameter fitting on DynoChem and can accurately predict scale-up performance of 20 liter and 50 liter batch reactor based on parameters fitted on a 5 liter batch reactor.

Keywords: Biogas, kinetics, DynoChem Scale-up, Michaelis-Menten

Procedia PDF Downloads 499
15780 Implementation of a Non-Poissonian Model in a Low-Seismicity Area

Authors: Ludivine Saint-Mard, Masato Nakajima, Gloria Senfaute

Abstract:

In areas with low to moderate seismicity, the probabilistic seismic hazard analysis frequently uses a Poisson approach, which assumes independence in time and space of events to determine the annual probability of earthquake occurrence. Nevertheless, in countries with high seismic rate, such as Japan, it is frequently use non-poissonian model which assumes that next earthquake occurrence depends on the date of previous one. The objective of this paper is to apply a non-poissonian models in a region of low to moderate seismicity to get a feedback on the following questions: can we overcome the lack of data to determine some key parameters?, and can we deal with uncertainties to apply largely this methodology on an industrial context?. The Brownian-Passage-Time model was applied to a fault located in France and conclude that even if the lack of data can be overcome with some calculations, the amount of uncertainties and number of scenarios leads to a numerous branches in PSHA, making this method difficult to apply on a large scale of low to moderate seismicity areas and in an industrial context.

Keywords: probabilistic seismic hazard, non-poissonian model, earthquake occurrence, low seismicity

Procedia PDF Downloads 68
15779 Model-Based Approach as Support for Product Industrialization: Application to an Optical Sensor

Authors: Frederic Schenker, Jonathan J. Hendriks, Gianluca Nicchiotti

Abstract:

In a product industrialization perspective, the end-product shall always be at the peak of technological advancement and developed in the shortest time possible. Thus, the constant growth of complexity and a shorter time-to-market calls for important changes on both the technical and business level. Undeniably, the common understanding of the system is beclouded by its complexity which leads to the communication gap between the engineers and the sale department. This communication link is therefore important to maintain and increase the information exchange between departments to ensure a punctual and flawless delivery to the end customer. This evolution brings engineers to reason with more hindsight and plan ahead. In this sense, they use new viewpoints to represent the data and to express the model deliverables in an understandable way that the different stakeholder may identify their needs and ideas. This article focuses on the usage of Model-Based System Engineering (MBSE) in a perspective of system industrialization and reconnect the engineering with the sales team. The modeling method used and presented in this paper concentrates on displaying as closely as possible the needs of the customer. Firstly, by providing a technical solution to the sales team to help them elaborate commercial offers without omitting technicalities. Secondly, the model simulates between a vast number of possibilities across a wide range of components. It becomes a dynamic tool for powerful analysis and optimizations. Thus, the model is no longer a technical tool for the engineers, but a way to maintain and solidify the communication between departments using different views of the model. The MBSE contribution to cost optimization during New Product Introduction (NPI) activities is made explicit through the illustration of a case study describing the support provided by system models to architectural choices during the industrialization of a novel optical sensor.

Keywords: analytical model, architecture comparison, MBSE, product industrialization, SysML, system thinking

Procedia PDF Downloads 165
15778 A Domain Specific Modeling Language Semantic Model for Artefact Orientation

Authors: Bunakiye R. Japheth, Ogude U. Cyril

Abstract:

Since the process of transforming user requirements to modeling constructs are not very well supported by domain-specific frameworks, it became necessary to integrate domain requirements with the specific architectures to achieve an integrated customizable solutions space via artifact orientation. Domain-specific modeling language specifications of model-driven engineering technologies focus more on requirements within a particular domain, which can be tailored to aid the domain expert in expressing domain concepts effectively. Modeling processes through domain-specific language formalisms are highly volatile due to dependencies on domain concepts or used process models. A capable solution is given by artifact orientation that stresses on the results rather than expressing a strict dependence on complicated platforms for model creation and development. Based on this premise, domain-specific methods for producing artifacts without having to take into account the complexity and variability of platforms for model definitions can be integrated to support customizable development. In this paper, we discuss methods for the integration capabilities and necessities within a common structure and semantics that contribute a metamodel for artifact-orientation, which leads to a reusable software layer with concrete syntax capable of determining design intents from domain expert. These concepts forming the language formalism are established from models explained within the oil and gas pipelines industry.

Keywords: control process, metrics of engineering, structured abstraction, semantic model

Procedia PDF Downloads 144
15777 Multi-Objective Production Planning Problem: A Case Study of Certain and Uncertain Environment

Authors: Ahteshamul Haq, Srikant Gupta, Murshid Kamal, Irfan Ali

Abstract:

This case study designs and builds a multi-objective production planning model for a hardware firm with certain & uncertain data. During the time of interaction with the manager of the firm, they indicate some of the parameters may be vague. This vagueness in the formulated model is handled by the concept of fuzzy set theory. Triangular & Trapezoidal fuzzy numbers are used to represent the uncertainty in the collected data. The fuzzy nature is de-fuzzified into the crisp form using well-known defuzzification method via graded mean integration representation method. The proposed model attempts to maximize the production of the firm, profit related to the manufactured items & minimize the carrying inventory costs in both certain & uncertain environment. The recommended optimal plan is determined via fuzzy programming approach, and the formulated models are solved by using optimizing software LINGO 16.0 for getting the optimal production plan. The proposed model yields an efficient compromise solution with the overall satisfaction of decision maker.

