Search results for: deep convolutional neural networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5316

Search results for: deep convolutional neural networks

2046 Rheological Characteristics of Ice Slurries Based on Propylene- and Ethylene-Glycol at High Ice Fractions

Authors: Senda Trabelsi, Sébastien Poncet, Michel Poirier

Abstract:

Ice slurries are considered as a promising phase-changing secondary fluids for air-conditioning, packaging or cooling industrial processes. An experimental study has been here carried out to measure the rheological characteristics of ice slurries. Ice slurries consist in a solid phase (flake ice crystals) and a liquid phase. The later is composed of a mixture of liquid water and an additive being here either (1) Propylene-Glycol (PG) or (2) Ethylene-Glycol (EG) used to lower the freezing point of water. Concentrations of 5%, 14% and 24% of both additives are investigated with ice mass fractions ranging from 5% to 85%. The rheological measurements are carried out using a Discovery HR-2 vane-concentric cylinder with four full-length blades. The experimental results show that the behavior of ice slurries is generally non-Newtonian with shear-thinning or shear-thickening behaviors depending on the experimental conditions. In order to determine the consistency and the flow index, the Herschel-Bulkley model is used to describe the behavior of ice slurries. The present results are finally validated against an experimental database found in the literature and the predictions of an Artificial Neural Network model.

Keywords: ice slurry, propylene-glycol, ethylene-glycol, rheology

Procedia PDF Downloads 264
2045 Generating Insights from Data Using a Hybrid Approach

Authors: Allmin Susaiyah, Aki Härmä, Milan Petković

Abstract:

Automatic generation of insights from data using insight mining systems (IMS) is useful in many applications, such as personal health tracking, patient monitoring, and business process management. Existing IMS face challenges in controlling insight extraction, scaling to large databases, and generalising to unseen domains. In this work, we propose a hybrid approach consisting of rule-based and neural components for generating insights from data while overcoming the aforementioned challenges. Firstly, a rule-based data 2CNL component is used to extract statistically significant insights from data and represent them in a controlled natural language (CNL). Secondly, a BERTSum-based CNL2NL component is used to convert these CNLs into natural language texts. We improve the model using task-specific and domain-specific fine-tuning. Our approach has been evaluated using statistical techniques and standard evaluation metrics. We overcame the aforementioned challenges and observed significant improvement with domain-specific fine-tuning.

Keywords: data mining, insight mining, natural language generation, pre-trained language models

Procedia PDF Downloads 123
2044 From Customer Innovations to Manufactured Products: A Project Outlook

Authors: M. Holle, M. Roth, M. R. Gürtler, U. Lindemann

Abstract:

This paper gives insights into the research project "InnoCyFer" (in the form of an outlook) which is funded by the German Federal Ministry of Economics and Technology. Enabling the integrated customer individual product design as well as flexible manufacturing of these products are the main objectives of the project. To achieve this, a web-based open innovation-platform containing an integrated Toolkit will be developed. This toolkit enables the active integration of the customer’s creativity and potentials of innovation in the product development process. Furthermore, the project will show the chances and possibilities of customer individualized products by building and examining the continuous process from innovation through the customers to the flexible manufacturing of individual products.

Keywords: customer individual product design, innovation networks, open innovation, open innovation platform, toolkit

Procedia PDF Downloads 315
2043 Prediction for the Pressure Drop of Gas-Liquid Cylindrical Cyclone in Sub-Sea Production System

Authors: Xu Rumin, Chen Jianyi, Yue Ti, Wang Yaan

Abstract:

With the rapid development of subsea oil and gas exploitation, the demand for the related underwater process equipment is increasing fast. In order to reduce the energy consuming, people tend to separate the gas and oil phase directly on the seabed. Accordingly, an advanced separator is needed. In this paper, the pressure drop of a new type of separator named Gas Liquid Cylindrical Cyclone (GLCC) which is used in the subsea system is investigated by both experiments and numerical simulation. In the experiments, the single phase flow and gas-liquid two phase flow in GLCC were tested. For the simulation, the performance of GLCC under both laboratory and industrial conditions was calculated. The Eulerian model was implemented to describe the mixture flow field in the GLCC under experimental conditions and industrial oil-natural gas conditions. Furthermore, a relationship among Euler number (Eu), Reynolds number (Re), and Froude number (Fr) is generated according to similarity analysis and simulation data, which can present the GLCC separation performance of pressure drop. These results can give reference to the design and application of GLCC in deep sea.

