Search results for: transonic store separation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1669

Search results for: transonic store separation

1369 A Subband BSS Structure with Reduced Complexity and Fast Convergence

Authors: Salah Al-Din I. Badran, Samad Ahmadi, Ismail Shahin

Abstract:

A blind source separation method is proposed; in this method, we use a non-uniform filter bank and a novel normalisation. This method provides a reduced computational complexity and increased convergence speed comparing to the full-band algorithm. Recently, adaptive sub-band scheme has been recommended to solve two problems: reduction of computational complexity and increase the convergence speed of the adaptive algorithm for correlated input signals. In this work, the reduction in computational complexity is achieved with the use of adaptive filters of orders less than the full-band adaptive filters, which operate at a sampling rate lower than the sampling rate of the input signal. The decomposed signals by analysis bank filter are less correlated in each subband than the input signal at full bandwidth, and can promote better rates of convergence.

Keywords: blind source separation, computational complexity, subband, convergence speed, mixture

Procedia PDF Downloads 579
1368 Trading off Accuracy for Speed in Powerdrill

Authors: Filip Buruiana, Alexander Hall, Reimar Hofmann, Thomas Hofmann, Silviu Ganceanu, Alexandru Tudorica

Abstract:

In-memory column-stores make interactive analysis feasible for many big data scenarios. PowerDrill is a system used internally at Google for exploration in logs data. Even though it is a highly parallelized column-store and uses in memory caching, interactive response times cannot be achieved for all datasets (note that it is common to analyze data with 50 billion records in PowerDrill). In this paper, we investigate two orthogonal approaches to optimize performance at the expense of an acceptable loss of accuracy. Both approaches can be implemented as outer wrappers around existing database engines and so they should be easily applicable to other systems. For the first optimization we show that memory is the limiting factor in executing queries at speed and therefore explore possibilities to improve memory efficiency. We adapt some of the theory behind data sketches to reduce the size of particularly expensive fields in our largest tables by a factor of 4.5 when compared to a standard compression algorithm. This saves 37% of the overall memory in PowerDrill and introduces a 0.4% relative error in the 90th percentile for results of queries with the expensive fields. We additionally evaluate the effects of using sampling on accuracy and propose a simple heuristic for annotating individual result-values as accurate (or not). Based on measurements of user behavior in our real production system, we show that these estimates are essential for interpreting intermediate results before final results are available. For a large set of queries this effectively brings down the 95th latency percentile from 30 to 4 seconds.

Keywords: big data, in-memory column-store, high-performance SQL queries, approximate SQL queries

Procedia PDF Downloads 259
1367 Pattern Recognition Based on Simulation of Chemical Senses (SCS)

Authors: Nermeen El Kashef, Yasser Fouad, Khaled Mahar

Abstract:

No AI-complete system can model the human brain or behavior, without looking at the totality of the whole situation and incorporating a combination of senses. This paper proposes a Pattern Recognition model based on Simulation of Chemical Senses (SCS) for separation and classification of sign language. The model based on human taste controlling strategy. The main idea of the introduced model is motivated by the facts that the tongue cluster input substance into its basic tastes first, and then the brain recognizes its flavor. To implement this strategy, two level architecture is proposed (this is inspired from taste system). The separation-level of the architecture focuses on hand posture cluster, while the classification-level of the architecture to recognizes the sign language. The efficiency of proposed model is demonstrated experimentally by recognizing American Sign Language (ASL) data set. The recognition accuracy obtained for numbers of ASL is 92.9 percent.

Keywords: artificial intelligence, biocybernetics, gustatory system, sign language recognition, taste sense

Procedia PDF Downloads 294
1366 Exploring the Potential of Phase Change Materials in Construction Environments

Authors: A. Ait Ahsene F., B. Boughrara S.

Abstract:

The buildings sector accounts for a significant portion of global energy consumption, with much of this energy used to heat and cool indoor spaces. In this context, the integration of innovative technologies such as phase change materials (PCM) holds promising potential to improve the energy efficiency and thermal comfort of buildings. This research topic explores the benefits and challenges associated with the use of PCMs in buildings, focusing on their ability to store and release thermal energy to regulate indoor temperature. We investigated the different types of PCM available, their thermal properties, and their potential applications in various climate zones and building types. To evaluate and compare the performance of PCMs, our methodology includes a series of laboratory and field experiments. In the laboratory, we measure the thermal storage capacity, melting and solidification temperatures, latent heat, and thermal conductivity of various PCMs. These measurements make it possible to quantify the capacity of each PCM to store and release thermal energy, as well as its capacity to transfer this energy through the construction materials. Additionally, field studies are conducted to evaluate the performance of PCMs in real-world environments. We install PCM systems in real buildings and monitor their operation over time, measuring energy savings, occupant thermal comfort, and material durability. These empirical data allow us to compare the effectiveness of different types of PCMs under real-world use conditions. By combining the results of laboratory and field experiments, we provide a comprehensive analysis of the advantages and limitations of PCMs in buildings, as well as recommendations for their effective application in practice.

Keywords: energy saving, phase change materials, material sustainability, buildings sector

Procedia PDF Downloads 40
1365 Empowering Women Entrepreneurs in Rural India through Developing Online Communities of Purpose Using Social Technologies

Authors: Jayanta Basak, Somprakash Bandyopadhyay, Parama Bhaumik, Siuli Roy

Abstract:

To solve the life and livelihood related problems of socially and economically backward rural women in India, several Women Self-Help Groups (WSHG) are formed in Indian villages. WSHGs are micro-communities (with 10-to 15 members) within a village community. WSHGs have been conceived not just to promote savings and provide credit, but also to act as a vehicle of change through the creation of women micro-entrepreneurs at the village level. However, in spite of huge investment and volume of people involved in the whole process, the success is still limited. Most of these entrepreneurial activities happen in small household workspaces where sales are limited to the inconsistent and unpredictable local markets. As a result, these entrepreneurs are perennially trapped in the vicious cycle of low risk taking ability, low investment capacity, low productivity, weak market linkages and low revenue. Market separation including customer-producer separation is one of the key problems in this domain. Researchers suggest that there are four types of market separation: (i) spatial, (ii) financial, (iii) temporal, and (iv) informational, which in turn impacts the nature of markets and marketing. In this context, a large group of intermediaries (the 'middleman') plays important role in effectively reducing the factors that separate markets by utilizing the resource of rural entrepreneurs, their products and thus, accelerate market development. The rural entrepreneurs are heavily dependent on these middlemen for marketing of their products and these middlemen exploit rural entrepreneurs by creating a huge informational separation between the rural producers and end-consumers in the market and thus hiding the profit margins. The objective of this study is to develop a transparent, online communities of purpose among rural and urban entrepreneurs using internet and web 2.0 technologies in order to decrease market separation and improve mutual awareness of available and potential products and market demands. Communities of purpose are groups of people who have an ability to influence, can share knowledge and learn from others, and be committed to achieving a common purpose. In this study, a cluster of SHG women located in a village 'Kandi' of West Bengal, India has been studied closely for six months. These women are primarily engaged in producing garments, soft toys, fabric painting on clothes, etc. These women were equipped with internet-enabled smart-phones where they can use chat applications in local language and common social networking websites like Facebook, Instagram, etc. A few handicraft experts and micro-entrepreneurs from the city (the 'seed') were included in their mobile messaging app group that enables the creation of a 'community of purpose' in order to share thoughts and ideas on product designs, market trends, and practices, and thus decrease the rural-urban market separation. After six months of regular group interaction in mobile messaging app among these rural-urban community members, it is observed that SHG women are empowered now to share their product images, design ideas, showcase, and promote their products in global marketplace using some common social networking websites through which they can also enhance and augment their community of purpose.

Keywords: communities of purpose, market separation, self-help group, social technologies

Procedia PDF Downloads 255
1364 Separating Permanent and Induced Magnetic Signature: A Simple Approach

Authors: O. J. G. Somsen, G. P. M. Wagemakers

Abstract:

Magnetic signature detection provides sensitive detection of metal objects, especially in the natural environment. Our group is developing a tabletop setup for magnetic signatures of various small and model objects. A particular issue is the separation of permanent and induced magnetization. While the latter depends only on the composition and shape of the object, the former also depends on the magnetization history. With common deperming techniques, a significant permanent signature may still remain, which confuses measurements of the induced component. We investigate a basic technique of separating the two. Measurements were done by moving the object along an aluminum rail while the three field components are recorded by a detector attached near the center. This is done first with the rail parallel to the Earth magnetic field and then with anti-parallel orientation. The reversal changes the sign of the induced- but not the permanent magnetization so that the two can be separated. Our preliminary results on a small iron block show excellent reproducibility. A considerable permanent magnetization was indeed present, resulting in a complex asymmetric signature. After separation, a much more symmetric induced signature was obtained that can be studied in detail and compared with theoretical calculations.

Keywords: magnetic signature, data analysis, magnetization, deperming techniques

Procedia PDF Downloads 451
1363 Design of the Compliant Mechanism of a Biomechanical Assistive Device for the Knee

Authors: Kevin Giraldo, Juan A. Gallego, Uriel Zapata, Fanny L. Casado

Abstract:

Compliant mechanisms are designed to deform in a controlled manner in response to external forces, utilizing the flexibility of their components to store potential elastic energy during deformation, gradually releasing it upon returning to its original form. This article explores the design of a knee orthosis intended to assist users during stand-up motion. The orthosis makes use of a compliant mechanism to balance the user’s weight, thereby minimizing the strain on leg muscles during standup motion. The primary function of the compliant mechanism is to store and exchange potential energy, so when coupled with the gravitational potential of the user, the total potential energy variation is minimized. The design process for the semi-rigid knee orthosis involved material selection and the development of a numerical model for the compliant mechanism seen as a spring. Geometric properties are obtained through the numerical modeling of the spring once the desired stiffness and safety factor values have been attained. Subsequently, a 3D finite element analysis was conducted. The study demonstrates a strong correlation between the maximum stress in the mathematical model (250.22 MPa) and the simulation (239.8 MPa), with a 4.16% error. Both analyses safety factors: 1.02 for the mathematical approach and 1.1 for the simulation, with a consistent 7.84% margin of error. The spring’s stiffness, calculated at 90.82 Nm/rad analytically and 85.71 Nm/rad in the simulation, exhibits a 5.62% difference. These results suggest significant potential for the proposed device in assisting patients with knee orthopedic restrictions, contributing to ongoing efforts in advancing the understanding and treatment of knee osteoarthritis.

Keywords: biomechanics, complaint mechanisms, gonarthrosis, orthoses

Procedia PDF Downloads 36
1362 Utilization of Activated Carbon for the Extraction and Separation of Methylene Blue in the Presence of Acid Yellow 61 Using an Inclusion Polymer Membrane

Authors: Saâd Oukkass, Abderrahim Bouftou, Rachid Ouchn, L. Lebrun, Miloudi Hlaibi

Abstract:

We invariably exist in a world steeped in colors, whether in our clothing, food, cosmetics, or even medications. However, most of the dyes we use pose significant problems, being both harmful to the environment and resistant to degradation. Among these dyes, methylene blue and acid yellow 61 stand out, commonly used to dye various materials such as cotton, wood, and silk. Fortunately, various methods have been developed to treat and remove these polluting dyes, among which membrane processes play a prominent role. These methods are praised for their low energy consumption, ease of operation, and their ability to achieve effective separation of components. Adsorption on activated carbon is also a widely employed technique, complementing the basic processes. It proves particularly effective in capturing and removing organic compounds from water due to its substantial specific surface area while retaining its properties unchanged. In the context of our study, we examined two crucial aspects. Firstly, we explored the possibility of selectively extracting methylene blue from a mixture containing another dye, acid yellow 61, using a polymer inclusion membrane (PIM) made of PVA. After characterizing the morphology and porosity of the membrane, we applied kinetic and thermodynamic models to determine the values of permeability (P), initial flux (J0), association constant (Kass), and apparent diffusion coefficient (D*). Subsequently, we measured activation parameters (activation energy (Ea), enthalpy (ΔH#ass), entropy (ΔS#)). Finally, we studied the effect of activated carbon on the processes carried out through the membrane, demonstrating a clear improvement. These results make the membrane developed in this study a potentially pivotal player in the field of membrane separation.