Keywords: production planning problem, multi-objective optimization, fuzzy programming, fuzzy sets

Procedia PDF Downloads 217
15776 A Quasi-Experimental Study of the Impact of 5Es Instructional Model on Students' Mathematics Achievement in Northern Province, Rwanda

Authors: Emmanuel Iyamuremye, Jean François Maniriho, Irenee Ndayambaje

Abstract:

Mathematics is the foundational enabling discipline that underpins science, technology, and engineering disciplines. Science, technology, engineering, and mathematics (STEM) subjects are foreseen as the engine for socio-economic transformation. Rwanda has done reforms in education aiming at empowering and preparing students for the real world job by providing career pathways in science, technology, engineering, and mathematics related fields. While that considered so, the performance in mathematics has remained deplorable in both formative and national examinations. Therefore, this paper aims at exploring the extent to which the engage, explore, explain, elaborate and evaluate (5Es) instructional model contributing towards students’ achievement in mathematics. The present study adopted the pre-test, post-test non-equivalent control group quasi-experimental design. The 5Es instructional model was applied to the experimental group while the control group received instruction with the conventional teaching method for eight weeks. One research-made instrument, mathematics achievement test (MAT), was used for data collection. A pre-test was given to students before the intervention to make sure that both groups have equivalent characteristics. At the end of the experimental period, the two groups have undergone a post-test to ascertain the contribution of the 5Es instructional model. Descriptive statistics and analysis of covariance (ANCOVA) were used for the analysis of the study. For determining the improvement in mathematics, Hakes methods of calculating gain were used to analyze the pre-test and post-test scores. Results showed that students exposed to 5Es instructional model achieved significantly better performance in mathematics than students instructed using the conventional teaching method. It was also found that 5Es instructional model made lessons more interesting, easy and created friendship among students. Thus, 5Es instructional model was recommended to be adopted as a close substitute to the conventional teaching method in teaching mathematics in lower secondary schools in Rwanda.

Keywords: 5Es instructional model, achievement, conventional teaching method, mathematics

Procedia PDF Downloads 108
15775 The Optimal Order Policy for the Newsvendor Model under Worker Learning

Authors: Sunantha Teyarachakul

Abstract:

We consider the worker-learning Newsvendor Model, under the case of lost-sales for unmet demand, with the research objective of proposing the cost-minimization order policy and lot size, scheduled to arrive at the beginning of the selling-period. In general, the New Vendor Model is used to find the optimal order quantity for the perishable items such as fashionable products or those with seasonal demand or short-life cycles. Technically, it is used when the product demand is stochastic and available for the single selling-season, and when there is only a one time opportunity for the vendor to purchase, with possibly of long ordering lead-times. Our work differs from the classical Newsvendor Model in that we incorporate the human factor (specifically worker learning) and its influence over the costs of processing units into the model. We describe this by using the well-known Wright’s Learning Curve. Most of the assumptions of the classical New Vendor Model are still maintained in our work, such as the constant per-unit cost of leftover and shortage, the zero initial inventory, as well as the continuous time. Our problem is challenging in the way that the best order quantity in the classical model, which is balancing the over-stocking and under-stocking costs, is no longer optimal. Specifically, when adding the cost-saving from worker learning to such expected total cost, the convexity of the cost function will likely not be maintained. This has called for a new way in determining the optimal order policy. In response to such challenges, we found a number of characteristics related to the expected cost function and its derivatives, which we then used in formulating the optimal ordering policy. Examples of such characteristics are; the optimal order quantity exists and is unique if the demand follows a Uniform Distribution; if the demand follows the Beta Distribution with some specific properties of its parameters, the second derivative of the expected cost function has at most two roots; and there exists the specific level of lot size that satisfies the first order condition. Our research results could be helpful for analysis of supply chain coordination and of the periodic review system for similar problems.

Keywords: inventory management, Newsvendor model, order policy, worker learning

Procedia PDF Downloads 419
15774 Parents' Attitudes towards a School-Based Family Program in Early Literacy in Qatari Preschool Settings

Authors: Fathi Ihmeideh

Abstract:

The study aimed at investigating parents’ attitudes towards a school-based family program in developing kindergarten children’s literacy skills. The study surveyed 160 parents of preschool children, gathering information about their attitudes toward the development of children’s early literacy. Results indicated that parents hold positive attitudes towards the school-based family literacy program. The results also revealed statistically significant differences among parents due to a number of study variables. The study concludes with putting forward a number of practical and theoretical recommendations for the field of study. Acknowledgment: This paper was made possible by NPRP grant # (NPRP 8-921-5-122) from the Qatar national research fund (a member of Qatar foundation). The statements made herein are solely the responsibility of the authors.