Keywords: dimensionless analysis, gas-liquid cylindrical cyclone, numerical simulation, pressure drop

Procedia PDF Downloads 172
2042 Comparative Performance Analysis of Fiber Delay Line Based Buffer Architectures for Contention Resolution in Optical WDM Networks

Authors: Manoj Kumar Dutta

Abstract:

Wavelength division multiplexing (WDM) technology is the most promising technology for the proper utilization of huge raw bandwidth provided by an optical fiber. One of the key problems in implementing the all-optical WDM network is the packet contention. This problem can be solved by several different techniques. In time domain approach the packet contention can be reduced by incorporating fiber delay lines (FDLs) as optical buffer in the switch architecture. Different types of buffering architectures are reported in literatures. In the present paper a comparative performance analysis of three most popular FDL architectures are presented in order to obtain the best contention resolution performance. The analysis is further extended to consider the effect of different fiber non-linearities on the network performance.

Keywords: WDM network, contention resolution, optical buffering, non-linearity, throughput

Procedia PDF Downloads 452
2041 Integrating HOTS Activities with Geogebra in Pre-Service Teachers' Preparation

Authors: Wajeeh Daher, Nimer Baya'a

Abstract:

High Order Thinking Skills (HOTS) are suggested today as essential for the cognitive development of students and as preparing them for real life skills. Teachers are encouraged to use HOTS activities in the classroom to help their students develop higher order skills and deep thinking. So it is essential to prepare pre-service teachers to write and use HOTS activities for their students. This paper describes a model for integrating HOTS activities with GeoGebra in pre-service teachers’ preparation. This model describes four aspects of HOTS activities and working with them: Activity components, preparation procedure, strategies and processes used in writing a HOTS activity and types of the HOTS activities. In addition, the paper describes the pre-service teachers' difficulties in preparing and working with HOTS activities, as well as their perceptions regarding the use of these activities and GeoGebra in the mathematics classroom. The paper also describes the contribution of a HOTS activity to pupils' learning of mathematics, where this HOTS activity was prepared and taught by one pre-service teacher.

Keywords: high order thinking skills, HOTS activities, pre-service teachers, professional development

Procedia PDF Downloads 348
2040 Application of Support Vector Machines in Forecasting Non-Residential

Authors: Wiwat Kittinaraporn, Napat Harnpornchai, Sutja Boonyachut

Abstract:

This paper deals with the application of a novel neural network technique, so-called Support Vector Machine (SVM). The objective of this study is to explore the variable and parameter of forecasting factors in the construction industry to build up forecasting model for construction quantity in Thailand. The scope of the research is to study the non-residential construction quantity in Thailand. There are 44 sets of yearly data available, ranging from 1965 to 2009. The correlation between economic indicators and construction demand with the lag of one year was developed by Apichat Buakla. The selected variables are used to develop SVM models to forecast the non-residential construction quantity in Thailand. The parameters are selected by using ten-fold cross-validation method. The results are indicated in term of Mean Absolute Percentage Error (MAPE). The MAPE value for the non-residential construction quantity predicted by Epsilon-SVR in corporation with Radial Basis Function (RBF) of kernel function type is 5.90. Analysis of the experimental results show that the support vector machine modelling technique can be applied to forecast construction quantity time series which is useful for decision planning and management purpose.

Keywords: forecasting, non-residential, construction, support vector machines

Procedia PDF Downloads 435
2039 A Machine Learning Based Method to Detect System Failure in Resource Constrained Environment

Authors: Payel Datta, Abhishek Das, Abhishek Roychoudhury, Dhiman Chattopadhyay, Tanushyam Chattopadhyay

Abstract:

Machine learning (ML) and deep learning (DL) is most predominantly used in image/video processing, natural language processing (NLP), audio and speech recognition but not that much used in system performance evaluation. In this paper, authors are going to describe the architecture of an abstraction layer constructed using ML/DL to detect the system failure. This proposed system is used to detect the system failure by evaluating the performance metrics of an IoT service deployment under constrained infrastructure environment. This system has been tested on the manually annotated data set containing different metrics of the system, like number of threads, throughput, average response time, CPU usage, memory usage, network input/output captured in different hardware environments like edge (atom based gateway) and cloud (AWS EC2). The main challenge of developing such system is that the accuracy of classification should be 100% as the error in the system has an impact on the degradation of the service performance and thus consequently affect the reliability and high availability which is mandatory for an IoT system. Proposed ML/DL classifiers work with 100% accuracy for the data set of nearly 4,000 samples captured within the organization.