Keywords: dyes, methylene blue, membrane, activated carbon

Procedia PDF Downloads 81
1361 Structural Parameter-Induced Focusing Pattern Transformation in CEA Microfluidic Device

Authors: Xin Shi, Wei Tan, Guorui Zhu

Abstract:

The contraction-expansion array (CEA) microfluidic device is widely used for particle focusing and particle separation. Without the introduction of external fields, it can manipulate particles using hydrodynamic forces, including inertial lift forces and Dean drag forces. The focusing pattern of the particles in a CEA channel can be affected by the structural parameter, block ratio, and flow streamlines. Here, two typical focusing patterns with five different structural parameters were investigated, and the force mechanism was analyzed. We present nine CEA channels with different aspect ratios based on the process of changing the particle equilibrium positions. The results show that 10-15 μm particles have the potential to generate a side focusing line as the structural parameter (¬R𝓌) increases. For a determined channel structure and target particles, when the Reynolds number (Rₑ) exceeds the critical value, the focusing pattern will transform from a single pattern to a double pattern. The parameter α/R𝓌 can be used to calculate the critical Reynolds number for the focusing pattern transformation. The results can provide guidance for microchannel design and biomedical analysis.

Keywords: microfluidic, inertial focusing, particle separation, Dean flow

Procedia PDF Downloads 79
1360 Impact of Nanoparticles in Enhancement of Thermal Conductivity of Phase Change Materials in Thermal Energy Storage and Cooling of Concentrated Photovoltaics

Authors: Ismaila H. Zarma, Mahmoud Ahmed, Shinichi Ookawara, Hamdi Abo-Ali

Abstract:

Phase change materials (PCM) are an ideal thermal storage medium. They are characterized by a high latent heat, which allows them to store large amounts of energy when the material transitions into different physical states. Concentrated photovoltaic (CPV) systems are widely recognized as the most efficient form of Photovoltaic (PV) for thermal energy which can be stored in Phase Change Materials (PCM). However, PCMs often have a low thermal conductivity which leads to a slow transient response. This makes it difficult to quickly store and access the energy stored within the PCM based systems, so there is need to improve transient responses and increase the thermal conductivity. The present study aims to investigate and analyze the melting and solidification process of phase change materials (PCMs) enhanced by nanoparticle contained in a container. Heat flux from concentrated photovoltaic is applied in an attempt to analyze the thermal performance and the impact of nanoparticles. The work will be realized by using a two dimensional model which take into account the phase change phenomena based on the principle of enthalpy method. Numerical simulations have been performed to investigate heat and flow characteristics by using governing equations, to ascertain the impacts of the nanoparticle loading. The Rayleigh number, sub-cooling as well as the unsteady evolution of the melting front and the velocity and temperature fields were also observed. The predicted results exhibited a good agreement, showing thermal enhancement due to present of nanoparticle which leads to decreasing the melting time.

Keywords: thermal energy storage, phase-change material, nanoparticle, concentrated photovoltaic

Procedia PDF Downloads 203
1359 Module Based Review over Current Regenerative Braking Landing Gear

Authors: Madikeri Rohit

Abstract:

As energy efficiency is the key concern in many aircraft manufacturing companies regenerative braking is a technique using which energy lost due to friction while braking can be regained. In the operation of an aircraft, significant energy is lost during deceleration or braking which occurs during its landing phase. This problem can be overcome using Regenerative Breaking System (RBS) in landing gear. The major problem faced is regarding the batteries and the overall efficiency gained in competence with the added weight. As the amount of energy required to store is huge we need batteries with high capacity for storage. Another obstacle by using high capacity batteries is the added weight which undermines the efficiency obtained using RBS. An approach to this problem is to either use the obtained energy immediately without storage or to store in other forms such as mechanical, pneumatic and hydraulic. Problem faced with mechanical systems is the weight of the flywheel needed to obtain required efficiency. Pneumatic and hydraulic systems are a better option at present. Using hydraulic systems for storing energy is efficient as it integrates into the overall hydraulic system present in the aircraft. Another obstacle is faced with the redundancy of this system. Conventional braking must be used along with RBS in order to provide redundancy. Major benefits obtained using RBS is with the help of the energy obtained during landing which can be used of engine less taxing. This reduces fuel consumption as well as noise and air pollution. Another added benefit of using RBS is to provide electrical supply to lighting systems, cabin pressurization system and can be used for emergency power supply in case of electric failure. This paper discusses about using RBS in landing gear, problems, prospects and new techniques being pursued to improve RBS.

Keywords: regenerative braking, types of energy conversion, landing gear, energy storage

Procedia PDF Downloads 262
1358 Physicochemical and Microbiological Properties of Kefir, Kefir Yogurt and Chickpea Yogurt

Authors: Nuray Güzeler, Elif Ari, Gözde Konuray, Çağla Özbek

Abstract:

The consumption of functional foods is very common. For this reason, many products which are probiotic, prebiotic, energy reduced and fat reduced are developed. In this research, physicochemical and microbiological properties of functional kefir, kefir yogurt and chickpea yogurt were examined. For this purpose, pH values, titration acidities, viscosity values, water holding capacities, serum separation values, acetaldehyde contents, tyrosine contents, the count of aerobic mesophilic bacteria, lactic acid bacteria count and mold-yeast counts were determined. As a result of performed analysis, the differences between titration acidities, serum separation values, water holding capacities, acetaldehyde and tyrosine contents of samples were statistically significant (p < 0.05). There were no significant differences on pH values, viscosities, and microbiological properties of samples (p > 0.05). Consequently industrial production of functional kefir yogurt and chickpea yogurt may be advised.

Keywords: chickpea yogurt, kefir, kefir yogurt, milk

Procedia PDF Downloads 274
1357 Nonconventional Method for Separation of Rosmarinic Acid: Synergic Extraction

Authors: Lenuta Kloetzer, Alexandra C. Blaga, Dan Cascaval, Alexandra Tucaliuc, Anca I. Galaction

Abstract:

Rosmarinic acid, an ester of caffeic acid and 3-(3,4-dihydroxyphenyl) lactic acid, is considered a valuable compound for the pharmaceutical and cosmetic industries due to its antimicrobial, antioxidant, antiviral, anti-allergic, and anti-inflammatory effects. It can be obtained by extraction from vegetable or animal materials, by chemical synthesis and biosynthesis. Indifferent of the method used for rosmarinic acid production, the separation and purification process implies high amount of raw materials and laborious stages leading to high cost for and limitations of the separation technology. This study focused on separation of rosmarinic acid by synergic reactive extraction with a mixture of two extractants, one acidic (acid di-(2ethylhexyl) phosphoric acid, D2EHPA) and one with basic character (Amberlite LA-2). The studies were performed in experimental equipment consisting of an extraction column where the phases’ mixing was made by mean of a perforated disk with 45 mm diameter and 20% free section, maintained at the initial contact interface between the aqueous and organic phases. The vibrations had a frequency of 50 s⁻¹ and 5 mm amplitude. The extraction was carried out in two solvents with different dielectric constants (n-heptane and dichloromethane) in which the extractants mixture of varying concentration was dissolved. The pH-value of initial aqueous solution was varied between 1 and 7. The efficiency of the studied extraction systems was quantified by distribution and synergic coefficients. For calculating these parameters, the rosmarinic acid concentration in the initial aqueous solution and in the raffinate have been measured by HPLC. The influences of extractants concentrations and solvent polarity on the efficiency of rosmarinic acid separation by synergic extraction with a mixture of Amberlite LA-2 and D2EHPA have been analyzed. In the reactive extraction system with a constant concentration of Amberlite LA-2 in the organic phase, the increase of D2EHPA concentration leads to decrease of the synergic coefficient. This is because the increase of D2EHPA concentration prevents the formation of amine adducts and, consequently, affects the hydrophobicity of the interfacial complex with rosmarinic acid. For these reasons, the diminution of synergic coefficient is more important for dichloromethane. By maintaining a constant value of D2EHPA concentration and increasing the concentration of Amberlite LA-2, the synergic coefficient could become higher than 1, its highest values being reached for n-heptane. Depending on the solvent polarity and D2EHPA amount in the solvent phase, the synergic effect is observed for Amberlite LA-2 concentrations over 20 g/l dissolved in n-heptane. Thus, by increasing the concentration of D2EHPA from 5 to 40 g/l, the minimum concentration value of Amberlite LA-2 corresponding to synergism increases from 20 to 40 g/l for the solvent with lower polarity, namely, n-heptane, while there is no synergic effect recorded for dichloromethane. By analysing the influences of the main factors (organic phase polarity, extractant concentration in the mixture) on the efficiency of synergic extraction of rosmarinic acid, the most important synergic effect was found to correspond to the extractants mixture containing 5 g/l D2EHPA and 40 g/l Amberlite LA-2 dissolved in n-heptane.

Keywords: Amberlite LA-2, di(2-ethylhexyl) phosphoric acid, rosmarinic acid, synergic effect

Procedia PDF Downloads 290
1356 Development of Composite Materials for CO2 Reduction and Organic Compound Decomposition

Authors: H. F. Shi, C. L. Zhang

Abstract:

Visible-light-responsive g-C3N4/NaNbO3 nanowires photocatalysts were fabricated by introducing polymeric g-C3N4 on NaNbO3 nanowires. The microscopic mechanisms of interface interaction, charge transfer and separation, as well as the influence on the photocatalytic activity of g-C3N4/NaNbO3 composite were systematic investigated. The HR-TEM revealed that an intimate interface between C3N4 and NaNbO3 nanowires formed in the g-C3N4/NaNbO3 heterojunctions. The photocatalytic performance of photocatalysts was evaluated for CO2 reduction under visible-light illumination. Significantly, the activity of g-C3N4/NaNbO3 composite photocatalyst for photoreduction of CO2 was higher than that of either single-phase g-C3N4 or NaNbO3. Such a remarkable enhancement of photocatalytic activity was mainly ascribed to the improved separation and transfer of photogenerated electron-hole pairs at the intimate interface of g-C3N4/NaNbO3 heterojunctions, which originated from the well-aligned overlapping band structures of C3N4 and NaNbO3. Pt loaded NaNbO3-xNx (Pt-NNON), a visible-light-sensitive photocatalyst, was synthesized by an in situ photodeposition method from H2PtCl6•6H2O onto NaNbO3-xNx (NNON) sample. Pt-NNON exhibited a much higher photocatalytic activity for gaseous 2-propanol (IPA) degradation under visible-light irradiation in contrast to NNON. The apparent quantum efficiency (AQE) of Pt-NNON sample for IPA photodegradation achieved up to 8.6% at the wavelength of 419 nm. The notably enhanced photocatalytic performance was attributed to the promoted charge separation and transfer capability in the Pt-NNON system. This work suggests that surface nanosteps possibly play an important role as an electron transfer at high way, which facilitates to the charge carrier collection onto Pt rich zones and thus suppresses recombination between photogenerated electrons and holes. This method can thus be considered as an excellent strategy to enhance photocatalytic activity of organic decomposition in addition to the commonly applied noble metal doping method.

Keywords: CO2 reduction, NaNbO3, nanowires, g-C3N4

Procedia PDF Downloads 199
1355 Multi-Size Continuous Particle Separation on a Dielectrophoresis-Based Microfluidics Chip

Authors: Arash Dalili, Hamed Tahmouressi, Mina Hoorfar

Abstract:

Advances in lab-on-a-chip (LOC) devices have led to significant advances in the manipulation, separation, and isolation of particles and cells. Among the different active and passive particle manipulation methods, dielectrophoresis (DEP) has been proven to be a versatile mechanism as it is label-free, cost-effective, simple to operate, and has high manipulation efficiency. DEP has been applied for a wide range of biological and environmental applications. A popular form of DEP devices is the continuous manipulation of particles by using co-planar slanted electrodes, which utilizes a sheath flow to focus the particles into one side of the microchannel. When particles enter the DEP manipulation zone, the negative DEP (nDEP) force generated by the slanted electrodes deflects the particles laterally towards the opposite side of the microchannel. The lateral displacement of the particles is dependent on multiple parameters including the geometry of the electrodes, the width, length and height of the microchannel, the size of the particles and the throughput. In this study, COMSOL Multiphysics® modeling along with experimental studies are used to investigate the effect of the aforementioned parameters. The electric field between the electrodes and the induced DEP force on the particles are modelled by COMSOL Multiphysics®. The simulation model is used to show the effect of the DEP force on the particles, and how the geometry of the electrodes (width of the electrodes and the gap between them) plays a role in the manipulation of polystyrene microparticles. The simulation results show that increasing the electrode width to a certain limit, which depends on the height of the channel, increases the induced DEP force. Also, decreasing the gap between the electrodes leads to a stronger DEP force. Based on these results, criteria for the fabrication of the electrodes were found, and soft lithography was used to fabricate interdigitated slanted electrodes and microchannels. Experimental studies were run to find the effect of the flow rate, geometrical parameters of the microchannel such as length, width, and height as well as the electrodes’ angle on the displacement of 5 um, 10 um and 15 um polystyrene particles. An empirical equation is developed to predict the displacement of the particles under different conditions. It is shown that the displacement of the particles is more for longer and lower height channels, lower flow rates, and bigger particles. On the other hand, the effect of the angle of the electrodes on the displacement of the particles was negligible. Based on the results, we have developed an optimum design (in terms of efficiency and throughput) for three size separation of particles.