Keywords: parents, literacy development, preschool children, family involvement

Procedia PDF Downloads 274
15773 A Bayesian Hierarchical Poisson Model with an Underlying Cluster Structure for the Analysis of Measles in Colombia

Authors: Ana Corberan-Vallet, Karen C. Florez, Ingrid C. Marino, Jose D. Bermudez

Abstract:

In 2016, the Region of the Americas was declared free of measles, a viral disease that can cause severe health problems. However, since 2017, measles has reemerged in Venezuela and has subsequently reached neighboring countries. In 2018, twelve American countries reported confirmed cases of measles. Governmental and health authorities in Colombia, a country that shares the longest land boundary with Venezuela, are aware of the need for a strong response to restrict the expanse of the epidemic. In this work, we apply a Bayesian hierarchical Poisson model with an underlying cluster structure to describe disease incidence in Colombia. Concretely, the proposed methodology provides relative risk estimates at the department level and identifies clusters of disease, which facilitates the implementation of targeted public health interventions. Socio-demographic factors, such as the percentage of migrants, gross domestic product, and entry routes, are included in the model to better describe the incidence of disease. Since the model does not impose any spatial correlation at any level of the model hierarchy, it avoids the spatial confounding problem and provides a suitable framework to estimate the fixed-effect coefficients associated with spatially-structured covariates.

Keywords: Bayesian analysis, cluster identification, disease mapping, risk estimation

Procedia PDF Downloads 157
15772 Influence of a Company’s Dynamic Capabilities on Its Innovation Capabilities

Authors: Lovorka Galetic, Zeljko Vukelic

Abstract:

The advanced concepts of strategic and innovation management in the sphere of company dynamic and innovation capabilities, and achieving their mutual alignment and a synergy effect, are important elements in business today. This paper analyses the theory and empirically investigates the influence of a company’s dynamic capabilities on its innovation capabilities. A new multidimensional model of dynamic capabilities is presented, consisting of five factors appropriate to real time requirements, while innovation capabilities are considered pursuant to the official OECD and Eurostat standards. After examination of dynamic and innovation capabilities indicated their theoretical links, the empirical study testing the model and examining the influence of a company’s dynamic capabilities on its innovation capabilities showed significant results. In the study, a research model was posed to relate company dynamic and innovation capabilities. One side of the model features the variables that are the determinants of dynamic capabilities defined through their factors, while the other side features the determinants of innovation capabilities pursuant to the official standards. With regard to the research model, five hypotheses were set. The study was performed in late 2014 on a representative sample of large and very large Croatian enterprises with a minimum of 250 employees. The research instrument was a questionnaire administered to company top management. For both variables, the position of the company was tested in comparison to industry competitors, on a fivepoint scale. In order to test the hypotheses, correlation tests were performed to determine whether there is a correlation between each individual factor of company dynamic capabilities with the existence of its innovation capabilities, in line with the research model. The results indicate a strong correlation between a company’s possession of dynamic capabilities in terms of their factors, due to the new multi-dimensional model presented in this paper, with its possession of innovation capabilities. Based on the results, all five hypotheses were accepted. Ultimately, it was concluded that there is a strong association between the dynamic and innovation capabilities of a company. 

Keywords: dynamic capabilities, innovation capabilities, competitive advantage, business results

Procedia PDF Downloads 310
15771 Software Quality Promotion and Improvement through Usage of a PSP Oriented Information System

Authors: Gaoussou Doukoure Abdel Kader, Mnkandla Ernest

Abstract:

This research aims to investigate the usage of a personal software process oriented information system in order to facilitate the promotion of software quality and its improvement in organizations. In this light, at the term of a literature review on software quality and related concepts, the personal software process is discussed, more particularly in terms of software quality. Semi-structured interviews will be conducted with a team of software engineers on the first hand to establish a baseline on their understanding of what quality entails for them. The PSP methodology will then be presented to the engineers in its most basic aspects. The research will then proceed to practical case study where a PSP oriented information system is submitted to engineers for usage throughout their development process. Reports from the PSP information system as well as feedback from the engineers will be used in conjunction with the theoretical foundation to establish a PSP inspired framework for software quality promotion and improvement.

Keywords: information communication technology, personal software process, software quality, process quality, software engineering

Procedia PDF Downloads 501
15770 Machine Learning Methods for Flood Hazard Mapping

Authors: Stefano Zappacosta, Cristiano Bove, Maria Carmela Marinelli, Paola di Lauro, Katarina Spasenovic, Lorenzo Ostano, Giuseppe Aiello, Marco Pietrosanto

Abstract:

This paper proposes a novel neural network approach for assessing flood hazard mapping. The core of the model is a machine learning component fed by frequency ratios, namely statistical correlations between flood event occurrences and a selected number of topographic properties. The proposed hybrid model can be used to classify four different increasing levels of hazard. The classification capability was compared with the flood hazard mapping River Basin Plans (PAI) designed by the Italian Institute for Environmental Research and Defence, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale). The study area of Piemonte, an Italian region, has been considered without loss of generality. The frequency ratios may be used as a standalone block to model the flood hazard mapping. Nevertheless, the mixture with a neural network improves the classification power of several percentage points, and may be proposed as a basic tool to model the flood hazard map in a wider scope.

