Search results for: vision problems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7203

Search results for: vision problems

6903 A Biologically Inspired Approach to Automatic Classification of Textile Fabric Prints Based On Both Texture and Colour Information

Authors: Babar Khan, Wang Zhijie

Abstract:

Machine Vision has been playing a significant role in Industrial Automation, to imitate the wide variety of human functions, providing improved safety, reduced labour cost, the elimination of human error and/or subjective judgments, and the creation of timely statistical product data. Despite the intensive research, there have not been any attempts to classify fabric prints based on printed texture and colour, most of the researches so far encompasses only black and white or grey scale images. We proposed a biologically inspired processing architecture to classify fabrics w.r.t. the fabric print texture and colour. We created a texture descriptor based on the HMAX model for machine vision, and incorporated colour descriptor based on opponent colour channels simulating the single opponent and double opponent neuronal function of the brain. We found that our algorithm not only outperformed the original HMAX algorithm on classification of fabric print texture and colour, but we also achieved a recognition accuracy of 85-100% on different colour and different texture fabric.

Keywords: automatic classification, texture descriptor, colour descriptor, opponent colour channel

Procedia PDF Downloads 484
6902 Sports Fans and Non-Interested Public Recognition of the Problems of Sports in Egypt through Caricature

Authors: Alaaeldin Hamdy Ahmed Mohammed

Abstract:

Introduction: This study examines sports’ fans and non-interested public perception and recognition of the problems that have negative impacts upon the Egyptian sports, particularly football, through caricatures. Eight caricature paintings were designed to express eight problems affecting the Egyptian sports and its development. These paintings were distributed on two groups of the fans and the non-interested public. Methods: The study was limited to eight caricatures representing the eight issues which are: the impact of stopping the sports activity on athletes, the effect of clubs’ disagreement, fanaticism between the members of the ultras of different clubs, the negative impact of the mingling of politics into sports, the negative role of the clubs affects the professionalism of the promising players, the conflict between the national organization responsible for sports, the breaking in of the fans to the playgrounds, the impact of the lack of planning on the national team. The Results: The results showed that both sports fans and those who are not interested in sports recognized the problems that the caricatures refer to and criticizes exaggeration although the rate was higher for the fans. These caricatures contributed also in their recognition of the danger of the negative impact of these problems on the Egyptian sports, particularly football which is the most common at the Egyptian sports fans. Discussion: This finding echoes the conclusion that caricatures are distinctive in the adults’ facial stimuli that are either systematically exaggerated recognition of them.

Keywords: caricature, fans, football, sports

Procedia PDF Downloads 317
6901 Social Network Based Decision Support System for Smart U-Parking Planning

Authors: Jun-Ho Park, Kwang-Woo Nam, Seung-Mo Hong, Tae-Heon Moon, Sang-Ho Lee, Youn-Taik Leem

Abstract:

The aim of this study was to build ‘Ubi-Net’, a decision-making support system for systematic establishment in U-City planning. We have experienced various urban problems caused by high-density development and population concentrations in established urban areas. To address these problems, a U-Service contributes to the alleviation of urban problems by providing real-time information to citizens through network connections and related information. However, technology, devices, and information for consumers are required for systematic U-Service planning in towns and cities where there are many difficulties in this regard, and a lack of reference systems. Thus, this study suggests methods to support the establishment of sustainable planning by providing comprehensive information including IT technology, devices, news, and social networking services(SNS) to U-City planners through intelligent searches. In this study, we targeted Smart U-Parking Planning to solve parking problems in an ‘old’ city. Through this study, we sought to contribute to supporting advances in U-Space and the alleviation of urban problems.

Keywords: desigin and decision support system, smart u-parking planning, social network analysis, urban engineering

Procedia PDF Downloads 426
6900 Approximations of Fractional Derivatives and Its Applications in Solving Non-Linear Fractional Variational Problems

Authors: Harendra Singh, Rajesh Pandey

Abstract:

The paper presents a numerical method based on operational matrix of integration and Ryleigh method for the solution of a class of non-linear fractional variational problems (NLFVPs). Chebyshev first kind polynomials are used for the construction of operational matrix. Using operational matrix and Ryleigh method the NLFVP is converted into a system of non-linear algebraic equations, and solving these equations we obtained approximate solution for NLFVPs. Convergence analysis of the proposed method is provided. Numerical experiment is done to show the applicability of the proposed numerical method. The obtained numerical results are compared with exact solution and solution obtained from Chebyshev third kind. Further the results are shown graphically for different fractional order involved in the problems.

Keywords: non-linear fractional variational problems, Rayleigh-Ritz method, convergence analysis, error analysis

Procedia PDF Downloads 298
6899 Factors Affecting Visual Environment in Mine Lighting

Authors: N. Lakshmipathy, Ch. S. N. Murthy, M. Aruna

Abstract:

The design of lighting systems for surface mines is not an easy task because of the unique environment and work procedures encountered in the mines. The primary objective of this paper is to identify the major problems encountered in mine lighting application and to provide guidance in the solution of these problems. In the surface mining reflectance of surrounding surfaces is one of the important factors, which improve the vision, in the night hours. But due to typical working nature in the mines it is very difficult to fulfill these requirements, and also the orientation of the light at work site is a challenging task. Due to this reason machine operator and other workers in a mine need to be able to orient themselves in a difficult visual environment. The haul roads always keep on changing to tune with the mining activity. Other critical area such as dumpyards, stackyards etc. also change their phase with time, and it is difficult to illuminate such areas. Mining is a hazardous occupation, with workers exposed to adverse conditions; apart from the need for hard physical labor, there is exposure to stress and environmental pollutants like dust, noise, heat, vibration, poor illumination, radiation, etc. Visibility is restricted when operating load haul dumper and Heavy Earth Moving Machinery (HEMM) vehicles resulting in a number of serious accidents. one of the leading causes of these accidents is the inability of the equipment operator to see clearly people, objects or hazards around the machine. Results indicate blind spots are caused primarily by posts, the back of the operator's cab, and by lights and light brackets. The careful designed and implemented, lighting systems provide mine workers improved visibility and contribute to improved safety, productivity and morale. Properly designed lighting systems can improve visibility and safety during working in the opencast mines.

Keywords: contrast, efficacy, illuminance, illumination, light, luminaire, luminance, reflectance, visibility

Procedia PDF Downloads 358
6898 Quantitative Wide-Field Swept-Source Optical Coherence Tomography Angiography and Visual Outcomes in Retinal Artery Occlusion

Authors: Yifan Lu, Ying Cui, Ying Zhu, Edward S. Lu, Rebecca Zeng, Rohan Bajaj, Raviv Katz, Rongrong Le, Jay C. Wang, John B. Miller

Abstract:

Purpose: Retinal artery occlusion (RAO) is an ophthalmic emergency that can lead to poor visual outcome and is associated with an increased risk of cerebral stroke and cardiovascular events. Fluorescein angiography (FA) is the traditional diagnostic tool for RAO; however, wide-field swept-source optical coherence tomography angiography (WF SS-OCTA), as a nascent imaging technology, is able to provide quick and non-invasive angiographic information with a wide field of view. In this study, we looked for associations between OCT-A vascular metrics and visual acuity in patients with prior diagnosis of RAO. Methods: Patients with diagnoses of central retinal artery occlusion (CRAO) or branched retinal artery occlusion (BRAO) were included. A 6mm x 6mm Angio and a 15mm x 15mm AngioPlex Montage OCT-A image were obtained for both eyes in each patient using the Zeiss Plex Elite 9000 WF SS-OCTA device. Each 6mm x 6mm image was divided into nine Early Treatment Diabetic Retinopathy Study (ETDRS) subfields. The average measurement of the central foveal subfield, inner ring, and outer ring was calculated for each parameter. Non-perfusion area (NPA) was manually measured using 15mm x 15mm Montage images. A linear regression model was utilized to identify a correlation between the imaging metrics and visual acuity. A P-value less than 0.05 was considered to be statistically significant. Results: Twenty-five subjects were included in the study. For RAO eyes, there was a statistically significant negative correlation between vision and retinal thickness as well as superficial capillary plexus vessel density (SCP VD). A negative correlation was found between vision and deep capillary plexus vessel density (DCP VD) without statistical significance. There was a positive correlation between vision and choroidal thickness as well as choroidal volume without statistical significance. No statistically significant correlation was found between vision and the above metrics in contralateral eyes. For NPA measurements, no significant correlation was found between vision and NPA. Conclusions: This is the first study to our best knowledge to investigate the utility of WF SS-OCTA in RAO and to demonstrate correlations between various retinal vascular imaging metrics and visual outcomes. Further investigations should explore the associations between these imaging findings and cardiovascular risk as RAO patients are at elevated risk for symptomatic stroke. The results of this study provide a basis to understand the structural changes involved in visual outcomes in RAO. Furthermore, they may help guide management of RAO and prevention of cerebral stroke and cardiovascular accidents in patients with RAO.

Keywords: OCTA, swept-source OCT, retinal artery occlusion, Zeiss Plex Elite

Procedia PDF Downloads 139
6897 Motion Planning and Simulation Design of a Redundant Robot for Sheet Metal Bending Processes

Authors: Chih-Jer Lin, Jian-Hong Hou

Abstract:

Industry 4.0 is a vision of integrated industry implemented by artificial intelligent computing, software, and Internet technologies. The main goal of industry 4.0 is to deal with the difficulty owing to competitive pressures in the marketplace. For today’s manufacturing factories, the type of production is changed from mass production (high quantity production with low product variety) to medium quantity-high variety production. To offer flexibility, better quality control, and improved productivity, robot manipulators are used to combine material processing, material handling, and part positioning systems into an integrated manufacturing system. To implement the automated system for sheet metal bending operations, motion planning of a 7-degrees of freedom (DOF) robot is studied in this paper. A virtual reality (VR) environment of a bending cell, which consists of the robot and a bending machine, is established using the virtual robot experimentation platform (V-REP) simulator. For sheet metal bending operations, the robot only needs six DOFs for the pick-and-place or tracking tasks. Therefore, this 7 DOF robot has more DOFs than the required to execute a specified task; it can be called a redundant robot. Therefore, this robot has kinematic redundancies to deal with the task-priority problems. For redundant robots, Pseudo-inverse of the Jacobian is the most popular motion planning method, but the pseudo-inverse methods usually lead to a kind of chaotic motion with unpredictable arm configurations as the Jacobian matrix lose ranks. To overcome the above problem, we proposed a method to formulate the motion planning problems as optimization problem. Moreover, a genetic algorithm (GA) based method is proposed to deal with motion planning of the redundant robot. Simulation results validate the proposed method feasible for motion planning of the redundant robot in an automated sheet-metal bending operations.