Keywords: machine learning, system performance, performance metrics, IoT, edge

Procedia PDF Downloads 196
2038 Weapon-Being: Weaponized Design and Object-Oriented Ontology in Hypermodern Times

Authors: John Dimopoulos

Abstract:

This proposal attempts a refabrication of Heidegger’s classic thing-being and object-being analysis in order to provide better ontological tools for understanding contemporary culture, technology, and society. In his work, Heidegger sought to understand and comment on the problem of technology in an era of rampant innovation and increased perils for society and the planet. Today we seem to be at another crossroads in this course, coming after postmodernity, during which dreams and dangers of modernity augmented with critical speculations of the post-war era take shape. The new era which we are now living in, referred to as hypermodernity by researchers in various fields such as architecture and cultural theory, is defined by the horizontal implementation of digital technologies, cybernetic networks, and mixed reality. Technology today is rapidly approaching a turning point, namely the point of no return for humanity’s supervision over its creations. The techno-scientific civilization of the 21st century creates a series of problems, progressively more difficult and complex to solve and impossible to ignore, climate change, data safety, cyber depression, and digital stress being some of the most prevalent. Humans often have no other option than to address technology-induced problems with even more technology, as in the case of neuron networks, machine learning, and AI, thus widening the gap between creating technological artifacts and understanding their broad impact and possible future development. As all technical disciplines and particularly design, become enmeshed in a matrix of digital hyper-objects, a conceptual toolbox that allows us to handle the new reality becomes more and more necessary. Weaponized design, prevalent in many fields, such as social and traditional media, urban planning, industrial design, advertising, and the internet in general, hints towards an increase in conflicts. These conflicts between tech companies, stakeholders, and users with implications in politics, work, education, and production as apparent in the cases of Amazon workers’ strikes, Donald Trump’s 2016 campaign, Facebook and Microsoft data scandals, and more are often non-transparent to the wide public’s eye, thus consolidating new elites and technocratic classes and making the public scene less and less democratic. The new category proposed, weapon-being, is outlined in respect to the basic function of reducing complexity, subtracting materials, actants, and parameters, not strictly in favor of a humanistic re-orientation but in a more inclusive ontology of objects and subjects. Utilizing insights of Object-Oriented Ontology (OOO) and its schematization of technological objects, an outline for a radical ontology of technology is approached.

Keywords: design, hypermodernity, object-oriented ontology, weapon-being

Procedia PDF Downloads 153
2037 Channels Splitting Strategy for Optical Local Area Networks of Passive Star Topology

Authors: Peristera Baziana

Abstract:

In this paper, we present a network configuration for a WDM LANs of passive star topology that assume that the set of data WDM channels is split into two separate sets of channels, with different access rights over them. Especially, a synchronous transmission WDMA access algorithm is adopted in order to increase the probability of successful transmission over the data channels and consequently to reduce the probability of data packets transmission cancellation in order to avoid the data channels collisions. Thus, a control pre-transmission access scheme is followed over a separate control channel. An analytical Markovian model is studied and the average throughput is mathematically derived. The performance is studied for several numbers of data channels and various values of control phase duration.

Keywords: access algorithm, channels division, collisions avoidance, wavelength division multiplexing

Procedia PDF Downloads 297
2036 High-Frequency Cryptocurrency Portfolio Management Using Multi-Agent System Based on Federated Reinforcement Learning

Authors: Sirapop Nuannimnoi, Hojjat Baghban, Ching-Yao Huang

Abstract:

Over the past decade, with the fast development of blockchain technology since the birth of Bitcoin, there has been a massive increase in the usage of Cryptocurrencies. Cryptocurrencies are not seen as an investment opportunity due to the market’s erratic behavior and high price volatility. With the recent success of deep reinforcement learning (DRL), portfolio management can be modeled and automated. In this paper, we propose a novel DRL-based multi-agent system to automatically make proper trading decisions on multiple cryptocurrencies and gain profits in the highly volatile cryptocurrency market. We also extend this multi-agent system with horizontal federated transfer learning for better adapting to the inclusion of new cryptocurrencies in our portfolio; therefore, we can, through the concept of diversification, maximize our profits and minimize the trading risks. Experimental results through multiple simulation scenarios reveal that this proposed algorithmic trading system can offer three promising key advantages over other systems, including maximized profits, minimized risks, and adaptability.

Keywords: cryptocurrency portfolio management, algorithmic trading, federated learning, multi-agent reinforcement learning

Procedia PDF Downloads 119
2035 Recognition of Gene Names from Gene Pathway Figures Using Siamese Network

Authors: Muhammad Azam, Micheal Olaolu Arowolo, Fei He, Mihail Popescu, Dong Xu

Abstract:

The number of biological papers is growing quickly, which means that the number of biological pathway figures in those papers is also increasing quickly. Each pathway figure shows extensive biological information, like the names of genes and how the genes are related. However, manually annotating pathway figures takes a lot of time and work. Even though using advanced image understanding models could speed up the process of curation, these models still need to be made more accurate. To improve gene name recognition from pathway figures, we applied a Siamese network to map image segments to a library of pictures containing known genes in a similar way to person recognition from photos in many photo applications. We used a triple loss function and a triplet spatial pyramid pooling network by combining the triplet convolution neural network and the spatial pyramid pooling (TSPP-Net). We compared VGG19 and VGG16 as the Siamese network model. VGG16 achieved better performance with an accuracy of 93%, which is much higher than OCR results.

