Search results for: chickpea yogurt
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 87

Search results for: chickpea yogurt

87 Physicochemical and Microbiological Properties of Kefir, Kefir Yogurt and Chickpea Yogurt

Authors: Nuray Güzeler, Elif Ari, Gözde Konuray, Çağla Özbek

Abstract:

The consumption of functional foods is very common. For this reason, many products which are probiotic, prebiotic, energy reduced and fat reduced are developed. In this research, physicochemical and microbiological properties of functional kefir, kefir yogurt and chickpea yogurt were examined. For this purpose, pH values, titration acidities, viscosity values, water holding capacities, serum separation values, acetaldehyde contents, tyrosine contents, the count of aerobic mesophilic bacteria, lactic acid bacteria count and mold-yeast counts were determined. As a result of performed analysis, the differences between titration acidities, serum separation values, water holding capacities, acetaldehyde and tyrosine contents of samples were statistically significant (p < 0.05). There were no significant differences on pH values, viscosities, and microbiological properties of samples (p > 0.05). Consequently industrial production of functional kefir yogurt and chickpea yogurt may be advised.

Keywords: chickpea yogurt, kefir, kefir yogurt, milk

Procedia PDF Downloads 239
86 Production Potential and Economic Returns of Bed Planted Chickpea (Cicer arietinum L.) As Influenced by Different Intercropping Systems

Authors: Priya M. V., Thakar Singh

Abstract:

A field experiment was carried out during the rabi season of 2017 and 2018 to evaluate the productivity and economic viability of bed-planted chickpea-based intercropping systems. The experiment was laid out in a randomized block design consisting of four replications with thirteen treatments. Results showed that sole chickpea recorded the highest seed yield, and it was statistically at par with seed yield obtained under chickpea + oats fodder (2:1), chickpea + oats fodder (4:1), and chickpea + linseed (4:1) intercropping systems. However, oilseed rape and barley as intercrops showed an adverse effect on yield and yield attributes of chickpea. Chickpea + oats fodder in 2:1 row ratio recorded the highest chickpea equivalent yield of 24.07 and 24.77 q/ha during 2017 and 2018, respectively. Higher net returns (Rs. 63098 and 70924/ha) and benefit-cost ratio (1.47 and 1.63) were also recorded in chickpea + oats fodder (2:1) intercropping system over sole chickpea (Rs. 44862 and 53769/ha and 1.21 and 1.41) during both the years. Chickpea + oats fodder (4:1), chickpea + linseed (2:1), and chickpea + linseed (4:1) also recorded significantly higher chickpea equivalent yield, net returns, and benefit-cost ratio as compared to sole chickpea.

Keywords: bed planted chickpea, chickpea equivalent yield, economic returns, intercropping system, productivity

Procedia PDF Downloads 162
85 Effect of Capsule Storage on Viability of Lactobacillus bulgaricus and Streptococcus thermophilus in Yogurt Powder

Authors: Kanchana Sitlaothaworn

Abstract:

Yogurt capsule was made by mixing 14% w/v of reconstitution of skim milk with 2% FOS. The mixture was fermented by commercial yogurt starter comprising Lactobacillus bulgaricus and Streptococcus thermophilus. These yogurts were made as yogurt powder by freeze-dried. Yogurt powder was put into capsule then stored for 28 days at 4oc. 8ml of commercial yogurt was found to be the most suitable inoculum size in yogurt production. After freeze-dried, the viability of L. bulgaricus and S. thermophilus reduced from 109 to 107 cfu/g. The precence of sucrose cannot help to protect cell from ice crystal formation in freeze-dried process, high (20%) sucrose reduced L. bulgaricus and S. thermophilus growth during fermentation of yogurt. The addition of FOS had reduced slowly the viability of both L. bulgaricus and S. thermophilus similar to control (without FOS) during 28 days of capsule storage. The viable cell exhibited satisfactory viability level in capsule storage (6.7x106cfu/g) during 21 days at 4oC.

Keywords: yogurt capsule, Lactobacillus bulgaricus, Streptococcus thermophilus, freeze-drying, sucrose

Procedia PDF Downloads 288
84 Forage Quality of Chickpea - Barley as Affected by Mixed Cropping System in Water Stress Condition

Authors: Masoud Rafiee

Abstract:

To study the quality response of forage to chickpea-barley mixed cropping under drought stress and vermicompost consumption, an experiment was carried out under well watered and %70 water requirement (stress condition) in RCBD as split plot with four replications in temperate condition of Khorramabad in 2013. Chickpea-barley mix cropping (%100 chickpea, %75:25 chickpea:barley, %50:50 chickpea:barley, %25:75 chickpea:barley, and %100 barley) was studied. Results showed that wet and dry forage yield were significantly affected by environment and decreased in stress condition. Also, crude protein content decreased from %26.2 in well watered to %17.3 in stress condition.