Keywords: redundant robot, motion planning, genetic algorithm, obstacle avoidance

Procedia PDF Downloads 146
6896 Deep-Learning to Generation of Weights for Image Captioning Using Part-of-Speech Approach

Authors: Tiago do Carmo Nogueira, Cássio Dener Noronha Vinhal, Gélson da Cruz Júnior, Matheus Rudolfo Diedrich Ullmann

Abstract:

Generating automatic image descriptions through natural language is a challenging task. Image captioning is a task that consistently describes an image by combining computer vision and natural language processing techniques. To accomplish this task, cutting-edge models use encoder-decoder structures. Thus, Convolutional Neural Networks (CNN) are used to extract the characteristics of the images, and Recurrent Neural Networks (RNN) generate the descriptive sentences of the images. However, cutting-edge approaches still suffer from problems of generating incorrect captions and accumulating errors in the decoders. To solve this problem, we propose a model based on the encoder-decoder structure, introducing a module that generates the weights according to the importance of the word to form the sentence, using the part-of-speech (PoS). Thus, the results demonstrate that our model surpasses state-of-the-art models.

Keywords: gated recurrent units, caption generation, convolutional neural network, part-of-speech

Procedia PDF Downloads 102
6895 Educational Leadership for Social Justice: Meeting UK Muslim Expectation

Authors: Mochammad Thalut

Abstract:

This essay discusses how educational leadership response the Muslims pupils’ problems and their expectation about education in the UK. As we know, the Muslims community in the country is increasing. However, the debate about educational leadership is still limited to the separation between religion and academic by westerns approach. It is found that there are four major problems of Muslims pupils that need to solve by the educational leader to provide social justice in education. Leader-teacher as an Islamic concept of the educational leader is an alternative approach that can be used by the educational leader to overcome the problems. In the end, it is strongly recommended to bring this issue to the leadership development program in the UK to give all aspiring heads understanding about Muslims expectation about education.

Keywords: Muslim, education, leadership, identity

Procedia PDF Downloads 255
6894 Mistakes in Translation Causing Translation Problems for Undergraduate Students in Thailand

Authors: Benjawan Tipprachaban

Abstract:

This research aims to investigate mistakes in translation, particularly from Thai to English, which cause translation problems for undergraduate students in Thailand. The researcher had the non-English major students of Suratthani Rajabhat University as samples. The data were collected by having 27 non-English major students translate 50 Thai sentences into English. After the translation, lots of mistakes were found and the researcher categorized them into 3 main types which were the grammatical mistake, the usage mistake, and the spelling mistake. However, this research is currently in the process of analyzing the data and shall be completed in August. The researcher, nevertheless, predicts that, of all the mistakes, the grammatical mistake will principally be made, the usage mistake and the spelling one respectively, which will support the researcher’s hypothesizes, i.e. 1) the grammatical mistake, mainly caused by language transfer, essentially leads to considerable translation problems; 2) the usage mistake is another critical problem that causes translation problems; 3) basic knowledge in Thai to English translation of undergraduate students in Thailand is at low level.

Keywords: English, language, Thai, translation

Procedia PDF Downloads 458
6893 Constraint-Directed Techniques for Transport Scheduling with Capacity Restrictions of Automotive Manufacturing Components

Authors: Martha Ndeley, John Ikome

Abstract:

In this paper, we expand the scope of constraint-directed techniques to deal with the case of transportation schedule with capacity restrictions where the scheduling problem includes alternative activities. That is, not only does the scheduling problem consist of determining when an activity is to be executed, but also determining which set of alternative activities is to be executed at all level of transportation from input to output. Such problems encompass both alternative resource problems and alternative process plan problems. We formulate a constraint-based representation of alternative activities to model problems containing such choices. We then extend existing constraint-directed scheduling heuristic commitment techniques and propagators to reason directly about the fact that an activity does not necessarily have to exist in a final transportation schedule without being completed. Tentative results show that an algorithm using a novel texture-based heuristic commitment technique propagators achieves the best overall performance of the techniques tested.

Keywords: production, transportation, scheduling, integrated

Procedia PDF Downloads 362
6892 Impact of Activated Sludge Bulking and Foaming on the Quality of Kuwait's Irrigation Water

Authors: Abdallah Abusam, Andrzej Mydlarczyk, Fadila Al-Salameen, Moh Elmuntasir Ahmed

Abstract:

Treated municipal wastewater produced in Kuwait is used mainly in agricultural and greenery landscape irrigations. However, there are strong doubts that severe sludge bulking and foaming problems, particularly during winter seasons, may render the treated wastewater to be unsuitable for irrigation purposes. To assess the impact of sludge bulking and foaming problems on the quality of treated effluents, samples were collected weekly for nine months (January to September 2014) from the secondary effluents, tertiary effluents and sludge-mixed liquor streams of the two plants that severely suffer from sludge bulking and foaming problems. Dominant filamentous bacteria were identified and quantified using a molecular method called VIT (Vermicon Identification Technology). Quality of the treated effluents was determined according to water and wastewater standard methods. Obtained results were then statistically analyzed and compared to irrigation water standards. Statistical results indicated that secondary effluents were greatly impacted by sludge bulking and foaming problems, while tertiary effluents were slightly affected. This finding highlights the importance of having tertiary treatment units in plants that encountering sludge bulking and foaming problems.