Keywords: biological pathway, image understanding, gene name recognition, object detection, Siamese network, VGG

Procedia PDF Downloads 292
2034 Optimizing Solids Control and Cuttings Dewatering for Water-Powered Percussive Drilling in Mineral Exploration

Authors: S. J. Addinell, A. F. Grabsch, P. D. Fawell, B. Evans

Abstract:

The Deep Exploration Technologies Cooperative Research Centre (DET CRC) is researching and developing a new coiled tubing based greenfields mineral exploration drilling system utilising down-hole water-powered percussive drill tooling. This new drilling system is aimed at significantly reducing the costs associated with identifying mineral resource deposits beneath deep, barren cover. This system has shown superior rates of penetration in water-rich, hard rock formations at depths exceeding 500 metres. With fluid flow rates of up to 120 litres per minute at 200 bar operating pressure to energise the bottom hole tooling, excessive quantities of high quality drilling fluid (water) would be required for a prolonged drilling campaign. As a result, drilling fluid recovery and recycling has been identified as a necessary option to minimise costs and logistical effort. While the majority of the cuttings report as coarse particles, a significant fines fraction will typically also be present. To maximise tool life longevity, the percussive bottom hole assembly requires high quality fluid with minimal solids loading and any recycled fluid needs to have a solids cut point below 40 microns and a concentration less than 400 ppm before it can be used to reenergise the system. This paper presents experimental results obtained from the research program during laboratory and field testing of the prototype drilling system. A study of the morphological aspects of the cuttings generated during the percussive drilling process shows a strong power law relationship for particle size distributions. This data is critical in optimising solids control strategies and cuttings dewatering techniques. Optimisation of deployable solids control equipment is discussed and how the required centrate clarity was achieved in the presence of pyrite-rich metasediment cuttings. Key results were the successful pre-aggregation of fines through the selection and use of high molecular weight anionic polyacrylamide flocculants and the techniques developed for optimal dosing prior to scroll decanter centrifugation, thus keeping sub 40 micron solids loading within prescribed limits. Experiments on maximising fines capture in the presence of thixotropic drilling fluid additives (e.g. Xanthan gum and other biopolymers) are also discussed. As no core is produced during the drilling process, it is intended that the particle laden returned drilling fluid is used for top-of-hole geochemical and mineralogical assessment. A discussion is therefore presented on the biasing and latency of cuttings representivity by dewatering techniques, as well as the resulting detrimental effects on depth fidelity and accuracy. Data pertaining to the sample biasing with respect to geochemical signatures due to particle size distributions is presented and shows that, depending on the solids control and dewatering techniques used, it can have unwanted influence on top-of-hole analysis. Strategies are proposed to overcome these effects, improving sample quality. Successful solids control and cuttings dewatering for water-powered percussive drilling is presented, contributing towards the successful advancement of coiled tubing based greenfields mineral exploration.

Keywords: cuttings, dewatering, flocculation, percussive drilling, solids control

Procedia PDF Downloads 250
2033 Use Cases Analysis of Free Space Optical Communication System

Authors: Kassem Saab, Fritzen Bart, Yves-Marie Seveque

Abstract:

The deployment of Free Space Optical Communications (FSOC) systems requires the development of robust and reliable Optical Ground Stations (OGS) that can be easily installed and operated. To this end, the Engineering Department of Airbus Defence and Space is actively working on the development of innovative and compact OGS solutions that can be deployed in various environments and provide high-quality connectivity under different atmospheric conditions. This article presents an overview of our recent developments in this field, including an evaluation study of different use cases of the FSOC with respect to different atmospheric conditions. The goal is to provide OGS solutions that are both simple and highly effective, allowing for the deployment of high-speed communication networks in a wide range of scenarios.

Keywords: end to end optical communication, laser propagation, optical ground station, turbulence

Procedia PDF Downloads 98
2032 Energy Consumption Models for Electric Vehicles: Survey and Proposal of a More Realistic Model

Authors: I. Sagaama, A. Kechiche, W. Trojet, F. Kamoun

Abstract:

Replacing combustion engine vehicles by electric vehicles (EVs) is a major step in recent years due to their potential benefits. Battery autonomy and charging processes are still a big issue for that kind of vehicles. Therefore, reducing the energy consumption of electric vehicles becomes a necessity. Many researches target introducing recent information and communication technologies in EVs in order to propose reducing energy consumption services. Evaluation of realistic scenarios is a big challenge nowadays. In this paper, we will elaborate a state of the art of different proposed energy consumption models in the literature, then we will present a comparative study of these models, finally, we will extend previous works in order to propose an accurate and realistic energy model for calculating instantaneous power consumption of electric vehicles.