Keywords: flood modeling, hazard map, neural networks, hydrogeological risk, flood risk assessment

Procedia PDF Downloads 185
15769 Artificial Intelligence in Ethiopian Universities: The Influence of Technological Readiness, Acceptance, Perceived Risk, and Trust on Implementation - An Integrative Research Approach

Authors: Merih Welay Welesilassie

Abstract:

Understanding educators' readiness to incorporate AI tools into their teaching methods requires comprehensively examining the influencing factors. This understanding is crucial, given the potential of these technologies to personalise learning experiences, improve instructional effectiveness, and foster innovative pedagogical approaches. This study evaluated factors affecting teachers' adoption of AI tools in their English language instruction by extending the Technology Acceptance Model (TAM) to encompass digital readiness support, perceived risk, and trust. A cross-sectional quantitative survey was conducted with 128 English language teachers, supplemented by qualitative data collection from 15 English teachers. The structural mode analysis indicated that implementing AI tools in Ethiopian higher education was notably influenced by digital readiness support, perceived ease of use, perceived usefulness, perceived risk, and trust. Digital readiness support positively impacted perceived ease of use, usefulness, and trust while reducing safety and privacy risks. Perceived ease of use positively correlated with perceived usefulness but negatively influenced trust. Furthermore, perceived usefulness strengthened trust in AI tools, while perceived safety and privacy risks significantly undermined trust. Trust was crucial in increasing educators' willingness to adopt AI technologies. The qualitative analysis revealed that the teachers exhibited strong content and pedagogical knowledge but needed more technology-related knowledge. Moreover, It was found that the teachers did not utilise digital tools to teach English. The study identified several obstacles to incorporating digital tools into English lessons, such as insufficient digital infrastructure, a shortage of educational resources, inadequate professional development opportunities, and challenging policies and governance. The findings provide valuable guidance for educators, inform policymakers about creating supportive digital environments, and offer a foundation for further investigation into technology adoption in educational settings in Ethiopia and similar contexts.

Keywords: digital readiness support, AI acceptance, risk, trust

Procedia PDF Downloads 24
15768 Using SNAP and RADTRAD to Establish the Analysis Model for Maanshan PWR Plant

Authors: J. R. Wang, H. C. Chen, C. Shih, S. W. Chen, J. H. Yang, Y. Chiang

Abstract:

In this study, we focus on the establishment of the analysis model for Maanshan PWR nuclear power plant (NPP) by using RADTRAD and SNAP codes with the FSAR, manuals, and other data. In order to evaluate the cumulative dose at the Exclusion Area Boundary (EAB) and Low Population Zone (LPZ) outer boundary, Maanshan NPP RADTRAD/SNAP model was used to perform the analysis of the DBA LOCA case. The analysis results of RADTRAD were similar to FSAR data. These analysis results were lower than the failure criteria of 10 CFR 100.11 (a total radiation dose to the whole body, 250 mSv; a total radiation dose to the thyroid from iodine exposure, 3000 mSv).

Keywords: RADionuclide, transport, removal, and dose estimation (RADTRAD), symbolic nuclear analysis package (SNAP), dose, PWR

Procedia PDF Downloads 467
15767 Automated Facial Symmetry Assessment for Orthognathic Surgery: Utilizing 3D Contour Mapping and Hyperdimensional Computing-Based Machine Learning

Authors: Wen-Chung Chiang, Lun-Jou Lo, Hsiu-Hsia Lin

Abstract:

This study aimed to improve the evaluation of facial symmetry, which is crucial for planning and assessing outcomes in orthognathic surgery (OGS). Facial symmetry plays a key role in both aesthetic and functional aspects of OGS, making its accurate evaluation essential for optimal surgical results. To address the limitations of traditional methods, a different approach was developed, combining three-dimensional (3D) facial contour mapping with hyperdimensional (HD) computing to enhance precision and efficiency in symmetry assessments. The study was conducted at Chang Gung Memorial Hospital, where data were collected from 2018 to 2023 using 3D cone beam computed tomography (CBCT), a highly detailed imaging technique. A large and comprehensive dataset was compiled, consisting of 150 normal individuals and 2,800 patients, totaling 5,750 preoperative and postoperative facial images. These data were critical for training a machine learning model designed to analyze and quantify facial symmetry. The machine learning model was trained to process 3D contour data from the CBCT images, with HD computing employed to power the facial symmetry quantification system. This combination of technologies allowed for an objective and detailed analysis of facial features, surpassing the accuracy and reliability of traditional symmetry assessments, which often rely on subjective visual evaluations by clinicians. In addition to developing the system, the researchers conducted a retrospective review of 3D CBCT data from 300 patients who had undergone OGS. The patients’ facial images were analyzed both before and after surgery to assess the clinical utility of the proposed system. The results showed that the facial symmetry algorithm achieved an overall accuracy of 82.5%, indicating its robustness in real-world clinical applications. Postoperative analysis revealed a significant improvement in facial symmetry, with an average score increase of 51%. The mean symmetry score rose from 2.53 preoperatively to 3.89 postoperatively, demonstrating the system's effectiveness in quantifying improvements after OGS. These results underscore the system's potential for providing valuable feedback to surgeons and aiding in the refinement of surgical techniques. The study also led to the development of a web-based system that automates facial symmetry assessment. This system integrates HD computing and 3D contour mapping into a user-friendly platform that allows for rapid and accurate evaluations. Clinicians can easily access this system to perform detailed symmetry assessments, making it a practical tool for clinical settings. Additionally, the system facilitates better communication between clinicians and patients by providing objective, easy-to-understand symmetry scores, which can help patients visualize the expected outcomes of their surgery. In conclusion, this study introduced a valuable and highly effective approach to facial symmetry evaluation in OGS, combining 3D contour mapping, HD computing, and machine learning. The resulting system achieved high accuracy and offers a streamlined, automated solution for clinical use. The development of the web-based platform further enhances its practicality, making it a valuable tool for improving surgical outcomes and patient satisfaction in orthognathic surgery.