Keywords: COMSOL Multiphysics, Dielectrophoresis, Microfluidics, Particle separation

Procedia PDF Downloads 186
1354 Surface Pressure Distributions for a Forebody Using Pressure Sensitive Paint

Authors: Yi-Xuan Huang, Kung-Ming Chung, Ping-Han Chung

Abstract:

Pressure sensitive paint (PSP), which relies on the oxygen quenching of a luminescent molecule, is an optical technique used in wind-tunnel models. A full-field pressure pattern with low aerodynamic interference can be obtained, and it is becoming an alternative to pressure measurements using pressure taps. In this study, a polymer-ceramic PSP was used, using toluene as a solvent. The porous particle and polymer were silica gel (SiO₂) and RTV-118 (3g:7g), respectively. The compound was sprayed onto the model surface using a spray gun. The absorption and emission spectra for Ru(dpp) as a luminophore were respectively 441-467 nm and 597 nm. A Revox SLG-55 light source with a short-pass filter (550 nm) and a 14-bit CCD camera with a long-pass (600 nm) filter were used to illuminate PSP and to capture images. This study determines surface pressure patterns for a forebody of an AGARD B model in a compressible flow. Since there is no experimental data for surface pressure distributions available, numerical simulation is conducted using ANSYS Fluent. The lift and drag coefficients are calculated and in comparison with the data in the open literature. The experiments were conducted using a transonic wind tunnel at the Aerospace Science and Research Center, National Cheng Kung University. The freestream Mach numbers were 0.83, and the angle of attack ranged from -4 to 8 degree. Deviation between PSP and numerical simulation is within 5%. However, the effect of the setup of the light source should be taken into account to address the relative error.

Keywords: pressure sensitive paint, forebody, surface pressure, compressible flow

Procedia PDF Downloads 127
1353 Numerical Investigation into Capture Efficiency of Fibrous Filters

Authors: Jayotpaul Chaudhuri, Lutz Goedeke, Torsten Hallenga, Peter Ehrhard

Abstract:

Purification of gases from aerosols or airborne particles via filters is widely applied in the industry and in our daily lives. This separation especially in the micron and submicron size range is a necessary step to protect the environment and human health. Fibrous filters are often employed due to their low cost and high efficiency. For designing any filter the two most important performance parameters are capture efficiency and pressure drop. Since the capture efficiency is directly proportional to the pressure drop which leads to higher operating costs, a detailed investigation of the separation mechanism is required to optimize the filter designing, i.e., to have a high capture efficiency with a lower pressure drop. Therefore a two-dimensional flow simulation around a single fiber using Ansys CFX and Matlab is used to get insight into the separation process. Instead of simulating a solid fiber, the present Ansys CFX model uses a fictitious domain approach for the fiber by implementing a momentum loss model. This approach has been chosen to avoid creating a new mesh for different fiber sizes, thereby saving time and effort for re-meshing. In a first step, only the flow of the continuous fluid around the fiber is simulated in Ansys CFX and the flow field data is extracted and imported into Matlab and the particle trajectory is calculated in a Matlab routine. This calculation is a Lagrangian, one way coupled approach for particles with all relevant forces acting on it. The key parameters for the simulation in both Ansys CFX and Matlab are the porosity ε, the diameter ratio of particle and fiber D, the fluid Reynolds number Re, the Reynolds particle number Rep, the Stokes number St, the Froude number Fr and the density ratio of fluid and particle ρf/ρp. The simulation results were then compared to the single fiber theory from the literature.

Keywords: BBO-equation, capture efficiency, CFX, Matlab, fibrous filter, particle trajectory

Procedia PDF Downloads 206
1352 Potential of Mineral Composition Reconstruction for Monitoring the Performance of an Iron Ore Concentration Plant

Authors: Maryam Sadeghi, Claude Bazin, Daniel Hodouin, Laura Perez Barnuevo

Abstract:

The performance of a separation process is usually evaluated using performance indices calculated from elemental assays readily available from the chemical analysis laboratory. However, the separation process performance is essentially related to the properties of the minerals that carry the elements and not those of the elements. Since elements or metals can be carried by valuable and gangue minerals in the ore and that each mineral responds differently to a mineral processing method, the use of only elemental assays could lead to erroneous or uncertain conclusions on the process performance. This paper discusses the advantages of using performance indices calculated from minerals content, such as minerals recovery, for process performance assessments. A method is presented that uses elemental assays to estimate the minerals content of the solids in various process streams. The method combines the stoichiometric composition of the minerals and constraints of mass conservation for the minerals through the concentration process to estimate the minerals content from elemental assays. The advantage of assessing a concentration process using mineral based performance indices is illustrated for an iron ore concentration circuit.

Keywords: data reconciliation, iron ore concentration, mineral composition, process performance assessment

Procedia PDF Downloads 218
1351 Study of Bis(Trifluoromethylsulfonyl)Imide Based Ionic Liquids by Gas Chromatography

Authors: F. Mutelet, L. Cesari

Abstract:

Development of safer and environmentally friendly processes and products is needed to achieve sustainable production and consumption patterns. Ionic liquids, which are of great interest to the chemical and related industries because of their attractive properties as solvents, should be considered. Ionic liquids are comprised of an asymmetric, bulky organic cation and a weakly coordinating organic or inorganic anion. A large number of possible combinations allows for the ability to ‘fine tune’ the solvent properties for a specific purpose. Physical and chemical properties of ionic liquids are not only influenced by the nature of the cation and the nature of cation substituents but also by the polarity and the size of the anion. These features infer to ionic liquids numerous applications, in organic synthesis, separation processes, and electrochemistry. Separation processes required a good knowledge of the behavior of organic compounds with ionic liquids. Gas chromatography is a useful tool to estimate the interactions between organic compounds and ionic liquids. Indeed, retention data may be used to determine infinite dilution thermodynamic properties of volatile organic compounds in ionic liquids. Among others, the activity coefficient at infinite dilution is a direct measure of solute-ionic liquid interaction. In this work, infinite dilution thermodynamic properties of volatile organic compounds in specific bis(trifluoromethylsulfonyl)imide based ionic liquids measured by gas chromatography is presented. It was found that apolar compounds are not miscible in this family of ionic liquids. As expected, the solubility of organic compounds is related to their polarity and hydrogen-bond. Through activity coefficients data, the performance of these ionic liquids was evaluated for different separation processes (benzene/heptane, thiophene/heptane and pyridine/heptane). Results indicate that ionic liquids may be used for the extraction of polar compounds (aromatics, alcohols, pyridine, thiophene, tetrahydrofuran) from aliphatic media. For example, 1-benzylpyridinium bis(trifluoromethylsulfonyl) imide and 1-cyclohexylmethyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide are more efficient for the extraction of aromatics or pyridine from aliphatics than classical solvents. Ionic liquids with long alkyl chain length present important capacity values but their selectivity values are low. In conclusion, we have demonstrated that specific bis(trifluoromethylsulfonyl)imide based ILs containing polar chain grafted on the cation (for example benzyl or cyclohexyl) increases considerably their performance in separation processes.