Keywords: electric vehicle, vehicular networks, energy models, traffic simulation

Procedia PDF Downloads 372
2031 Engagement Analysis Using DAiSEE Dataset

Authors: Naman Solanki, Souraj Mondal

Abstract:

With the world moving towards online communication, the video datastore has exploded in the past few years. Consequently, it has become crucial to analyse participant’s engagement levels in online communication videos. Engagement prediction of people in videos can be useful in many domains, like education, client meetings, dating, etc. Video-level or frame-level prediction of engagement for a user involves the development of robust models that can capture facial micro-emotions efficiently. For the development of an engagement prediction model, it is necessary to have a widely-accepted standard dataset for engagement analysis. DAiSEE is one of the datasets which consist of in-the-wild data and has a gold standard annotation for engagement prediction. Earlier research done using the DAiSEE dataset involved training and testing standard models like CNN-based models, but the results were not satisfactory according to industry standards. In this paper, a multi-level classification approach has been introduced to create a more robust model for engagement analysis using the DAiSEE dataset. This approach has recorded testing accuracies of 0.638, 0.7728, 0.8195, and 0.866 for predicting boredom level, engagement level, confusion level, and frustration level, respectively.

Keywords: computer vision, engagement prediction, deep learning, multi-level classification

Procedia PDF Downloads 115
2030 Hybrid Hierarchical Routing Protocol for WSN Lifetime Maximization

Authors: H. Aoudia, Y. Touati, E. H. Teguig, A. Ali Cherif

Abstract:

Conceiving and developing routing protocols for wireless sensor networks requires considerations on constraints such as network lifetime and energy consumption. In this paper, we propose a hybrid hierarchical routing protocol named HHRP combining both clustering mechanism and multipath optimization taking into account residual energy and RSSI measures. HHRP consists of classifying dynamically nodes into clusters where coordinators nodes with extra privileges are able to manipulate messages, aggregate data and ensure transmission between nodes according to TDMA and CDMA schedules. The reconfiguration of the network is carried out dynamically based on a threshold value which is associated with the number of nodes belonging to the smallest cluster. To show the effectiveness of the proposed approach HHRP, a comparative study with LEACH protocol is illustrated in simulations.

Keywords: routing protocol, optimization, clustering, WSN

Procedia PDF Downloads 471
2029 Endoscopic Depiction and Treatment Evaluation of Spirocerca lupi in Dogs

Authors: ELdessouky Sheta, Sayed Elzomor, Haithem Farghali, Kawkab A. Ahmed, Naglaa A. Abd Elkader

Abstract:

The present investigation has been dealt with Spirocerca (S.) lupi infested mongrel dogs. This parasitic disease is highly infective to human beings and carnivores. The diagnosis march has been comprised the lateral contrast thoracic radiographs, fecal examination, blood profile, endoscopic examination and histopathological sections of deep seated pinch biopsies. These infested dogs have been put under an adopted treatment with Ivermectin injection combined with oral prednisolone. The obtained results reveal an absence of the pessimistic recognitions particularly after 3 weeks from the onset of treatment. Endoscopically the presented esophageal nodules are marked out in the distal third of infested dogs' esophagus as masses assigned into the esophageal lumen and fundus of stomach. The endoscopic outlook of Spirocerca lupi lesions has been considered an integral procedure of the diagnostic march and for evaluation of treatment follow up. The diagnostic procedures and the recommended treatment are the vet's guidance to care for Spirocerca lupi in dogs, hoping in future to prevent this disease from being spread among human beings and other carnivores.

Keywords: endoscopy, esophagus, stomach spirocercosis, dogs

Procedia PDF Downloads 395
2028 Electroencephalography-Based Intention Recognition and Consensus Assessment during Emergency Response

Authors: Siyao Zhu, Yifang Xu

Abstract:

After natural and man-made disasters, robots can bypass the danger, expedite the search, and acquire unprecedented situational awareness to design rescue plans. The hands-free requirement from the first responders excludes the use of tedious manual control and operation. In unknown, unstructured, and obstructed environments, natural-language-based supervision is not amenable for first responders to formulate, and is difficult for robots to understand. Brain-computer interface is a promising option to overcome the limitations. This study aims to test the feasibility of using electroencephalography (EEG) signals to decode human intentions and detect the level of consensus on robot-provided information. EEG signals were classified using machine-learning and deep-learning methods to discriminate search intentions and agreement perceptions. The results show that the average classification accuracy for intention recognition and consensus assessment is 67% and 72%, respectively, proving the potential of incorporating recognizable users’ bioelectrical responses into advanced robot-assisted systems for emergency response.