Keywords: crude protein, wet forage yield, dry forage yield, water stress condition, well watered

Procedia PDF Downloads 306
83 Nutritional Composition of Iranian Desi and Kabuli Chickpea (Cicer arietinum L.) Cultivars in Autumn Sowing

Authors: Khosro Mohammadi

Abstract:

The grain quality of chickpea in Iran is low and instable, which may be attributed to the evolution of cultivars with a narrow genetic base making them vulnerable to biotic stresses. Four chickpea varieties from diverse geographic origins were chosen and arranged in a randomized complete block design. Mesorhizobium Sp. cicer strain SW7 was added to all the chickpea seeds. Chickpea seeds were planted on October 9, 2013. Each genotype was sown 5 m in length, with 35 cm inter-row spacing, in 3 rows. Weeds were removed manually in all plots. Results showed that analysis of variance on the studied traits showed significant differences among genotypes for N, P, K and Fe contents of chickpea, but there is not a significant difference among Ca, Zn and Mg continents of chickpea. The experimental coefficient of variation (CV) varied from 7.3 to 15.8. In general, the CV value lower than 20% is considered to be good, indicating the accuracy of conducted experiments. The highest grain N was observed in Hashem and Jam cultivars. The highest grain P was observed in Jam cultivar. Phosphorus content (mg/100g) ranged from 142.3 to 302.3 with a mean value of 221.3. The negative correlation (-0.126) was observed between the N and P of chickpea cultivars. The highest K and Fe contents were observed in Jam cultivar.

Keywords: cultivar, genotype, nitrogen, nutrient, yield

Procedia PDF Downloads 319
82 Change of Physicochemical Properties of Grain in the Germination of Chickpea Grain

Authors: Mira Zhonyssova, Nurlaym Ongarbayeva, Makpal Atykhanova

Abstract:

Indicators of quality of grain chickpeas, the absorption of water different temperatures by grain chickpeas studied. Organoleptic and physicochemical changes in the germination of chickpeas studied. The total time of the duration of germination of chickpea grain is determined. As a result of the analysis of experimental data, it was found that the germination time at which the chickpea sprout length was 0.5- 3 mm varies from 21 to 25 hours. The change in the volume of chickpea grain during germination was investigated. It was found that in the first 2 hours the volume of chickpeas changes slightly – by 38%. This is due to the process of adsorption of water to a critical state. From 2 to 9 hours, the process of swelling of chickpea grain is observed – the vital activity of cells increases, enzymatic systems become active, the respiratory coefficient increases; gibberellin, stimulating the formation of a number of enzymes, is released. During this period, there is a sharp increase in the volume of chickpea grains – up to 138%. From 9 to 19 hours, “sprouting” of chickpea grains is observed, no morphological changes occur in the corcule – the grain volume remains at 138%. From 19 hours, the grain growth process begins, while the grain volume increases by 143%.

Keywords: chickpea, seeds, legumes, germination, physic-chemical properties

Procedia PDF Downloads 10
81 The Dynamics of Microorganisms in Dried Yogurt Storages at Different Temperatures

Authors: Jaruwan Chutrtong

Abstract:

Yoghurt is a fermented milk product. The process of making yogurt involves fermenting milk with live and active bacterial cultures by adding bacteria directly to the dairy product. It is usually made with a culture of Lactobacillus sp. (L. acidophilus or L. bulgaricus) and Streptococcus thermophilus. Many people like to eat it plain or flavored and it's also use as ingredient in many dishes. Yogurt is rich in nutrients including the microorganism which have important role in balancing the digestion and absorption of the boy.Consumers will benefit from lactic acid bacteria more or less depending on the amount of bacteria that lives in yogurt while eating. When purchasing yogurt, consumers should always check the label for live cultures. Yoghurt must keep in refrigerator at 4°C for up to ten days. After this amount of time, the cultures often become weak. This research studied freezing dry yogurt storage by monitoring on the survival of microorganisms when stored at different temperatures. At 300°C, representative room temperature of country in equator zone, number of lactic acid bacteria reduced 4 log cycles in 10 week. At 400°C, representative temperature in summer of country in equator zone, number of lactic acid bacteria also dropped 4 log cycle in 10 week, similar as storage at 300°C. But drying yogurt storage at 400°C couldn’t reformed to be good character yogurt as good as storage at 400°C only 4 week storage too. After 1 month, it couldn’t bring back the yogurt form. So if it is inevitable to keep yogurt powder at a temperature of 40°C, yoghurt is maintained only up to 4 weeks.