Keywords: interaction organic solvent-ionic liquid, gas chromatography, solvation model, COSMO-RS

Procedia PDF Downloads 109
1350 Ceramic Membrane Filtration Technologies for Oilfield Produced Water Treatment

Authors: Mehrdad Ebrahimi, Oliver Schmitz, Axel Schmidt, Peter Czermak

Abstract:

“Produced water” (PW) is any fossil water that is brought to the surface along with crude oil or natural gas. By far, PW is the largest waste stream by volume associated with oil and gas production operations. Due to the increasing volume of waste all over the world in the current decade, the outcome and effect of discharging PW on the environment has lately become a significant issue of environmental concerns. Therefore, there is a need for new technologies for PW treatment due to increase focus on water conservation and environmental regulation. The use of membrane processes for treatment of PW has several advantages over many of the traditional separation techniques. In oilfield produced water treatment with ceramic membranes, process efficiency is characterized by the specific permeate flux and by the oil separation performance. Apart from the membrane properties, the permeate flux during filtration of oily wastewaters is known to be strongly dependent on the constituents of the feed solution, as well as on process conditions, e.g. trans-membrane pressure (TMP) and cross-flow velocity (CFV). The research project presented in these report describes the application of different ceramic membrane filtration technologies for the efficient treatment of oil-field produced water and different model oily solutions.

Keywords: ceramic membrane, membrane fouling, oil rejection, produced water treatment

Procedia PDF Downloads 183
1349 The Success and Failure of the Solicitor General When the U.S. Government Appears as a Direct Party before the U.S. Supreme Court

Authors: Joseph Ignagni, Rebecca Deen

Abstract:

This paper analyzes the extent to which the U.S. Supreme Court votes to support the position of the United States in cases where the government is a party to the litigation. This study considers the relationship between the Solicitor General’s Office and the U.S. Supreme Court. The Solicitor General has the unique position of being the representative of the Executive Branch and the U.S. government before the Supreme Court. While a great deal of research has looked at the Solicitor General’s success as a “friend of the court,” far less has considered this relationship when the U.S. is a direct party in the litigation. This paper investigates the success rate of the Solicitor General’s Office in these cases. We find that there is considerable variation in the U.S. government’s success rate before the Court depending on the issue, Supreme Court leadership, the ideological direction of the Court and whether the U.S. approached the Court as a petitioner or respondent. We conduct our analysis on the Court’s decisions from 1953-2009. This study adds to our understanding of checks and balances, separation of powers, and inter-institutional relationships between the branches of the federal government of the United States.

Keywords: U.S. president, solicitor general, U.S. Supreme Court, separation of power, checks and balances

Procedia PDF Downloads 360
1348 Evaluation of Three Digital Graphical Methods of Baseflow Separation Techniques in the Tekeze Water Basin in Ethiopia

Authors: Alebachew Halefom, Navsal Kumar, Arunava Poddar

Abstract:

The purpose of this work is to specify the parameter values, the base flow index (BFI), and to rank the methods that should be used for base flow separation. Three different digital graphical approaches are chosen and used in this study for the purpose of comparison. The daily time series discharge data were collected from the site for a period of 30 years (1986 up to 2015) and were used to evaluate the algorithms. In order to separate the base flow and the surface runoff, daily recorded streamflow (m³/s) data were used to calibrate procedures and get parameter values for the basin. Additionally, the performance of the model was assessed by the use of the standard error (SE), the coefficient of determination (R²), and the flow duration curve (FDC) and baseflow indexes. The findings indicate that, in general, each strategy can be used worldwide to differentiate base flow; however, the Sliding Interval Method (SIM) performs significantly better than the other two techniques in this basin. The average base flow index was calculated to be 0.72 using the local minimum method, 0.76 using the fixed interval method, and 0.78 using the sliding interval method, respectively.

Keywords: baseflow index, digital graphical methods, streamflow, Emba Madre Watershed

Procedia PDF Downloads 77
1347 3D Modelling of Fluid Flow in Tunnel Kilns

Authors: Jaber H. Almutairi, Hosny Z. Abou-Ziyan, Issa F. Almesri, Mosab A. Alrahmani

Abstract:

The present work investigates the behavior of fluid flow inside tunnel kilns using 3D-CFD (Computational Fluid Dynamics) simulations. The CFD simulations are carried out with the FLUENT software and validated against experimental results on fluid flow and heat transfer in tunnel kilns. A grid dependency study is conducted in the current work to improve the accuracy of the results. Three turbulence models k–ω, standard k–ε, and RNG k–ε are tested where k–ω model gives the best results in comparison with the experiment. The numerical results reveal an intriguing phenomenon where a long flow separation zone behind the setting is observed under different geometric and operation conditions. It was found that the uniformity of flow distribution can be substantially improved by rearranging the geometrical parameters of brick setting relative to kiln/setting. This improvement of flow distribution plays a critical role to enhance the quality and quantity of the production. It can be concluded that a better design and operation of tunnel kilns in terms of productivity and energy consumption can be obtained by taking into consideration the flow uniformity inside the tunnel kilns using CFD modelling.

Keywords: tunnel kilns, flow separation, flow uniformity, computational fluid dynamics

Procedia PDF Downloads 329
1346 Perception-Oriented Model Driven Development for Designing Data Acquisition Process in Wireless Sensor Networks

Authors: K. Indra Gandhi

Abstract:

Wireless Sensor Networks (WSNs) have always been characterized for application-specific sensing, relaying and collection of information for further analysis. However, software development was not considered as a separate entity in this process of data collection which has posed severe limitations on the software development for WSN. Software development for WSN is a complex process since the components involved are data-driven, network-driven and application-driven in nature. This implies that there is a tremendous need for the separation of concern from the software development perspective. A layered approach for developing data acquisition design based on Model Driven Development (MDD) has been proposed as the sensed data collection process itself varies depending upon the application taken into consideration. This work focuses on the layered view of the data acquisition process so as to ease the software point of development. A metamodel has been proposed that enables reusability and realization of the software development as an adaptable component for WSN systems. Further, observing users perception indicates that proposed model helps in improving the programmer's productivity by realizing the collaborative system involved.