Keywords: consensus assessment, electroencephalogram, emergency response, human-robot collaboration, intention recognition, search and rescue

Procedia PDF Downloads 93
2027 Architecture for Multi-Unmanned Aerial Vehicles Based Autonomous Precision Agriculture Systems

Authors: Ebasa Girma, Nathnael Minyelshowa, Lebsework Negash

Abstract:

The use of unmanned aerial vehicles (UAVs) in precision agriculture has seen a huge increase recently. As such, systems that aim to apply various algorithms on the field need a structured framework of abstractions. This paper defines the various tasks of the UAVs in precision agriculture and models them into an architectural framework. The presented architecture is built on the context that there will be minimal physical intervention to do the tasks defined with multiple coordinated and cooperative UAVs. Various tasks such as image processing, path planning, communication, data acquisition, and field mapping are employed in the architecture to provide an efficient system. Besides, different limitation for applying Multi-UAVs in precision agriculture has been considered in designing the architecture. The architecture provides an autonomous end-to-end solution, starting from mission planning, data acquisition, and image processing framework that is highly efficient and can enable farmers to comprehensively deploy UAVs onto their lands. Simulation and field tests show that the architecture offers a number of advantages that include fault-tolerance, robustness, developer, and user-friendliness.

Keywords: deep learning, multi-UAVs, precision agriculture, UAVs architecture

Procedia PDF Downloads 115
2026 Effect of Cryogenic Treatment on Various Mechanical and Metallurgical Properties of Different Material: A Review

Authors: Prashant Dhiman, Viranshu Kumar, Pradeep Joshi

Abstract:

Lot of research is going on to study the effect of cryogenic treatment on materials. Cryogenic treatment is a heat treatment process which is used widely to enhance the mechanical and metallurgical properties of various materials whether the material is ferrous or non ferrous. In almost all ferrous metals, it is found that retained austenite is converted into martensite. Generally deep cryogenic treatment is done using liquid nitrogen having temperature of -195 ℃. The austenite is unstable at this stage and converts into martensite. In non ferrous materials there presents a microcavity and under the action of stress it becomes crack. When this crack propagates, fracture takes place. As the metal contract under low temperature, by doing cryogenic treatment these microcavities will be filled hence increases the soundness of the material. Properties which are enhanced by cryogenic treatment of both ferrous and non ferrous materials are hardness, tensile strength, wear rate, electrical and thermal conductivity, and others. Also there is decrease in residual stress. A large number of manufacturing process (EDM, CNC etc.) are using cryogenic treatment on different tools or workpiece to reduce their wear. In this Review paper the use of cryogenic heat treatment in different manufacturing has been shown along with their advantages.

Keywords: cyrogenic treatment, EDM (Electrical Discharge Machining), CNC (Computer Numeric Control), Mechanical and Metallurgical Properties

Procedia PDF Downloads 437
2025 Sunshine Hour as a Factor to Maintain the Circadian Rhythm of Heart Rate: Analysis of Ambulatory ECG and Weather Big Data

Authors: Emi Yuda, Yutaka Yoshida, Junichiro Hayano

Abstract:

Distinct circadian rhythm of activity, i.e., high activity during the day and deep rest at night are a typical feature of a healthy lifestyle. Exposure to the skylight is thought to be an important factor to increase arousal level and maintain normal circadian rhythm. To examine whether sunshine hours influence the day-night contract of activity, we analyzed the relationship between 24-hour heart rate (HR) and weather data of the recording day. We analyzed data in 36,500 males and 49,854 females of Allostatic State Mapping by Ambulatory ECG Repository (ALLSTAR) database in Japan. Median (IQR) sunshine duration was 5.3 (2.8-7.9) hr. While sunshine hours had only modest effects of increasing 24-hour average HR in either gender (P=0.0282 and 0.0248 for male and female) and no significant effects on nighttime HR in either gender, it increased daytime HR (P = 0.0007 and 0.0015) and day-night HF difference in both genders (P < 0.0001 for both) even after adjusting for the effects of average temperature, atmospheric pressure, and humidity. Our observations support for the hypothesis that longer sunshine hours enhance circadian rhythm of activity.

Keywords: big data, circadian rhythm, heart rate, sunshine

Procedia PDF Downloads 165
2024 Energy Efficient Assessment of Energy Internet Based on Data-Driven Fuzzy Integrated Cloud Evaluation Algorithm

Authors: Chuanbo Xu, Xinying Li, Gejirifu De, Yunna Wu

Abstract:

Energy Internet (EI) is a new form that deeply integrates the Internet and the entire energy process from production to consumption. The assessment of energy efficient performance is of vital importance for the long-term sustainable development of EI project. Although the newly proposed fuzzy integrated cloud evaluation algorithm considers the randomness of uncertainty, it relies too much on the experience and knowledge of experts. Fortunately, the enrichment of EI data has enabled the utilization of data-driven methods. Therefore, the main purpose of this work is to assess the energy efficient of park-level EI by using a combination of a data-driven method with the fuzzy integrated cloud evaluation algorithm. Firstly, the indicators for the energy efficient are identified through literature review. Secondly, the artificial neural network (ANN)-based data-driven method is employed to cluster the values of indicators. Thirdly, the energy efficient of EI project is calculated through the fuzzy integrated cloud evaluation algorithm. Finally, the applicability of the proposed method is demonstrated by a case study.