Keywords: agriculture, filamentous bacteria, reclamation, reuse, wastewater

Procedia PDF Downloads 269
6891 An Accurate Computation of 2D Zernike Moments via Fast Fourier Transform

Authors: Mohammed S. Al-Rawi, J. Bastos, J. Rodriguez

Abstract:

Object detection and object recognition are essential components of every computer vision system. Despite the high computational complexity and other problems related to numerical stability and accuracy, Zernike moments of 2D images (ZMs) have shown resilience when used in object recognition and have been used in various image analysis applications. In this work, we propose a novel method for computing ZMs via Fast Fourier Transform (FFT). Notably, this is the first algorithm that can generate ZMs up to extremely high orders accurately, e.g., it can be used to generate ZMs for orders up to 1000 or even higher. Furthermore, the proposed method is also simpler and faster than the other methods due to the availability of FFT software and/or hardware. The accuracies and numerical stability of ZMs computed via FFT have been confirmed using the orthogonality property. We also introduce normalizing ZMs with Neumann factor when the image is embedded in a larger grid, and color image reconstruction based on RGB normalization of the reconstructed images. Astonishingly, higher-order image reconstruction experiments show that the proposed methods are superior, both quantitatively and subjectively, compared to the q-recursive method.

Keywords: Chebyshev polynomial, fourier transform, fast algorithms, image recognition, pseudo Zernike moments, Zernike moments

Procedia PDF Downloads 265
6890 Domain Adaptation Save Lives - Drowning Detection in Swimming Pool Scene Based on YOLOV8 Improved by Gaussian Poisson Generative Adversarial Network Augmentation

Authors: Simiao Ren, En Wei

Abstract:

Drowning is a significant safety issue worldwide, and a robust computer vision-based alert system can easily prevent such tragedies in swimming pools. However, due to domain shift caused by the visual gap (potentially due to lighting, indoor scene change, pool floor color etc.) between the training swimming pool and the test swimming pool, the robustness of such algorithms has been questionable. The annotation cost for labeling each new swimming pool is too expensive for mass adoption of such a technique. To address this issue, we propose a domain-aware data augmentation pipeline based on Gaussian Poisson Generative Adversarial Network (GP-GAN). Combined with YOLOv8, we demonstrate that such a domain adaptation technique can significantly improve the model performance (from 0.24 mAP to 0.82 mAP) on new test scenes. As the augmentation method only require background imagery from the new domain (no annotation needed), we believe this is a promising, practical route for preventing swimming pool drowning.

Keywords: computer vision, deep learning, YOLOv8, detection, swimming pool, drowning, domain adaptation, generative adversarial network, GAN, GP-GAN

Procedia PDF Downloads 101
6889 Analysis of Facial Expressions with Amazon Rekognition

Authors: Kashika P. H.

Abstract:

The development of computer vision systems has been greatly aided by the efficient and precise detection of images and videos. Although the ability to recognize and comprehend images is a strength of the human brain, employing technology to tackle this issue is exceedingly challenging. In the past few years, the use of Deep Learning algorithms to treat object detection has dramatically expanded. One of the key issues in the realm of image recognition is the recognition and detection of certain notable people from randomly acquired photographs. Face recognition uses a way to identify, assess, and compare faces for a variety of purposes, including user identification, user counting, and classification. With the aid of an accessible deep learning-based API, this article intends to recognize various faces of people and their facial descriptors more accurately. The purpose of this study is to locate suitable individuals and deliver accurate information about them by using the Amazon Rekognition system to identify a specific human from a vast image dataset. We have chosen the Amazon Rekognition system, which allows for more accurate face analysis, face comparison, and face search, to tackle this difficulty.

Keywords: Amazon rekognition, API, deep learning, computer vision, face detection, text detection

Procedia PDF Downloads 104
6888 A Matheuristic Algorithm for the School Bus Routing Problem

Authors: Cagri Memis, Muzaffer Kapanoglu

Abstract:

The school bus routing problem (SBRP) is a variant of the Vehicle Routing Problem (VRP) classified as a location-allocation-routing problem. In this study, the SBRP is decomposed into two sub-problems: (1) bus route generation and (2) bus stop selection to solve large instances of the SBRP in reasonable computational times. To solve the first sub-problem, we propose a genetic algorithm to generate bus routes. Once the routes have been fixed, a sub-problem remains of allocating students to stops considering the capacity of the buses and the walkability constraints of the students. While the exact method solves small-scale problems, treating large-scale problems with the exact method becomes complex due to computational problems, a deficiency that the genetic algorithm can overcome. Results obtained from the proposed approach on 150 instances up to 250 stops show that the matheuristic algorithm provides better solutions in reasonable computational times with respect to benchmark algorithms.