Keywords: dynamic, dry yoghurt, storage, temperature

Procedia PDF Downloads 282
80 Optimal Temperature and Time for Lactic Coagulation of Milk Containing Antibiotic: Evaluation of Yogurt Fermentation Parameters

Authors: Arezoo Ghadi, Adonis Pishdadian, Ehsan Zahedi, Vahideh Rashedi, Mozhgan Mohammadi

Abstract:

The presence of antibiotics in milk is one of the problems of dairy production units, especially yogurt and cheese, which leads to a decrease in lactic coagulation. Here, to assess the incubation conditions for the fermentation of milk containing antibiotics, concentrations of 50, 75, 100, and 200 ppb of tetracycline were added to each liter of milk. Inoculation process with starter culture performed at three temperatures of 35°C, 45°C, and 50°C. Afterward, pH, acidity, oxidation-reduction potential, and lactic coagulation of yogurt were evaluated. The results showed the existence of antibiotics in milk affects the quality and physicochemical properties of yogurt. However, antibiotic concentration and change in incubation temperature play a crucial role in the lactic coagulation of yogurt, such that the best lactic coagulation was observed at 50°C and a concentration of 50ppb. Hence, for tetracycline concentrations less than 75ppb, a process temperature of 50°C and incubation time of ~10 h recommend for fermentation of milk containing antibiotics.

Keywords: antibiotics residues, yogurt, fermentation parameters, incubation temperature

Procedia PDF Downloads 55
79 Effect of Yogurt on Blood and Liver Lipids Lavel in Rats

Authors: Nora Mohammed Al-Kehayez

Abstract:

This present investigation was performed to study the effect of low fat yogurt on serum and liver lipids profile of male albino rats (weighing 100 g+or- 5 gram) when fed balanced or high fat high cholesterol diets and given yogurt ad libitum compared with control groups. Rats were divided into 4 groups, each group contains 6 rats. The groups of rats were fed as follows: Group(1) was fed balanced diet + water(control). Group(2) was fed balanced diet + low fat yogurt. Group(3) was fed high fat high cholesterol diet + water(Control). Group(4) was fed high fat high cholesterol diet + low fat yogurt. The obtained results could be summarized as follows: When rats were given low fat yogurt and fed balanced or high fat high cholesterol diets a significantly greater weight gains resulted in comparison with the control groups given water instead of yogurt. The data on the weights of liver and heart expressed' as percentage increased the body weight in case of rats which were fed balanced diet with low fat yogurt while in case of rats which were fed high fat high cholesterol diet with low fat yogurt the increment scenes to be less. Results of serum cholesterol levels in serum of rats were given balanced or high fat high cholesterol diets and consuming low fat yogurt was showed a significant reduction values. However the low fat yogurt produced the highest significant decrease values. The values of serum cholesterol go hand in hand with serum lipoprotein fractions in rats given low fat yogurt with both balanced or high fat high cholesterol diets. An increase of high density lipoprotein HDL-C and a decrease of low density lipoprotein LDL-C values were obtained. When rats ingested low fat yogurt a significant decrease in serum and liver triglycerides content was obtained wether with balanced or high fat high cholesterol diets. Rats consuming high fat high cholesterol diets with water showed a significant increase in liver total lipids, total cholesterol and phospholipides levels in comparison with the same liver parameters in rats given balanced diet with water. Supplement with low fat yogurt significantly suppressed these effects.

Keywords: yogurt, lipids profile, albino, rats

Procedia PDF Downloads 372
78 Land Equivalent Ration of Chickpea - Barley as Affected by Mixed Cropping System and Vermicompost in Water Stress Condition

Authors: Masoud Rafiee

Abstract:

Study of the effect of vermin compost on yield, and Land equivalent ration (LER) of chickpea-barley mixed cropping under normal dry land condition can be useful in order to increase qualitative and quantitative performance. In this case, two factors include fertilizer (vermicompost biological fertilizer, ammonium phosphate chemical fertilizer, vermicompost + %75 chemical fertilizer) and chickpea + barley mixed cropping (sole chickpea, %75 chickpea: %25 barley, %50 chickpea: %50 barley, %25 chickpea: %75 barley, and sole barley) in RCBD in three replications in two experiments include normal and dry land conditions were studied. Result showed that total LER base on dry matter was affected by environment and mixed cropping interaction and was more than 1 in all mixed cropping treatments. In different mixed cropping rates, wet forage yield decreased by decreasing chickpea ratio as well as increasing barley ratio. Total LER mean in base on forage dry matter in mixed-, chemical-, and vermicompost fertilizer treatments were 1.12, 1.05 and 1.10 in normal condition and 1.15, 1.08 and 1.14 in dry land condition, respectively, represented the important of biological fertilizer in mixed cropping systems.