Keywords: energy efficient, energy internet, data-driven, fuzzy integrated evaluation, cloud model

Procedia PDF Downloads 203
2023 The Impact of Collaborative Writing through Wikis and Blogs on Iranian EFL Learners’ Writing Achievement

Authors: Farhad Ghorbandordinejad, Shamsoddin Aref

Abstract:

Wikis and blogs, defined as educational tools in line with the objectives of collaborative writing, are regarded as innovative ways of writing addressing the problems of conventional types of writing. Although writing in wikis and blogs step in different contexts, they are both aiming at betterment of collaborative writing procedures. It is believed that due to certain reasons bringing in wikis and blogs to learners' life can lead to better performance of writing. This study aimed at dipping into pedagogical aspects of wikis and blogs in the hope of eliminating prior traditional mistakes and bringing students together in a more constructive L2 context. To this end, three groups of intermediate students were experimented in three settings of wiki-group, blog-group and conventional (control) group. Despite conventional group learners, participants in both experimental groups experienced L2 writing in a new telecollaborative context. An achievement test was administered after the treatment to check learners’ degree of improvement in EFL writing. The results of this study provide a deep insight towards the effectiveness of writing in the contexts of wikis and blogs compared with conventional writing procedures. The overall conclusion drawn from the distinction of conventional writing, on one hand, and wikis and blogs, on the other hand, indicates that the latter channels of writing are more constructive for learners’ writing improvements.

Keywords: collaborative writing, wikis, blogs, writing achievement

Procedia PDF Downloads 392
2022 Parameter Estimation of Induction Motors by PSO Algorithm

Authors: A. Mohammadi, S. Asghari, M. Aien, M. Rashidinejad

Abstract:

After emergent of alternative current networks and their popularity, asynchronous motors became more widespread than other kinds of industrial motors. In order to control and run these motors efficiently, an accurate estimation of motor parameters is needed. There are different methods to obtain these parameters such as rotor locked test, no load test, DC test, analytical methods, and so on. The most common drawback of these methods is their inaccuracy in estimation of some motor parameters. In order to remove this concern, a novel method for parameter estimation of induction motors using particle swarm optimization (PSO) algorithm is proposed. In the proposed method, transient state of motor is used for parameter estimation. Comparison of the simulation results purtuined to the PSO algorithm with other available methods justifies the effectiveness of the proposed method.

Keywords: induction motor, motor parameter estimation, PSO algorithm, analytical method

Procedia PDF Downloads 635
2021 Comparative Analysis between Wired and Wireless Technologies in Communications: A Review

Authors: Jafaru Ibrahim, Tonga Agadi Danladi, Haruna Sani

Abstract:

Many telecommunications industry are looking for new ways to maximize their investment in communication networks while ensuring reliable and secure information transmission. There is a variety of communications medium solutions, the two must popularly in used are wireless technology and wired options, such as copper and fiber-optic cable. Wired network has proven its potential in the olden days but nowadays wireless communication has emerged as a robust and most intellect and preferred communication technique. Each of these types of communication medium has their advantages and disadvantages according to its technological characteristics. Wired and wireless networking has different hardware requirements, ranges, mobility, reliability and benefits. The aim of the paper is to compare both the Wired and Wireless medium on the basis of various parameters such as usability, cost, efficiency, flexibility, coverage, reliability, mobility, speed, security etc.

Keywords: cost, mobility, reliability, speed, security, wired, wireless

Procedia PDF Downloads 472
2020 Between Riots and Protests: A Structural Approach to Urban Environmental Uprisings in China

Authors: Zi Zhu

Abstract:

The last decade has witnessed increasing urban environmental uprisings in China, as thousands of citizens swarmed into streets to express their deep concerns about the environmental threat and public health through various collective actions. The prevalent western approaches to collective actions, which usually treat urban riots and social movements as distinct phenomenon, have plagued an adequate analysis of the urban environmental uprisings in China. The increasing urban environmental contention can neither be categorized into riots nor social movements, as they carry the features of both: at first sight, they are spontaneous, disorganized and disruptive with an absence of observable mobilization process; however, unlike riots in the west, these collective actions conveyed explicit demand in a mostly non-destructive way rather than a pure expression of frustration. This article proposes a different approach to urban environmental uprisings in China which concerns the diminishing boundaries between riots and social movements and points to the underlying structural causes to the unique forms of urban environmental contention. Taking the urban anti-PX protests as examples, this article analyzes the societal and political structural environment faced by the Chinese environmental protesters and its influence on the origin and development of their contention.