Keywords: genetic algorithm, matheuristic, school bus routing problem, vehicle routing problem

Procedia PDF Downloads 71
6887 Multi-Spectral Deep Learning Models for Forest Fire Detection

Authors: Smitha Haridasan, Zelalem Demissie, Atri Dutta, Ajita Rattani

Abstract:

Aided by the wind, all it takes is one ember and a few minutes to create a wildfire. Wildfires are growing in frequency and size due to climate change. Wildfires and its consequences are one of the major environmental concerns. Every year, millions of hectares of forests are destroyed over the world, causing mass destruction and human casualties. Thus early detection of wildfire becomes a critical component to mitigate this threat. Many computer vision-based techniques have been proposed for the early detection of forest fire using video surveillance. Several computer vision-based methods have been proposed to predict and detect forest fires at various spectrums, namely, RGB, HSV, and YCbCr. The aim of this paper is to propose a multi-spectral deep learning model that combines information from different spectrums at intermediate layers for accurate fire detection. A heterogeneous dataset assembled from publicly available datasets is used for model training and evaluation in this study. The experimental results show that multi-spectral deep learning models could obtain an improvement of about 4.68 % over those based on a single spectrum for fire detection.

Keywords: deep learning, forest fire detection, multi-spectral learning, natural hazard detection

Procedia PDF Downloads 241
6886 Resisting Adversarial Assaults: A Model-Agnostic Autoencoder Solution

Authors: Massimo Miccoli, Luca Marangoni, Alberto Aniello Scaringi, Alessandro Marceddu, Alessandro Amicone

Abstract:

The susceptibility of deep neural networks (DNNs) to adversarial manipulations is a recognized challenge within the computer vision domain. Adversarial examples, crafted by adding subtle yet malicious alterations to benign images, exploit this vulnerability. Various defense strategies have been proposed to safeguard DNNs against such attacks, stemming from diverse research hypotheses. Building upon prior work, our approach involves the utilization of autoencoder models. Autoencoders, a type of neural network, are trained to learn representations of training data and reconstruct inputs from these representations, typically minimizing reconstruction errors like mean squared error (MSE). Our autoencoder was trained on a dataset of benign examples; learning features specific to them. Consequently, when presented with significantly perturbed adversarial examples, the autoencoder exhibited high reconstruction errors. The architecture of the autoencoder was tailored to the dimensions of the images under evaluation. We considered various image sizes, constructing models differently for 256x256 and 512x512 images. Moreover, the choice of the computer vision model is crucial, as most adversarial attacks are designed with specific AI structures in mind. To mitigate this, we proposed a method to replace image-specific dimensions with a structure independent of both dimensions and neural network models, thereby enhancing robustness. Our multi-modal autoencoder reconstructs the spectral representation of images across the red-green-blue (RGB) color channels. To validate our approach, we conducted experiments using diverse datasets and subjected them to adversarial attacks using models such as ResNet50 and ViT_L_16 from the torch vision library. The autoencoder extracted features used in a classification model, resulting in an MSE (RGB) of 0.014, a classification accuracy of 97.33%, and a precision of 99%.

Keywords: adversarial attacks, malicious images detector, binary classifier, multimodal transformer autoencoder

Procedia PDF Downloads 112
6885 F-VarNet: Fast Variational Network for MRI Reconstruction

Authors: Omer Cahana, Maya Herman, Ofer Levi

Abstract:

Magnetic resonance imaging (MRI) is a long medical scan that stems from a long acquisition time. This length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach, such as compress sensing (CS) or parallel imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. In order to achieve that, two properties have to exist: i) the signal must be sparse under a known transform domain, ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm needs to be applied to recover the signal. While the rapid advance in the deep learning (DL) field, which has demonstrated tremendous successes in various computer vision task’s, the field of MRI reconstruction is still in an early stage. In this paper, we present an extension of the state-of-the-art model in MRI reconstruction -VarNet. We utilize VarNet by using dilated convolution in different scales, which extends the receptive field to capture more contextual information. Moreover, we simplified the sensitivity map estimation (SME), for it holds many unnecessary layers for this task. Those improvements have shown significant decreases in computation costs as well as higher accuracy.

Keywords: MRI, deep learning, variational network, computer vision, compress sensing

Procedia PDF Downloads 161
6884 3D Vision Transformer for Cervical Spine Fracture Detection and Classification

Authors: Obulesh Avuku, Satwik Sunnam, Sri Charan Mohan Janthuka, Keerthi Yalamaddi

Abstract:

In the United States alone, there are over 1.5 million spine fractures per year, resulting in about 17,730 spinal cord injuries. The cervical spine is where fractures in the spine most frequently occur. The prevalence of spinal fractures in the elderly has increased, and in this population, fractures may be harder to see on imaging because of coexisting degenerative illness and osteoporosis. Nowadays, computed tomography (CT) is almost completely used instead of radiography for the imaging diagnosis of adult spine fractures (x-rays). To stop neurologic degeneration and paralysis following trauma, it is vital to trace any vertebral fractures at the earliest. Many approaches have been proposed for the classification of the cervical spine [2d models]. We are here in this paper trying to break the bounds and use the vision transformers, a State-Of-The-Art- Model in image classification, by making minimal changes possible to the architecture of ViT and making it 3D-enabled architecture and this is evaluated using a weighted multi-label logarithmic loss. We have taken this problem statement from a previously held Kaggle competition, i.e., RSNA 2022 Cervical Spine Fracture Detection.