Keywords: land equivalent ration, biological fertilizer, mixed cropping systems, water stress

Procedia PDF Downloads 264
77 Developing Drought and Heat Stress Tolerant Chickpea Genotypes

Authors: Derya Yucel, Nigar Angın, Dürdane Mart, Meltem Turkeri, Volkan Catalkaya, Celal Yucel

Abstract:

Chickpea (Cicer arietinum L.) with high protein content is a vital food, especially in under-developed and developing countries for the people who do not consume enough meat due to low-income level. The objective of the proposed study is to evaluate growing, yield and yield components of chickpea genotypes under Mediterranean condition so determine tolerance of chickpea genotypes against drought and heat stress. For this purpose, a total of 34 chickpea genotypes were used as material. The experiment was conducted according to factorial randomized complete block design with 3 reps at the Eastern Mediterranean Research Institute, Adana, TURKEY for 2014-15 growing season under three different growing conditions (Winter sowing, irrigated-late sowing and non-irrigated- late sowing). According to results of this experiment, vegetative period, flowering time, poding time, maturity time, plant height, height of first pod, seed yield and 100 seed weight were ranged between 68.33 to 78.77 days, 94.22 to 85.00 days, 94.11 to 106.44 days, 198.56 to 214.44 days, 37.18 to 64.89 cm, 18.33 to 34.83 cm, 417.1 to 1746.4 kg/ha and 14.02 to 45.02 g, respectively. Among the chickpea genotypes, the Aksu, Arda, Çakır, F4 09 (X 05 TH 21-16189), FLIP 03-108 were least affected by drought and heat stress. Therefore, these genotypes can be used as sources of drought and heat tolerance in further breeding programme for evolving the drought and heat tolerant genotypes in chickpea.

Keywords: chickpea, drought stress, heat stress, yield

Procedia PDF Downloads 180
76 Salinity Response of Some Chickpea (Cicer arietinum L.) Genotypes in Germination and Seedling Growth of Periods

Authors: Onder Aldemir, Ercan Ceyhan

Abstract:

The research was conducted to determine effects of salt concentrations on emergence and seedling development of chickpea genotypes. Trials were performed during the year of 2013 on the laboratory and greenhouse of Agricultural Faculty, Selcuk University. Emergency trial was set up according to ‘Randomized Plots Design’ by two factors and four replications; greenhouse trial was also set up according to ‘Randomized Plots Design’ by two factors with three replications. The chickpea genotypes; CA119, CA132, CA149, CA150, CA215, CA222, CA235, CA261, Bozkır and Gokce were used as material for both of the trials. Effects of the five doses of salt concentrations (control, 30 mM, 60 mM, 90 mM and 120 mM) on the ratio of emergency, speed of emergency, average time for emergency, index of sensibility, length of shoot and root, fresh weight of shoot and root, dry weight of shoot and root, index of salt tolerance were evaluated. Responses of the chickpea genotypes for salt concentrations were found different. Comparing to the control, all of the investigated characteristics on the chickpea genotypes showed significant reduction by depending on the increasing salt level. According to the effects of salt application, the chickpea genotypes Gokce, CA215 and CA222 were the most tolerant in respect to plant dry weights while the chickpea genotypes CA149 and CA150 were the most sensitive.

Keywords: chickpea, emergence, salt tolerant, seedling development

Procedia PDF Downloads 191
75 Production of Soy Yoghurt Using Soymilk-Based Lactic Acid Bacteria as Starter Culture

Authors: Ayobami Solomon Popoola, Victor N. Enujiugha

Abstract:

Production of soy-yogurt by fermentation of soymilk with lactic acid bacteria isolated from soymilk was studied. Soymilk was extracted from dehulled soybean seeds and pasteurized at 95 °C for 15 min. The soymilk was left to naturally ferment (temperature 40 °C; time 8 h) and lactic acid bacteria were isolated, screened and selected for yogurt production. Freshly prepared soymilk was pasteurized (95 °C, 15 min), inoculated with the lactic acid bacteria isolated (3% w/v starter culture) and incubated at 40 °C for 8 h. The yogurt produced was stored at 4 °C. Investigations were carried out with the aim of improving the sensory qualities and acceptability of soy yogurt. Commercial yogurt was used as a control. The percentage of soymilk inoculated was 70% of the broth. Soy-yoghurt samples produced were subsequently subjected to biochemical and microbiological assays which included total viable counts of fresh milk and soy-based yoghurt; proximate composition of functional soy-based yoghurt fermented with Lactobacillus plantarum; changes in pH, Titratable acidity, and lactic acid bacteria during a 14 day period of storage; as well as morphological and biochemical characteristics of lactic acid bacteria isolated. The results demonstrated that using Lactobacillus plantarum to inoculate soy milk for yogurt production takes about 8 h. The overall acceptability of the soy-based yogurt produced was not significantly different from that of the control sample. The use of isolate from soymilk had the added advantage of reducing the cost of yogurt starter culture, thereby making soy-yogurt, a good source of much desired good quality protein. However, more experiments are needed to improve the sensory qualities such as beany or astringent flavor and color.