Keywords: facial symmetry, orthognathic surgery, facial contour mapping, hyperdimensional computing

Procedia PDF Downloads 34
15766 The Research about Environmental Assessment Index of Brownfield Redevelopment in Taiwan - A Case Study on Formosa Chemicals and Fibre Corporation, Changhua Branch

Authors: Yang, Min-chih, Shih-Jen Feng, Bo-Tsang Li

Abstract:

The concept of “Brownfield” has been developed for nearly 35 years since it was put forward in 《Comprehensive Environmental Response, Compensation, and Liability Act, CERCLA》of USA in 1980 for solving the problem of soil contamination of those old industrial lands, and later, many countries have put forward relevant policies and researches continuously. But the related concept in Taiwan, a country has developed its industry for 60 years, is still in its infancy. This leads to the slow development of Brownfield related research and policy in Taiwan. When it comes to build the foundation of Brownfield development, we have to depend on the related experience and research of other countries. They are four aspects about Brownfield: 1. Contaminated Land; 2. Derelict Land; 3. Vacant Land; 4. Previously Development Land. This study will focus on and deeply investigate the Vacant land and contaminated land.

Keywords: brownfield, industrial land, redevelopment, assessment index

Procedia PDF Downloads 468
15765 Mathematical Modeling of Drip Emitter Discharge of Trapezoidal Labyrinth Channel

Authors: N. Philipova

Abstract:

The influence of the geometric parameters of trapezoidal labyrinth channel on the emitter discharge is investigated in this work. The impact of the dentate angle, the dentate spacing, and the dentate height are studied among the geometric parameters of the labyrinth channel. Numerical simulations of the water flow movement are performed according to central cubic composite design using Commercial codes GAMBIT and FLUENT. Inlet pressure of the dripper is set up to be 1 bar. The objective of this paper is to derive a mathematical model of the emitter discharge depending on the dentate angle, the dentate spacing, the dentate height of the labyrinth channel. As a result, the obtained mathematical model is a second-order polynomial reporting 2-way interactions among the geometric parameters. The dentate spacing has the most important and positive influence on the emitter discharge, followed by the simultaneous impact of the dentate spacing and the dentate height. The dentate angle in the observed interval has no significant effect on the emitter discharge. The obtained model can be used as a basis for a future emitter design.

Keywords: drip irrigation, labyrinth channel hydrodynamics, numerical simulations, Reynolds stress model.

Procedia PDF Downloads 188
15764 Multiscale Cohesive Zone Modeling of Composite Microstructure

Authors: Vincent Iacobellis, Kamran Behdinan

Abstract:

A finite element cohesive zone model is used to predict the temperature dependent material properties of a polyimide matrix composite with unidirectional carbon fiber arrangement. The cohesive zone parameters have been obtained from previous research involving an atomistic-to-continuum multiscale simulation of the fiber-matrix interface using the bridging cell multiscale method. The goal of the research was to both investigate the effect of temperature change on the composite behavior with respect to transverse loading as well as the validate the use of cohesive parameters obtained from atomistic-to-continuum multiscale modeling to predict fiber-matrix interfacial cracking. From the multiscale model cohesive zone parameters (i.e. maximum traction and energy of separation) were obtained by modeling the interface between the coarse-grained polyimide matrix and graphite based carbon fiber. The cohesive parameters from this simulation were used in a cohesive zone model of the composite microstructure in order to predict the properties of the macroscale composite with respect to changes in temperature ranging from 21 ˚C to 316 ˚C. Good agreement was found between the microscale RUC model and experimental results for stress-strain response, stiffness, and material strength at low and high temperatures. Examination of the deformation of the composite through localized crack initiation at the fiber-matrix interface also agreed with experimental observations of similar phenomena. Overall, the cohesive zone model was shown to be both effective at modeling the composite properties with respect to transverse loading as well as validated the use of cohesive zone parameters obtained from the multiscale simulation.