Keywords: cervical spine, spinal fractures, osteoporosis, computed tomography, 2d-models, ViT, multi-label logarithmic loss, Kaggle, public score, private score

Procedia PDF Downloads 114
6883 Pattern of ICU Admission due to Drug Problems

Authors: Kamel Abd Elaziz Mohamed

Abstract:

Introduction: Drug related problems (DRPs) are of major concern, affecting patients of both sex. They impose considerable economic burden on the society and the health-care systems. Aim of the work: The aim of this work was to identify and categorize drug-related problems in adult intensive care unit. Patients and methods: The study was a prospective, observational study as eighty six patients were included. They were consecutively admitted to ICU through the emergency room or transferred from the general ward due to DRPs. Parameters included in the study as length of stay in ICU, need for cardiovascular support or mechanical ventilation, dialysis, as well as APACHE II score were recorded. Results: Drug related problems represent 3.6% of the total ICU admission. The median (range) of APACHE II score for 86 patients included in the study was 17 (10-23), and length of ICU stay was 2.4 (1.5-4.2) days. In 45 patients (52%), DRP was drug over dose (group 1), while other DRP was present in the other 41 patients (48%, group 11). Patients in group 1 were older (39 years versus 32 years in group 11), with significant impaired renal function. The need of inotropic drugs and mechanical ventilation as well as the length of stay (LOS) in ICU was significantly higher in group 1. There were no significant difference in GCS between both groups, however APACHE II score was significantly higher in group 1. Only four patients (4.6%) were admitted by suicidal attempt as well as three patients (3.4%) due to trauma drug-related admissions, all were in (group 1). Nineteen percent of the patients had drug related problem due to hypoglycaemic medication followed by tranquilizer (15%). Adverse drug effect followed by failure to receive medication were the most causes of drug problem in (group11).The total mortality rate was 4.6%, all of them were eventually non preventable. Conclusion: The critically ill patients admitted due to drug related problems represented a small proportion (3.6%) of admissions to the ICU. Hypoglycaemic medication was one of the most common causes of admission by drug related problems.

Keywords: drug related problems, ICU, cost, safety

Procedia PDF Downloads 333
6882 Exploration of the Possible Link Between Emotional Problems and Cholesterol Levels Among Children Diagnosed with Attention-Deficit Hyperactivity Disorder

Authors: Rosa S. Wong, Keith T.S. Tung, H.W. Tsang, Frederick K. Ho, Patrick Ip

Abstract:

Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by inattention and hyperactive-impulsive behavior. Evidence shows that ADHD and mood problems such as depression and anxiety often co-occur and yet not everyone with ADHD reported elevated emotional problems. Given that cholesterol is essential for healthy brain development including the regions governing emotion regulation, reports found lower cholesterol levels in patients with major depressive disorder and those with suicide attempt behavior compared to healthy subjects. This study explored whether ADHD adolescents experienced more emotional problems and whether emotional problems correlated with cholesterol levels in these adolescents. This study used a portion of data from the longitudinal cohort study which was designed to investigate the long-term impact of family socioeconomic status on child development. In 2018/19, parents of 300 adolescents (average age: 12.57+/-0.49 years) were asked to rate their children’s emotional problems and report whether their children had doctor-diagnosed psychiatric diseases. We further collected blood samples from 263 children to study their lipid profile (total cholesterol, high-density lipoprotein (HDL)-cholesterol, and low-density lipoprotein (LDL)-cholesterol). Regression analyses were performed to test the relationships between variables of interest. Among 300 children, 27 (9%) had ADHD diagnosis. Analysis based on overall sample found no association between ADHD and emotional problems, but when investigating the relationship by gender, there was a significant interaction effect of ADHD and gender on emotional problems (p=0.037), with ADHD males displaying more emotional problems than ADHD females. Further analyses based on 263 children (21 with ADHD diagnosis) found significant interaction effect of ADHD and gender on total cholesterol (p=0.038) and low LDL-cholesterol levels (p=0.013) after adjusting for the child’s physical disease history. Specifically, ADHD males had significantly lower total cholesterol and low lipoprotein-cholesterol levels than ADHD females. In ADHD males, more emotional problems were associated with lower LDL-cholesterol levels (B = -4.26, 95%CI (-7.46, -1.07), p=0.013). We found preliminary support for the association between more emotional problems and lower cholesterol levels in ADHD children, especially among males. Although larger prospective studies are needed to substantiate these claims, the evidence highlights the importance of healthy lifestyle to keep cholesterol levels in normal range which can have positive effects on physical and mental health.

Keywords: attention-deficit hyperactivity disorder, cholesterol, emotional problems, adolescents

Procedia PDF Downloads 147
6881 Pattern and Clinical Profile of Children and Adolescent Visiting Psychiatry Out Patient Department of Tertiary Health Center Amidst COVID Pandemic- a Cross Sectional Study

Authors: Poornima Khadanga, Gaurav Pawar, Madhavi Rairikar

Abstract:

Background: The COVID 19 pandemic, with its unparalleled mental health repercussions, has impacted people globally and has catalyzed a Mental Health pandemic among the youth. The detrimental effects on mental health needs to be pondered at the earliest. Aims: To study the behavioral problems among children and adolescents visiting Psychiatry Outpatient Department Tertiary Health Care during COVID pandemic and its correlation with socio-demographic profiles. Methods: A cross sectional study was conducted by interviewing 120 participants between 4 to 17 years of age and their parents, visiting Psychiatry OPD. Behavioral problems were assessed using the Strength and Difficulties Questionnaire and diagnosed by DSM-5. Statistical analysis was done by SPSS-21. Results: Male participants showed significant association with conduct (t=2.36, p=0.02) and hyperactive problems (t=5.07, p<0.05). Increase in screen time showed a positive correlation with conduct problems (r=0.22. p=0.02). Attention Deficit Hyperkinetic Disorder (18.3%) was the most commonly diagnosed psychiatric illness. Total difficulty score was significantly associated with difficult temperament (F=68.69, p<0.05). Conclusion: The study brings to light the pattern of behavioral problems that emerged during recent times of uncertainties among the young ones, including those with special needs. The increase in disruptive behaviors with increase screen time needs to be addressed at the earliest.