Keywords: soy, soymilk, yoghurt, starter culture

Procedia PDF Downloads 213
74 Application of Microparticulated Whey Proteins in Reduced-Fat Yogurt through Hot-Extrusion: Influence on Physicochemical and Sensory Properties

Authors: M. K. Hossain, J. Keidel, O. Hensel, M. Diakite

Abstract:

Fat reduced dairy products are holding a potential market due to health reason. Due to less creamy, and pleasantness, reduced and/or low-fat dairy products are getting less consumer acceptance whereas the fat molecule provides smooth, creamy and a pleasant mouthfeel in dairy products especially yogurt & ice cream. This study was aimed to investigate whether the application of microparticulated whey proteins (MWPs) processed by extrusion cooking, the reduced fat yogurt can achieve similar or higher creaminess compared to whole milk (3.8% fat) and skimmed milk (0.5% fat) yogurt. Full cream and skimmed milk were used to prepare natural stirred yogurt, as well as the dry matter content, also adjusted up to 16% with skimmed milk powder. Whey protein concentrates (WPC80) were used to produce MWPs in particle size of d50 > 5 µm, d50 3<5 µm and d50 < 3 µm through the hot-extrusion process with a screw speed of 400, 600 and 1000 rpm respectively. Furthermore, the commercially available microparticulated whey protein called Simplesse® was also applied in order to compare with extruded MWPs. The rheological and sensory properties of yogurt were assessed, and data were analyzed statistically. The applications of extruded MWPs with 600 and 1000 rpm were achieved significantly (p < 0.05) higher creaminess and preference compared to the whole and skimmed milk yogurt whereas, 400 rpm got lower preference. On the other hand, Simplesse® obtained the lowest creaminess and preference compared to other yogurts, although the contribution of dry matter in yogurt was same as extruded MWPs. The creaminess and viscosities were strongly (r = 0.62) correlated, furthermore, the viscosity from sensory evaluation and the dynamic viscosity of yogurt was also significantly (r = 0.72) correlated which clarifies that the performance of sensory panelists as well as the quality of the products.

Keywords: microparticulation, hot-extrusion, reduced-fat yogurt, whey protein concentrate

Procedia PDF Downloads 89
73 Evaluation on Heat and Drought Tolerance Capacity of Chickpea

Authors: Derya Yucel, Nigar Angın, Dürdane Mart, Meltem Turkeri, Volkan Catalkaya, Celal Yucel

Abstract:

Chickpea (Cicer arietinum L.) is one of the important legumes widely grown for dietery proteins in semi-arid Mediteranean climatic conditions. To evaluate the genetic diversity with improved heat and drought tolerance capacity in chickpea, thirty-four selected chickpea genotypes were tested under different field-growing conditions (rainfed winter sowing, irrigated-late sowing and rainfed-late sowing) in 2015 growing season. A factorial experiment in randomized complete block design with 3 reps was conducted at the Eastern Mediterranean Research Institute Adana, Turkey. Based on grain yields under different growing conditions, several indices were calculated to identify economically higher-yielding chickpea genotypes with greater heat and drought tolerance capacity. Average across chickpea genotypes, the values of tolerance index, mean productivity, yield index, yield stability index, stress tolerance index, stress susceptibility index, and geometric mean productivity were ranged between 1.1 to 218, 38 to 202, 0.3 to 1.7, 0.2 to 1, 0.1 to 1.2, 0.02 to 1.4, and 36 to 170 for drought stress and 3 to 54, 23 to 118, 0.3 to 1.7, 0.4 to 0.9, 0.2 to 2, 0.2to 2.3, and 23 to 118 for heat stress, respectively. There were highly significant differences observed among the tested chickpea genotypes response to drought and heat stresses. Among the chickpea genotypes, the Aksu, Arda, Çakır, F4 09 (X 05 TH 21-16189), FLIP 03-108 were identified with a higher drought and heat tolerance capacity. Based on our field studies, it is suggested that the drought and heat tolerance indicators of plants can be used by breeders to select stress-resistant economically productive chickpea genotypes suitable to grow under Mediteranean climatic conditions.

Keywords: irrigation, rainfed, stress susceptibility, tolerance indice

Procedia PDF Downloads 201
72 Strategies to Improve Heat Stress Tolerance in Chickpea and Dissecting the Cross Talk Mechanism

Authors: Renu Yadav, Sanjeev Kumar

Abstract:

In northern India, chickpea (Cicer arietinum L.) come across with terminal high-temperature stress during reproductive stage which leads to reduced yield. Hence, stable production of chickpea will depend on the development of new methods like ‘priming’ which allow improved adaptation to the drought and heat stress. In the present experiment, 11-day chickpea seedling was primed with mild drought stress and put on recovery stage by irrigating and finally 30-day seedlings were exposed to heat stress 38°C (4 hours), 35°C (8 hours) and 32°C (12 hours). To study the effect of combinatorial stress, heat and drought stress was applied simultaneously. Analyses of various physiological parameters like membrane damage assay, photosynthetic pigments, antioxidative enzyme, total sugars were estimated at all stages. To study the effect of heat stress on the metabolites of the plants, GC-MS and HPLC were performed, while at transcriptional level Real-Time PCR of predicted heat stress-related genes was done. It was concluded that the heat stress significantly affected the chickpea plant at physiological and molecular level in all the five varieties. Results also show less damaging effect in primed plants by increasing the activity of antioxidative enzymes and increased expression of heat shock proteins and heat shock factors.