Keywords: cohesive zone model, fiber-matrix interface, microscale damage, multiscale modeling

Procedia PDF Downloads 492
15763 Positive Obligations of the State Concerning the Protection of Human Rights

Authors: Monika Florczak-Wator

Abstract:

The model of positive obligations of the state concerning the protection of the rights of an individual was created within the jurisdiction of the German Federal Constitutional Court in the 1970s. That model assumes that the state should protect an individual against infringement of their fundamental rights by another individual. It is based on the idea concerning the modification of the function and duties of the state towards an individual and society. Initially the state was perceived as the main infringer of the fundamental rights of an individual formulating the individual’s obligations of negative nature (obligation of noninterference), however, at present the state is perceived as a guarantor and protector of the fundamental rights of an individual of positive nature (obligation of protection). Examination of the chosen judicial decisions of that court will enable us to determine what the obligation of protection is specifically about, when it is updated and whether it is accompanied by claims of an individual requesting the state to take actions protecting their fundamental rights against infringement by the private entities. The comparative perspective for the German model of positive obligations of the state will be an analogous model present in the jurisdiction of the European Court of Human Rights. It is justified to include it in the research as the Convention, similarly to the constitution, focuses on the protection of an individual against the infringement of their rights by the state and both models have been developed within the jurisdiction for several dozens of years. Analysis of the provisions of the Constitution of the Republic of Poland as well as judgements of the Polish Constitutional Tribunal will allow for the presentation of the application the model of the protective duties of the state in Poland.

Keywords: human rights, horizontal relationships, constitution, state protection

Procedia PDF Downloads 486
15762 An Infrared Inorganic Scintillating Detector Applied in Radiation Therapy

Authors: Sree Bash Chandra Debnath, Didier Tonneau, Carole Fauquet, Agnes Tallet, Julien Darreon

Abstract:

Purpose: Inorganic scintillating dosimetry is the most recent promising technique to solve several dosimetric issues and provide quality assurance in radiation therapy. Despite several advantages, the major issue of using scintillating detectors is the Cerenkov effect, typically induced in the visible emission range. In this context, the purpose of this research work is to evaluate the performance of a novel infrared inorganic scintillator detector (IR-ISD) in the radiation therapy treatment to ensure Cerenkov free signal and the best matches between the delivered and prescribed doses during treatment. Methods: A simple and small-scale infrared inorganic scintillating detector of 100 µm diameter with a sensitive scintillating volume of 2x10-6 mm3 was developed. A prototype of the dose verification system has been introduced based on PTIR1470/F (provided by Phosphor Technology®) material used in the proposed novel IR-ISD. The detector was tested on an Elekta LINAC system tuned at 6 MV/15MV and a brachytherapy source (Ir-192) used in the patient treatment protocol. The associated dose rate was measured in count rate (photons/s) using a highly sensitive photon counter (sensitivity ~20ph/s). Overall measurements were performed in IBATM water tank phantoms by following international Technical Reports series recommendations (TRS 381) for radiotherapy and TG43U1 recommendations for brachytherapy. The performance of the detector was tested through several dosimetric parameters such as PDD, beam profiling, Cerenkov measurement, dose linearity, dose rate linearity repeatability, and scintillator stability. Finally, a comparative study is also shown using a reference microdiamond dosimeter, Monte-Carlo (MC) simulation, and data from recent literature. Results: This study is highlighting the complete removal of the Cerenkov effect especially for small field radiation beam characterization. The detector provides an entire linear response with the dose in the 4cGy to 800 cGy range, independently of the field size selected from 5 x 5 cm² down to 0.5 x 0.5 cm². A perfect repeatability (0.2 % variation from average) with day-to-day reproducibility (0.3% variation) was observed. Measurements demonstrated that ISD has superlinear behavior with dose rate (R2=1) varying from 50 cGy/s to 1000 cGy/s. PDD profiles obtained in water present identical behavior with a build-up maximum depth dose at 15 mm for different small fields irradiation. A low dimension of 0.5 x 0.5 cm² field profiles have been characterized, and the field cross profile presents a Gaussian-like shape. The standard deviation (1σ) of the scintillating signal remains within 0.02% while having a very low convolution effect, thanks to lower sensitive volume. Finally, during brachytherapy, a comparison with MC simulations shows that considering energy dependency, measurement agrees within 0.8% till 0.2 cm source to detector distance. Conclusion: The proposed scintillating detector in this study shows no- Cerenkov radiation and efficient performance for several radiation therapy measurement parameters. Therefore, it is anticipated that the IR-ISD system can be promoted to validate with direct clinical investigations, such as appropriate dose verification and quality control in the Treatment Planning System (TPS).