Keywords: behavioral problems, pandemic, screen time, temperament

Procedia PDF Downloads 166
6880 Interface Problems in Construction Projects

Authors: Puti F. Marzuki, Adrianto Oktavianus, Almerinda Regina

Abstract:

Interface problems among interacting parties in Indonesian construction projects have most often led to low productivity and completion delay. In the midst of this country’s needs to accelerate construction of public infrastructure providing connectivity among regions and supporting economic growth as well as better living quality, project delays have to be seriously addressed. This paper identifies potential causes factors of interface problems experienced by construction projects in Indonesia. Data are collected through a survey involving the main actors of six important public infrastructure construction projects including railway, LRT, sports stadiums, apartment, and education building construction projects. Five of these projects adopt the design-build project delivery method and one applies the design-bid-build scheme. Interface problems’ potential causes are categorized into contract, management, technical experience, coordination, financial, and environmental factors. Research results reveal that, especially in railway and LRT projects, potential causes of interface problems are mainly technical and managerial in nature. These relate to complex construction execution in highly congested areas. Meanwhile, coordination cause factors are mainly found in the education building construction project with loan from a foreign donor. All of the six projects have to resolve interface problems caused by incomplete or low-quality contract documents. This research also shows that the design-bid-build delivery method involving more parties in construction projects tends to induce more interface problem cause factors than the design-build scheme.

Keywords: cause factors, construction delays, project delivery method, contract documents

Procedia PDF Downloads 255
6879 Importance of Mathematical Modeling in Teaching Mathematics

Authors: Selahattin Gultekin

Abstract:

Today, in engineering departments, mathematics courses such as calculus, linear algebra and differential equations are generally taught by mathematicians. Therefore, during mathematicians’ classroom teaching there are few or no applications of the concepts to real world problems at all. Most of the times, students do not know whether the concepts or rules taught in these courses will be used extensively in their majors or not. This situation holds true of for all engineering and science disciplines. The general trend toward these mathematic courses is not good. The real-life application of mathematics will be appreciated by students when mathematical modeling of real-world problems are tackled. So, students do not like abstract mathematics, rather they prefer a solid application of the concepts to our daily life problems. The author highly recommends that mathematical modeling is to be taught starting in high schools all over the world In this paper, some mathematical concepts such as limit, derivative, integral, Taylor Series, differential equations and mean-value-theorem are chosen and their applications with graphical representations to real problems are emphasized.

Keywords: applied mathematics, engineering mathematics, mathematical concepts, mathematical modeling

Procedia PDF Downloads 319
6878 An Optimization Algorithm Based on Dynamic Schema with Dissimilarities and Similarities of Chromosomes

Authors: Radhwan Yousif Sedik Al-Jawadi

Abstract:

Optimization is necessary for finding appropriate solutions to a range of real-life problems. In particular, genetic (or more generally, evolutionary) algorithms have proved very useful in solving many problems for which analytical solutions are not available. In this paper, we present an optimization algorithm called Dynamic Schema with Dissimilarity and Similarity of Chromosomes (DSDSC) which is a variant of the classical genetic algorithm. This approach constructs new chromosomes from a schema and pairs of existing ones by exploring their dissimilarities and similarities. To show the effectiveness of the algorithm, it is tested and compared with the classical GA, on 15 two-dimensional optimization problems taken from literature. We have found that, in most cases, our method is better than the classical genetic algorithm.

Keywords: chromosome injection, dynamic schema, genetic algorithm, similarity and dissimilarity

Procedia PDF Downloads 346
6877 Optimality Conditions for Weak Efficient Solutions Generated by a Set Q in Vector Spaces

Authors: Elham Kiyani, S. Mansour Vaezpour, Javad Tavakoli

Abstract:

In this paper, we first introduce a new distance function in a linear space not necessarily endowed with a topology. The algebraic concepts of interior and closure are useful to study optimization problems without topology. So, we define Q-weak efficient solutions generated by the algebraic interior of a set Q, where Q is not necessarily convex. Studying nonconvex vector optimization is valuable since, for a convex cone K in topological spaces, we have int(K)=cor(K), which means that topological interior of a convex cone K is equal to the algebraic interior of K. Moreover, we used the scalarization technique including the distance function generated by the vectorial closure of a set to characterize these Q-weak efficient solutions. Scalarization is a useful approach for solving vector optimization problems. This technique reduces the optimization problem to a scalar problem which tends to be an optimization problem with a real-valued objective function. For instance, Q-weak efficient solutions of vector optimization problems can be characterized and computed as solutions of appropriate scalar optimization problems. In the convex case, linear functionals can be used as objective functionals of the scalar problems. But in the nonconvex case, we should present a suitable objective function. It is the aim of this paper to present a new distance function that be useful to obtain sufficient and necessary conditions for Q-weak efficient solutions of general optimization problems via scalarization.