Keywords: chickpea, combinatorial stress, heat stress, oxidative stress, priming, RT-PCR

Procedia PDF Downloads 115
71 Effect of Different Weed Management Strategies in Chickpea Yield

Authors: Ijaz Ahmed Khan, Zaheen Ullah, Rahamdad, Gul Hassan

Abstract:

A field experiment was conducted at Agricultural Research Station Ahmad Wala, Karak, Khyber Pakhtunkhwa Province during rabi season of 2010-011 to study the effect of different weed management practices on weed control in chickpea under field conditions. The results revealed that treatments showed significant influence on weed density, seed yield kg ha-1 and other growth parameters. Significantly lower weed density (98 m-2) was recorded with the application of Isoproturon 500 EW as compared to control plots having 368.3 weeds m-2. Moreover, significantly highest seed yield (1583.3 kg ha-1) was produced in the plots assigned with Isoproturon 500 EW followed by Eucalyptus extract that produce seed yield of 1416.7 kg ha-1. It was concluded from the study that Isoproturon 500 EW is the best option for controlling weeds and increase the seed yield kg ha-1 of chickpea.

Keywords: chickpea, herbicides, weed control, weeds extracts

Procedia PDF Downloads 517
70 Preparation and Functional Properties of Synbiotic Yogurt Fermented with Lactobacillus brevis PML1 Derived from a Fermented Cereal-Dairy Product

Authors: Farideh Tabatabei-Yazdi, Fereshteh Falah, Alireza Vasiee

Abstract:

Nowadays, production of functional foods has become very essential. Inulin is one of the most functional hydrocolloid compounds used in such products. In the present study, the production of a synbiotic yogurt containing 1, 2.5, and 5% (w/v) inulin has been investigated. The yogurt was fermented with Lactobacillus brevis PML1 derived from Tarkhineh, an Iranian cereal-dairy fermented food. Furthermore, the physicochemical properties, antioxidant activity, sensory attributes, and microbial viability properties were investigated on the 0th, 7th, and 14th days of storage after fermentation. The viable cells of L. brevis PML1 reached 108 CFU/g, and the product resisted to simulated digestive juices. Moreover, the synbiotic yogurt impressively increased the production of antimicrobial compounds and had the most profound antimicrobial effect on S. typhimurium. The physiochemical properties were in the normal range, and the fat content of the synbiotic yogurt was reduced remarkably. The antioxidant capacity of the fermented yogurt was significantly increased (p<0:05), which was equal to those of DPPH (69:18±1:00%) and BHA (89:16±2:00%). The viability of L. brevis PML1 was increased during storage. Sensory analysis showed that there were significant differences in terms of the impressive parameters between the samples and the control (p<0:05). Addition of 2.5% inulin not only improved the physical properties but also retained the viability of the probiotic after 14 days of storage, in addition to the viability of L. brevis with a viability count above 6 log CFU/g in the yogurt. Therefore, a novel synbiotic product containing L. brevis PML1, which can exert the desired properties, can be used as a suitable carrier for the delivery of the probiotic strain, exerting its beneficial health effects.

Keywords: functional food, lactobacillus brevis, symbiotic yogurt, physiochemical properties

Procedia PDF Downloads 60
69 Response of Chickpea (Cicer arietinum L.) Genotypes to Drought Stress at Different Growth Stages

Authors: Ali. Marjani, M. Farsi, M. Rahimizadeh

Abstract:

Chickpea (Cicer arietinum L.) is one of the important grain legume crops in the world. However, drought stress is a serious threat to chickpea production, and development of drought-resistant varieties is a necessity. Field experiments were conducted to evaluate the response of 8 chickpea genotypes (MCC* 696, 537, 80, 283, 392, 361, 252, 397) and drought stress (S1: non-stress, S2: stress at vegetative growth stage, S3: stress at early bloom, S4: stress at early pod visible) at different growth stages. Experiment was arranged in split plot design with four replications. Difference among the drought stress time was found to be significant for investigated traits except biological yield. Differences were observed for genotypes in flowering time, pod information time, physiological maturation time and yield. Plant height reduced due to drought stress in vegetative growth stage. Stem dry weight reduced due to drought stress in pod visibly. Flowering time, maturation time, pod number, number of seed per plant and yield cause of drought stress in flowering was also reduced. The correlation between yield and number of seed per plant and biological yield was positive. The MCC283 and MCC696 were the high-tolerance genotypes. These results demonstrated that drought stress delayed phonological growth in chickpea and that flowering stage is sensitive.