Keywords: IR-Scintillating detector, dose measurement, micro-scintillators, Cerenkov effect

Procedia PDF Downloads 186
15761 The Use of Hec Ras One-Dimensional Model and Geophysics for the Determination of Flood Zones

Authors: Ayoub El Bourtali, Abdessamed Najine, Amrou Moussa Benmoussa

Abstract:

It is becoming more and more necessary to manage flood risk, and it must include all stakeholders and all possible means available. The goal of this work is to map the vulnerability of the Oued Derna-region Tagzirt flood zone in the semi-arid region. This is about implementing predictive models and flood control. This allows for the development of flood risk prevention plans. In this study, A resistivity survey was conducted over the area to locate and evaluate soil characteristics in order to calculate discharges and prevent flooding for the study area. The development of a one-dimensional (1D) hydrodynamic model of the Derna River was carried out in HEC-RAS 5.0.4 using a combination of survey data and spatially extracted cross-sections and recorded river flows. The study area was hit by several extreme floods, causing a lot of property loss and loss of life. This research focuses on the most recent flood events, based on the collected data, the water level, river flow and river cross-section were analyzed. A set of flood levels were obtained as the outputs of the hydraulic model and the accuracy of the simulated flood levels and velocity.

Keywords: derna river, 1D hydrodynamic model, flood modelling, HEC-RAS 5.0.4

Procedia PDF Downloads 320
15760 Comparison of Two-Phase Critical Flow Models for Estimation of Leak Flow Rate through Cracks

Authors: Tadashi Watanabe, Jinya Katsuyama, Akihiro Mano

Abstract:

The estimation of leak flow rates through narrow cracks in structures is of importance for nuclear reactor safety, since the leak flow could be detected before occurrence of loss-of-coolant accidents. The two-phase critical leak flow rates are calculated using the system analysis code, and two representative non-homogeneous critical flow models, Henry-Fauske model and Ransom-Trapp model, are compared. The pressure decrease and vapor generation in the crack, and the leak flow rates are found to be larger for the Henry-Fauske model. It is shown that the leak flow rates are not affected by the structural temperature, but affected largely by the roughness of crack surface.

Keywords: crack, critical flow, leak, roughness

Procedia PDF Downloads 184
15759 Networking the Biggest Challenge in Hybrid Cloud Deployment

Authors: Aishwarya Shekhar, Devesh Kumar Srivastava

Abstract:

Cloud computing has emerged as a promising direction for cost efficient and reliable service delivery across data communication networks. The dynamic location of service facilities and the virtualization of hardware and software elements are stressing the communication networks and protocols, especially when data centres are interconnected through the internet. Although the computing aspects of cloud technologies have been largely investigated, lower attention has been devoted to the networking services without involving IT operating overhead. Cloud computing has enabled elastic and transparent access to infrastructure services without involving IT operating overhead. Virtualization has been a key enabler for cloud computing. While resource virtualization and service abstraction have been widely investigated, networking in cloud remains a difficult puzzle. Even though network has significant role in facilitating hybrid cloud scenarios, it hasn't received much attention in research community until recently. We propose Network as a Service (NaaS), which forms the basis of unifying public and private clouds. In this paper, we identify various challenges in adoption of hybrid cloud. We discuss the design and implementation of a cloud platform.

Keywords: cloud computing, networking, infrastructure, hybrid cloud, open stack, naas

Procedia PDF Downloads 431
15758 A Development of Science Instructional Model Based on Stem Education Approach to Enhance Scientific Mind and Problem Solving Skills for Primary Students

Authors: Prasita Sooksamran, Wareerat Kaewurai

Abstract:

STEM is an integrated teaching approach promoted by the Ministry of Education in Thailand. STEM Education is an integrated approach to teaching Science, Technology, Engineering, and Mathematics. It has been questioned by Thai teachers on the grounds of how to integrate STEM into the classroom. Therefore, the main objective of this study is to develop a science instructional model based on the STEM approach to enhance scientific mind and problem-solving skills for primary students. This study is participatory action research, and follows the following steps: 1) develop a model 2) seek the advice of experts regarding the teaching model. Developing the instructional model began with the collection and synthesis of information from relevant documents, related research and other sources in order to create prototype instructional model. 2) The examination of the validity and relevance of instructional model by a panel of nine experts. The findings were as follows: 1. The developed instructional model comprised of principles, objective, content, operational procedures and learning evaluation. There were 4 principles: 1) Learning based on the natural curiosity of primary school level children leading to knowledge inquiry, understanding and knowledge construction, 2) Learning based on the interrelation between people and environment, 3) Learning that is based on concrete learning experiences, exploration and the seeking of knowledge, 4) Learning based on the self-construction of knowledge, creativity, innovation and 5) relating their findings to real life and the solving of real-life problems. The objective of this construction model is to enhance scientific mind and problem-solving skills. Children will be evaluated according to their achievements. Lesson content is based on science as a core subject which is integrated with technology and mathematics at grade 6 level according to The Basic Education Core Curriculum 2008 guidelines. The operational procedures consisted of 6 steps: 1) Curiosity 2) Collection of data 3) Collaborative planning 4) Creativity and Innovation 5) Criticism and 6) Communication and Service. The learning evaluation is an authentic assessment based on continuous evaluation of all the material taught. 2. The experts agreed that the Science Instructional Model based on the STEM Education Approach had an excellent level of validity and relevance (4.67 S.D. 0.50).