Keywords: weak efficient, algebraic interior, vector closure, linear space

Procedia PDF Downloads 228
6876 Impact of Marketing towards Behavior Intention

Authors: Sathyamangalam Rangasamy Guru Prasath

Abstract:

Due to the increasing homogeneity in product offerings, the attendant services provided are emerging as a key differentiator in the mind of the consumers. Services marketing are a sub field of marketing which covers the marketing of both goods and services. Service marketing differs from product marketing due to the face that services are intangible and typically require personal interaction with the customer. Relationships are a key factor when it comes to the marketing of services. The role of interpersonal relationships distinguishes service and product marketing in strategic vision and organizational considerations. This paper explores some of the trends in service marketing as they relate to strategic vision, operational and organizational changes, and marketing tactics. The presence of the customer in the service facility means that capacity management becomes an important driver of the firm’s profitability service marketing is a process from the organization’s point of view, but an experience from the customer’s perspective. The quality of the experience is a function of the careful design of customer service processes, adoption of standardized procedures, rigorous management of service quality, high standards of training and automation. Services marketing helps to ensure that these processes are designed from the customer’s perspective. Services marketing includes customer loyalty, managing relationships, complaint handling, improving service quality and productivity of service operations, and how to become a service leader in your industry.

Keywords: customer perspective, product marketing, service marketing, rigorous management

Procedia PDF Downloads 370
6875 When Creativity Is the Solution: How to Transform Makkah into a Creative City

Authors: Saeed Al Amoudy

Abstract:

During the last decade, the rapidly growing prestige of so-called Creative Cities has inspired many other cities seeking to enhance their attractiveness, creativity, and success. However, the concept of a creative city seems to be an elusive one because it reflects a set of distinct ideologies which apply distinct ideas of creativity to physical and economic urban development. The main aim of this study is to investigate the ways in which the theoretical concept of the creative city can be usefully and practically employed to develop the urban services and global identity of Makkah, Saudi Arabia. This is a challenging prospect since no research on creative cities in the Middle East has previously been conducted. The city of Makkah and its holy sites is known as the focus of religious devotion for one and half billion Muslims around the globe, with millions travelling there on annual pilgrimage. The ideas of three of the key authors who have addressed relevant aspects of the concept of the creative city, Landry, Howkins and Florida, were explored in depth for the purpose of identifying the model which would be best suited to Makkah’s identity as a sacred city. Of these, it was the approach of Landry and others whose work was originally focused on finding creative solutions to the problems faced by cities which proved most suitable for the context of Makkah. The development strategies of five case studies of Creative Cities situated in different parts of the world, namely Vancouver, Yokohama, Glasgow, Barcelona, and Sydney, were also examined. Inspired by their diverse experiences, a model, referred to by the acronym CREATIVE, was developed by bringing together the key elements which seemed to ,account for the success of these five creative cities: Concept, Resources, Events, Attractiveness, Technology, Involvement, Vision and Enthusiasm. Expert opinion was sought on the model by presenting this for discussion at five international conferences. This model was used to guide both the process of data collection via interviews, documentation and field notes, and for analysing this, revealing that Makkah has great potential to become a Creative City. The results suggested that implementation of the CREATIVE model in Makkah would help produce creative solutions to address the problems that the city currently faces due to the growing number of pilgrims every year.

Keywords: creative city, city imaging, Makkah, sacred city

Procedia PDF Downloads 396
6874 A Computerized Tool for Predicting Future Reading Abilities in Pre-Readers Children

Authors: Stephanie Ducrot, Marie Vernet, Eve Meiss, Yves Chaix

Abstract:

Learning to read is a key topic of debate today, both in terms of its implications on school failure and illiteracy and regarding what are the best teaching methods to develop. It is estimated today that four to six percent of school-age children suffer from specific developmental disorders that impair learning. The findings from people with dyslexia and typically developing readers suggest that the problems children experience in learning to read are related to the preliteracy skills that they bring with them from kindergarten. Most tools available to professionals are designed for the evaluation of child language problems. In comparison, there are very few tools for assessing the relations between visual skills and the process of learning to read. Recent literature reports that visual-motor skills and visual-spatial attention in preschoolers are important predictors of reading development — the main goal of this study aimed at improving screening for future reading difficulties in preschool children. We used a prospective, longitudinal approach where oculomotor processes (assessed with the DiagLECT test) were measured in pre-readers, and the impact of these skills on future reading development was explored. The dialect test specifically measures the online time taken to name numbers arranged irregularly in horizontal rows (horizontal time, HT), and the time taken to name numbers arranged in vertical columns (vertical time, VT). A total of 131 preschoolers took part in this study. At Time 0 (kindergarten), the mean VT, HT, errors were recorded. One year later, at Time 1, the reading level of the same children was evaluated. Firstly, this study allowed us to provide normative data for a standardized evaluation of the oculomotor skills in 5- and 6-year-old children. The data also revealed that 25% of our sample of preschoolers showed oculomotor impairments (without any clinical complaints). Finally, the results of this study assessed the validity of the DiagLECT test for predicting reading outcomes; the better a child's oculomotor skills are, the better his/her reading abilities will be.

Keywords: vision, attention, oculomotor processes, reading, preschoolers

Procedia PDF Downloads 147