Keywords: chickpea, drought stress, growth stage, tolerance

Procedia PDF Downloads 224
68 Role of Salicylic Acid in Alleviating Chromium Toxicity in Chickpea (Cicer Arietinum L.)

Authors: Ghulam Hassan Abbasi, Moazzam Jamil, Ghazala Akhtar, M.Anwar-ul-Haq

Abstract:

Heavy metals are significant pollutants in environment and their toxicity is a problem for survival of living things while salicylic acid (SA) is signaling and ubiquitous bioactive molecule that regulates cellular mechanism in plants under stress condition. Therefore, exogenous application of salicylic acid (SA) under chromium stress in two chickpea varieties were investigated in hydroponic experiment with five treatments comprising of control, 5 µM Cr + 5 mM SA, 5µM Cr + 10 mM SA, 10µM Cr + 5 mM SA, and 10µM Cr + 10 mM SA. Results revealed that treatments of plants with 10 mM SA application under both 5 µM Cr and 10 µM Cr stress resulted in maximum improvement in plant morphological attributes (root and shoot length, root and shoot fresh and dry weight, membrane stability index and relative water contents) relative to 5 mM SA application in both chickpea varieties. Results regarding Cr concentration showed that Cr was more retained in roots followed by shoots and maximum reduction in Cr uptake was observed at 10 mM SA application. Chickpea variety BRC-61 showed maximum growth and least concentration of Cr in root and shoot relative to BRC-390 variety.

Keywords: chromium, Chickpea, salicylic acid, growth

Procedia PDF Downloads 474
67 Enhanced Iron Accumulation in Chickpea Though Expression of Iron-Regulated Transport and Ferritin Genes

Authors: T. M. L. Hoang, G. Tan, S. D. Bhowmik, B. Williams, A. Johnson, M. R. Karbaschi, Y. Cheng, H. Long, S. G. Mundree

Abstract:

Iron deficiency is a worldwide problem affecting both developed and developing countries. Currently, two major approaches namely iron supplementation and food fortification have been used to combat this issue. These measures, however, are limited by the economic status of the targeted demographics. Iron biofortification through genetic modification to enhance the inherent iron content and bioavailability of crops has been employed recently. Several important crops such as rice, wheat, and banana were reported successfully improved iron content via this method, but there is no known study in legumes. Chickpea (Cicer arietinum) is an important leguminous crop that is widely consumed, particularly in India where iron deficiency anaemia is prevalent. Chickpea is also an ideal pulse in the formulation of complementary food between pulses and cereals to improve micronutrient contents. This project aims at generating enhanced ion accumulation and bioavailability chickpea through the exogenous expression of genes related to iron transport and iron homeostasis in chickpea plants. Iron-Regulated Transport (IRT) and Ferritin genes in combination were transformed into chickpea half-embryonic axis by agrobacterium–mediated transformation. Transgenic independent event was confirmed by Southern Blot analysis. T3 leaves and seeds of transgenic chickpea were assessed for iron contents using LA-ICP-MS (Laser Ablation – Inductively Coupled Plasma Mass Spectrometry) and ICP-OES (Inductively Coupled Plasma Optical Emission Spectrometry). The correlation between transgene expression levels and iron content in T3 plants and seeds was assessed using qPCR. Results show that iron content in transgenic chickpea expressing the above genes significantly increased compared to that in non-transgenic controls.

Keywords: iron biofortification, chickpea, IRT, ferritin, Agrobacterium-mediated transformation, LA-ICP-MS, ICP-OES

Procedia PDF Downloads 400
66 Improving Oxidative Stability of Encapsulated Krill and Black Cumin Oils and its Application in Functional Yogurt

Authors: Tamer El-Messery, Beraat Ozcelik

Abstract:

This study aimed to produce functional yogurt supplemented with microencapsulated krill oil as a source of omega 3, which is known, to maintain the normal brain function, reduce the risk of cancer, and preventing cardiovascular disease. Krill oil was mixed with black cumin oil (1:1) in order to increase its oxidative stability. β-caroteine (10 mg/100 ml) was used as a standard antioxidant. Maltodextrin (MD) was mixed with whey protein concentrate (WPC) and gum Arabic (GA) at the ratio of 8:2:0.5 ratios and used for microencapsulation of single or mixed oils. The microcapsules were dried by freeze and spray drying in order to maximize encapsulation efficiency and minimize lipid oxidation. The feed emulsions used for particle production were characterized for stability, viscosity and particle size, zeta potential, and oxidative stability. The oxidative stability for mixed krill oil and black cumin oil was the highest. The highest encapsulation efficiency was obtained using spray drying, which also showed the highest oxidative stability. The addition of encapsulated krill and black cumin oils (1:1) powder in yogurt manufacture reduced slightly effects on the development of acidity, textural parameters, and water holding capacity of yogurt as compared to control.