Keywords: data acquisition, model-driven development, separation of concern, wireless sensor networks

Procedia PDF Downloads 434
1345 Preliminary Study of Water-Oil Separation Process in Three-Phase Separators Using Factorial Experimental Designs and Simulation

Authors: Caroline M. B. De Araujo, Helenise A. Do Nascimento, Claudia J. Da S. Cavalcanti, Mauricio A. Da Motta Sobrinho, Maria F. Pimentel

Abstract:

Oil production is often followed by the joint production of water and gas. During the journey up to the surface, due to severe conditions of temperature and pressure, the mixing between these three components normally occurs. Thus, the three phases separation process must be one of the first steps to be performed after crude oil extraction, where the water-oil separation is the most complex and important step, since the presence of water into the process line can increase corrosion and hydrates formation. A wide range of methods can be applied in order to proceed with oil-water separation, being more commonly used: flotation, hydrocyclones, as well as the three phase separator vessels. Facing what has been presented so far, it is the aim of this paper to study a system consisting of a three-phase separator, evaluating the influence of three variables: temperature, working pressure and separator type, for two types of oil (light and heavy), by performing two factorial design plans 23, in order to find the best operating condition. In this case, the purpose is to obtain the greatest oil flow rate in the product stream (m3/h) as well as the lowest percentage of water in the oil stream. The simulation of the three-phase separator was performed using Aspen Hysys®2006 simulation software in stationary mode, and the evaluation of the factorial experimental designs was performed using the software Statistica®. From the general analysis of the four normal probability plots of effects obtained, it was observed that interaction effects of two and three factors did not show statistical significance at 95% confidence, since all the values were very close to zero. Similarly, the main effect "separator type" did not show significant statistical influence in any situation. As in this case, it has been assumed that the volumetric flow of water, oil and gas were equal in the inlet stream, the effect separator type, in fact, may not be significant for the proposed system. Nevertheless, the main effect “temperature” was significant for both responses (oil flow rate and mass fraction of water in the oil stream), considering both light and heavy oil, so that the best operation condition occurs with the temperature at its lowest level (30oC), since the higher the temperature, the liquid oil components pass into the vapor phase, going to the gas stream. Furthermore, the higher the temperature, the higher the formation water vapor, so that ends up going into the lighter stream (oil stream), making the separation process more difficult. Regarding the “working pressure”, this effect showed to be significant only for the oil flow rate, so that the best operation condition occurs with the pressure at its highest level (9bar), since a higher operating pressure, in this case, indicated a lower pressure drop inside the vessel, generating lower level of turbulence inside the separator. In conclusion, the best-operating condition obtained for the proposed system, at the studied range, occurs for temperature is at its lowest level and the working pressure is at its highest level.

Keywords: factorial experimental design, oil production, simulation, three-phase separator

Procedia PDF Downloads 286
1344 Smart Trash Can Interface between Origin and Destination Waste Management

Authors: Fatemeh Ghorbani

Abstract:

The increase in population in the cities has also led to the increase and accumulation of urban waste. Managing and organizing waste is an action that must be taken to prevent environmental pollution. Separation of waste from the source is the first step that must be taken to determine whether the waste should be buried, burned, recycled, or used in the industry according to its type. Separation of trash is a cultural work that the general public must learn the necessity of doing; then, it is necessary to provide suitable conditions for collecting this waste. It is necessary to put segregated garbage cans in the city so that people can put the garbage in the right place. In this research, a smart trash can has been designed, which is connected to the central system of the municipality and has information on the units of each neighborhood separately. By entering the postal code on the page connected to each bin and entering the type of waste, the section related to the waste in the existing bin is opened and the person places the waste in the desired section. In addition, all the bins are connected to the municipal system, and the sensors in it warn each relevant body about the fullness and emptiness of the bins. Also, people can know how full and empty the bins around their building are through the designed application connected to the system. In this way, each organization collects its desired waste, wet and dry waste are separated from the beginning, and city pollution and unpleasant odors are also prevented.

Keywords: connector, smart trash can, waste management

Procedia PDF Downloads 66
1343 Ionic Liquid Membranes for CO2 Separation

Authors: Zuzana Sedláková, Magda Kárászová, Jiří Vejražka, Lenka Morávková, Pavel Izák

Abstract:

Membrane separations are mentioned frequently as a possibility for CO2 capture. Selectivity of ionic liquid membranes is strongly determined by different solubility of separated gases in ionic liquids. The solubility of separated gases usually varies over an order of magnitude, differently from diffusivity of gases in ionic liquids, which is usually of the same order of magnitude for different gases. The present work evaluates the selection of an appropriate ionic liquid for the selective membrane preparation based on the gas solubility in an ionic liquid. The current state of the art of CO2 capture patents and technologies based on the membrane separations was considered. An overview is given of the discussed transport mechanisms. Ionic liquids seem to be promising candidates thanks to their tunable properties, wide liquid range, reasonable thermal stability, and negligible vapor pressure. However, the uses of supported liquid membranes are limited by their relatively short lifetime from the industrial point of view. On the other hand, ionic liquids could overcome these problems due to their negligible vapor pressure and their tunable properties by adequate selection of the cation and anion.