Keywords: instructional model, STEM education, scientific mind, problem solving

Procedia PDF Downloads 194
15757 Forecasting Container Throughput: Using Aggregate or Terminal-Specific Data?

Authors: Gu Pang, Bartosz Gebka

Abstract:

We forecast the demand of total container throughput at the Indonesia’s largest seaport, Tanjung Priok Port. We propose four univariate forecasting models, including SARIMA, the additive Seasonal Holt-Winters, the multiplicative Seasonal Holt-Winters and the Vector Error Correction Model. Our aim is to provide insights into whether forecasting the total container throughput obtained by historical aggregated port throughput time series is superior to the forecasts of the total throughput obtained by summing up the best individual terminal forecasts. We test the monthly port/individual terminal container throughput time series between 2003 and 2013. The performance of forecasting models is evaluated based on Mean Absolute Error and Root Mean Squared Error. Our results show that the multiplicative Seasonal Holt-Winters model produces the most accurate forecasts of total container throughput, whereas SARIMA generates the worst in-sample model fit. The Vector Error Correction Model provides the best model fits and forecasts for individual terminals. Our results report that the total container throughput forecasts based on modelling the total throughput time series are consistently better than those obtained by combining those forecasts generated by terminal-specific models. The forecasts of total throughput until the end of 2018 provide an essential insight into the strategic decision-making on the expansion of port's capacity and construction of new container terminals at Tanjung Priok Port.

Keywords: SARIMA, Seasonal Holt-Winters, Vector Error Correction Model, container throughput

Procedia PDF Downloads 509
15756 Predicting the Exposure Level of Airborne Contaminants in Occupational Settings via the Well-Mixed Room Model

Authors: Alireza Fallahfard, Ludwig Vinches, Stephane Halle

Abstract:

In the workplace, the exposure level of airborne contaminants should be evaluated due to health and safety issues. It can be done by numerical models or experimental measurements, but the numerical approach can be useful when it is challenging to perform experiments. One of the simplest models is the well-mixed room (WMR) model, which has shown its usefulness to predict inhalation exposure in many situations. However, since the WMR is limited to gases and vapors, it cannot be used to predict exposure to aerosols. The main objective is to modify the WMR model to expand its application to exposure scenarios involving aerosols. To reach this objective, the standard WMR model has been modified to consider the deposition of particles by gravitational settling and Brownian and turbulent deposition. Three deposition models were implemented in the model. The time-dependent concentrations of airborne particles predicted by the model were compared to experimental results conducted in a 0.512 m3 chamber. Polystyrene particles of 1, 2, and 3 µm in aerodynamic diameter were generated with a nebulizer under two air changes per hour (ACH). The well-mixed condition and chamber ACH were determined by the tracer gas decay method. The mean friction velocity on the chamber surfaces as one of the input variables for the deposition models was determined by computational fluid dynamics (CFD) simulation. For the experimental procedure, the particles were generated until reaching the steady-state condition (emission period). Then generation stopped, and concentration measurements continued until reaching the background concentration (decay period). The results of the tracer gas decay tests revealed that the ACHs of the chamber were: 1.4 and 3.0, and the well-mixed condition was achieved. The CFD results showed the average mean friction velocity and their standard deviations for the lowest and highest ACH were (8.87 ± 0.36) ×10-2 m/s and (8.88 ± 0.38) ×10-2 m/s, respectively. The numerical results indicated the difference between the predicted deposition rates by the three deposition models was less than 2%. The experimental and numerical aerosol concentrations were compared in the emission period and decay period. In both periods, the prediction accuracy of the modified model improved in comparison with the classic WMR model. However, there is still a difference between the actual value and the predicted value. In the emission period, the modified WMR results closely follow the experimental data. However, the model significantly overestimates the experimental results during the decay period. This finding is mainly due to an underestimation of the deposition rate in the model and uncertainty related to measurement devices and particle size distribution. Comparing the experimental and numerical deposition rates revealed that the actual particle deposition rate is significant, but the deposition mechanisms considered in the model were ten times lower than the experimental value. Thus, particle deposition was significant and will affect the airborne concentration in occupational settings, and it should be considered in the airborne exposure prediction model. The role of other removal mechanisms should be investigated.

Keywords: aerosol, CFD, exposure assessment, occupational settings, well-mixed room model, zonal model

Procedia PDF Downloads 105
15755 Fault Diagnosis in Induction Motor

Authors: Kirti Gosavi, Anita Bhole

Abstract:

The paper demonstrates simulation and steady-state performance of three phase squirrel cage induction motor and detection of rotor broken bar fault using MATLAB. This simulation model is successfully used in the fault detection of rotor broken bar for the induction machines. A dynamic model using PWM inverter and mathematical modelling of the motor is developed. The dynamic simulation of the small power induction motor is one of the key steps in the validation of the design process of the motor drive system and it is needed for eliminating advertent design errors and the resulting error in the prototype construction and testing. The simulation model will be helpful in detecting the faults in three phase induction motor using Motor current signature analysis.

Keywords: squirrel cage induction motor, pulse width modulation (PWM), fault diagnosis, induction motor

Procedia PDF Downloads 635