Keywords: urban environmental uprisings, China, anti-PX protests, opportunity structure

Procedia PDF Downloads 291
2019 A Location Routing Model for the Logistic System in the Mining Collection Centers of the Northern Region of Boyacá-Colombia

Authors: Erika Ruíz, Luis Amaya, Diego Carreño

Abstract:

The main objective of this study is to design a mathematical model for the logistics of mining collection centers in the northern region of the department of Boyacá (Colombia), determining the structure that facilitates the flow of products along the supply chain. In order to achieve this, it is necessary to define a suitable design of the distribution network, taking into account the products, customer’s characteristics and the availability of information. Likewise, some other aspects must be defined, such as number and capacity of collection centers to establish, routes that must be taken to deliver products to the customers, among others. This research will use one of the operation research problems, which is used in the design of distribution networks known as Location Routing Problem (LRP).

Keywords: location routing problem, logistic, mining collection, model

Procedia PDF Downloads 218
2018 Port Miami in the Caribbean and Mesoamerica: Data, Spatial Networks and Trends

Authors: Richard Grant, Landolf Rhode-Barbarigos, Shouraseni Sen Roy, Lucas Brittan, Change Li, Aiden Rowe

Abstract:

Ports are critical for the US economy, connecting farmers, manufacturers, retailers, consumers and an array of transport and storage operators. Port facilities vary widely in terms of their productivity, footprint, specializations, and governance. In this context, Port Miami is considered as one of the busiest ports providing both cargo and cruise services in connecting the wider region of the Caribbean and Mesoamerica to the global networks. It is considered as the “Cruise Capital of the World and Global Gateway of the Americas” and “leading container port in Florida.” Furthermore, it has also been ranked as one of the top container ports in the world and the second most efficient port in North America. In this regard, Port Miami has made significant investments in the strategic and capital infrastructure of about US$1 billion, including increasing the channel depth and other onshore infrastructural enhancements. Therefore, this study involves a detailed analysis of Port Miami’s network, using publicly available multiple years of data about marine vessel traffic, cargo, and connectivity and performance indices from 2015-2021. Through the analysis of cargo and cruise vessels to and from Port Miami and its relative performance at the global scale from 2015 to 2021, this study examines the port’s long-term resilience and future growth potential. The main results of the analyses indicate that the top category for both inbound and outbound cargo is manufactured products and textiles. In addition, there are a lot of fresh fruits, vegetables, and produce for inbound and processed food for outbound cargo. Furthermore, the top ten port connections for Port Miami are all located in the Caribbean region, the Gulf of Mexico, and the Southeast USA. About half of the inbound cargo comes from Savannah, Saint Thomas, and Puerto Plata, while outbound cargo is from Puerto Corte, Freeport, and Kingston. Additionally, for cruise vessels, a significantly large number of vessels originate from Nassau, followed by Freeport. The number of passenger's vessels pre-COVID was almost 1,000 per year, which dropped substantially in 2020 and 2021 to around 300 vessels. Finally, the resilience and competitiveness of Port Miami were also assessed in terms of its network connectivity by examining the inbound and outbound maritime vessel traffic. It is noteworthy that the most frequent port connections for Port Miami were Freeport and Savannah, followed by Kingston, Nassau, and New Orleans. However, several of these ports, Puerto Corte, Veracruz, Puerto Plata, and Santo Thomas, have low resilience and are highly vulnerable, which needs to be taken into consideration for the long-term resilience of Port Miami in the future.

Keywords: port, Miami, network, cargo, cruise

Procedia PDF Downloads 81
2017 Estimating the Power Influence of an Off-Grid Photovoltaic Panel on the Indicting Rate of a Storage System (Batteries)

Authors: Osamede Asowata

Abstract:

The current resurgence of interest in the use of renewable energy is driven by the need to reduce the high environmental impact of fossil-based energy. The aim of this paper is to evaluate the effect of a stationary PV panel on the charging rate of deep-cycle valve regulated lead-acid (DCVRLA) batteries. Stationary PV panels are set to a fixed tilt and orientation angle, which plays a major role in dictating the output power of a PV panel and subsequently on the charging time of a DCVRLA battery. In a basic PV system, an energy storage device that stores the power from the PV panel is necessary due to the fluctuating nature of the PV voltage caused by climatic conditions. The charging and discharging times of a DCVRLA battery were determined for a twelve month period from January through December 2012. Preliminary results, which include regression analysis (R2), conversion-time per week and work-time per day, indicate that a 36 degrees tilt angle produces a good charging rate for a latitude of 26 degrees south throughout the year.

Keywords: tilt and orientation angles, solar chargers, PV panels, storage devices, direct solar radiation.

Procedia PDF Downloads 240