Keywords: biogas upgrading, carbon dioxide separation, ionic liquid membrane, transport properties

Procedia PDF Downloads 431
1342 Cost-Effective Materials for Hydrocarbons Recovery from Produced Water

Authors: Fahd I. Alghunaimi, Hind S. Dossary, Norah W. Aljuryyed, Tawfik A. Saleh

Abstract:

Produced water (PW) is one of the largest by-volume waste streams and one of the most challenging effluents in the oil and gas industry. This is due to the variation of contaminants that make up PW. Severalmaterialshavebeen developed, studied, and implemented to remove hydrocarbonsfrom PW. Adsorption is one of the most effective ways ofremoving oil fromPW. In this work, three new and cost-effective hydrophobic adsorbentmaterials based on 9-octadecenoic acid grafted graphene (POG) were synthesized for oil/water separation. Graphene derived from graphite was modified with 9-octadecenoic acid to yield 9-octadecenoic acid grafted graphene (OG). The newsynthesized materials which called POG25, POG50, and POG75 were characterized by using N₂-physisorption (BET) and Fourier transform infrared (FTIR). The BET surface area of POG75 was the highest with 288 m²/g, whereas POG50 was 225 m²/g and POG25 was lowest 79 m²/g. These three materials were also evaluated for their oil-water separation efficiency using a model mixture, whichdemonstrated that POG-75 has the highest oil removal efficiency and the faster rate of the adsorption (Figure-1). POG75 was regenerated, and its performance was verified again with a little reduced adsorption rate compared to the fresh material. The mixtures that used in the performance test were prepared by mixing nonpolar organic liquids such as heptane, dodecane, or hexadecane into the colored water. In general, the new materials showed fast uptake of the certain quantity of the oildue to the high hydrophobicity nature of the materials, which repel water as confirmed by the contact angle of approximately 150˚. Besides that, novel superhydrophobic material was also synthesized by introducing hydrophobic branches of laurate on the surface of the stainless steel mesh (SSM). This novel mesh could help to hold the novel adsorbent materials in a column to remove oil from PW. Both BOG-75 and the novel mesh have the potential to remove oil contaminants from produced water, which will help to provide an opportunity to recover useful components, in addition, to reduce the environmental impact and reuse produced water in several applications such as fracturing.

Keywords: graphite to graphene, oleophilic, produced water, separation

Procedia PDF Downloads 122
1341 Effect of Different Parameters of Converging-Diverging Vortex Finders on Cyclone Separator Performance

Authors: V. Kumar, K. Jha

Abstract:

The present study is done to explore design modifications of the vortex finder, as it has a significant effect on the cyclone separator performance. It is evident that modifications of the vortex finder improve the performance of the cyclone separator significantly. The study conducted strives to improve the overall performance of cyclone separators by utilizing a converging-diverging (CD) vortex finder instead of the traditional uniform diameter vortex finders. The velocity and pressure fields inside a Stairmand cyclone separator with body diameter 0.29m and vortex finder diameter 0.1305m are calculated. The commercial software, Ansys Fluent v14.0 is used to simulate the flow field in a uniform diameter cyclone and six cyclones modified with CD vortex finders. Reynolds stress model is used to simulate the effects of turbulence on the fluid and particulate phases, discrete phase model is used to calculate the particle trajectories. The performance of the modified vortex finders is compared with the traditional vortex finder. The effects of the lengths of the converging and diverging sections, the throat diameter and the end diameters of the convergent divergent section are also studied to achieve enhanced performance. The pressure and velocity fields inside the vortex finder are presented by means of contour plots and velocity vectors and changes in the flow pattern due to variation of the geometrical variables are also analysed. Results indicate that a convergent-divergent vortex finder is capable of decreasing the pressure drop than that achieved through a uniform diameter vortex finder. It is also observed that the end diameters of the CD vortex finder, the throat diameter and the length of the diverging part of the vortex finder have a significant impact on the cyclone separator performance. Increase in the lower diameter of the vortex finder by 66% results in 11.5% decrease in the dimensionless pressure drop (Euler number) with 5.8% decrease in separation efficiency. Whereas 50% decrease in the throat diameter gives 5.9% increase in the Euler number with 10.2% increase in the separation efficiency and increasing the length of the diverging part gives 10.28% increase in the Euler number with 5.74% increase in the separation efficiency. Increasing the upper diameter of the CD vortex finder is seen to produce an adverse effect on the performance as it increases the pressure drop significantly and decreases the separation efficiency. Increase in length of the converging is not seen to affect the performance significantly. From the present study, it is concluded that convergent-divergent vortex finders can be used in place of uniform diameter vortex finders to achieve a better cyclone separator performance.

Keywords: convergent-divergent vortex finder, cyclone separator, discrete phase modeling, Reynolds stress model

Procedia PDF Downloads 172
1340 The Effect of the Structural Arrangement of Binary Bisamide Organogelators on their Self-Assembly Behavior

Authors: Elmira Ghanbari, Jan Van Esch, Stephen J. Picken, Sahil Aggarwal

Abstract:

Low-molecular-weight organogelators form gels by self-assembly into the crystalline network which immobilizes the organic solvent. For single bisamide organogelator systems, the effect of the molecular structure on the molecular interaction and their self-assembly behavior has been explored. The spatial arrangement of bisamide molecules in the gel-state is driven by a combination of hydrogen bonding and Van der Waals interactions. The hydrogen-bonding pattern between the amide groups of bisamide molecules is regulated by the number of methylene spacers; the even number of methylene spacers between two amide groups, in even-spaced bisamides, leads to the antiparallel position of amide groups within a molecule. An even-spaced bisamide molecule with antiparallel amide groups can make two pairs of hydrogen bonding with the molecules on the same plane. The odd-spaced bisamide with a parallel directionality of amide groups can form four independent hydrogen bonds with four other bisamide molecules on different planes. The arrangement of bisamide molecules in the crystalline state and the interaction of these molecules depends on the molecular structure, particularly the parity of the spacer length between the amide groups in the bisamide molecule. In this study, the directionality of amide groups has been exploited as a structural characteristic to affect the arrangement of molecules in the crystalline state and produce different binary bisamide gelators with different degrees of crystallinities. Single odd- and even-spaced single bisamides were synthesized and blended to produce binary bisamide organogelators to be characterized in order to understand the effect of the different directionality of amide groups on the molecular interaction in the crystalline state. The pattern of molecular interactions between these blended molecules, mixing or phase separation, has been monitored via differential scanning calorimetry (DSC) and crystallography techniques; X-ray powder diffraction (XRD) and Small-angle X-ray scattering (SAXS). The formation of lamellar structures for odd- and even-spaced bisamide gelators was confirmed by using SAXS and XRD techniques. DSC results have shown that binary bisamide organogelators with different parity of methylene spacers (odd-even binary blends) have a higher tendency for phase separation compared to the binary bisamides with the same parity (odd-odd or even-even binary blends). Phase separation in binary odd-even bisamides was confirmed by the presence of individual (100) reflections of odd and even lamellar structures. The structural characteristic of bisamide organogelators, the parity of spacer length in binary systems, is a promising tool to control the arrangement of molecules and their crystalline structure.

Keywords: binary bisamide organogelators, crystalline structure, phase separation, self-assembly behavior

Procedia PDF Downloads 185