Keywords: Krill oil, black cumin oil, micro-encapsulation, oxidative stability, functional yogurt

Procedia PDF Downloads 68
65 Effect of Four Medicinal Plant Extracts on Chickpea Leaf Miner Liriomyza cicerina (Rondani)

Authors: Sabraoui Abdelhadi, El Bouhssini Mustapha, Lhaloui Saadia, El Fakhouri Karim, Bouchelta Aziz

Abstract:

The surveys carried out in 2014, 2015 in the regions of Abda- Doukala, Chaouia- Ouardigha, Zemour- Zair and Fes- Sais have confirmed that the leaf miner was the main insect pest attacking chickpea (Cicer arietinum L.) in Morocco. The grain yield losses caused by this pest could be more than 20% for winter planting and more than 42% for spring-sown crop. To reduce the chickpea leaf miner infestations, four essential oils, as biopesticide alternatives, were tested for their insecticidal effect on L. ciccerina, adults and larvae under laboratory conditions. In addition, we assessed the efficacy of these essential oils with and without adjuvant against this pest in comparison to three insecticides under field conditions. Mentha pulegium, with a dose of 33 µl/l of air caused 100% mortality on adults and larvae, after three hours and six hours of exposure, respectively. Eucalyptus showed 100% mortality on adults and larvae, with doses of 33 and 83 µl/l, after six and three hours of exposure, respectively. In the field conditions M. pulegium and E. globulus with adjuvant showed promising results compared with Abamectin, Azadirachtin and Spinetoram respectively. Essential oils could be used as one of the IPM components for the control of chickpea leaf miner.

Keywords: Liriomyza cicerina, chickpea, essential oils, insecticidal activity, Morocco

Procedia PDF Downloads 334
64 Studies on Tolerance of Chickpea to Some Pre and Post Emergence Herbicides

Authors: Rahamdad Khan, Ijaz Ahmad Khan

Abstract:

In modern agriculture the herbicides application are considered the most effective and fast in action against all types of weeds. But it’s a fact that the herbicide applicator cannot totally secure the crop plants from the possible herbicide injuries that further leads to several destructive changes in plant biochemistry. For the purpose pots studies were undertaken to test the tolerance order of chickpea against pre- emergence herbicides (Stomp 330 EC- Dual Gold 960 EC) and post- emergence herbicides (Topik 15 WP- Puma Super 75 EW- Isoproturon 500 EW) during 2012-13 and 2013-14. The experimental design was CRD with three replications. Plant height, number of branches plant-1, number of seeds plant-1, nodulation, seed protein contents and other growth related parameters in chickpea were examined during the investigations. The results indicate that all the enquire herbicides gave a significant variation to all recorded parameter of chick pea except nodule fresh and dray weight. Moreover the toxic effect of pre-emergence herbicide on chickpea was found higher as compared to post-emergence herbicides. Minimum chickpea plant height (50.50 cm), number of nodule plant-1 (17.83) and lowest seed protein (14.13 %) was recorded in Stomp 330 EC. Similarly the outmost seeds plant-1 (29.66) and number of nodule plant-1 (21) were found for Puma Super 75 EW. The results further showed that the highest seed protein content (21.75 and 21.15 %) was recorded for control/ untreated and Puma Super 75EW. Taking under concentration the possible negative impact of the herbicides the chemical application must be minimized up to certain extent at which the crop is mostly secure. However chemical weed control has many advantages so we should train our farmer regarding the proper use of agro chemical to minimize the loses in crops while using herbicides.

Keywords: chickpea, herbicides, protein, stomp 330 EC, weed

Procedia PDF Downloads 456
63 Boosting the Agrophysiological Performance of Chickpea Crop (Cicer Arietinum L.) Under Low-P Soil Conditions with the Co-application of Bacterial Consortium (Phosphate Solubilizing Bacteria and Rhizobium) and P-Fertilizers (RP and TSP Forms)

Authors: Rym Saidi, Pape Alioune Ndiaye, Ibnyasser Ammar, Zineb Rchiad, Khalid Daoui, Issam Kadmiri Meftahi, Adnane Bargaz

Abstract:

Chickpea (Cicer arietinum L.) is an important leguminous crop grown worldwide and plays a significant role in humans’ dietary consumption. Alongside nitrogen (N), low phosphorus (P) availability within agricultural soils is one of the major factors limiting chickpea growth and productivity. The combined application of beneficial bacterial inoculants and Rock P-fertilizer could boost chickpea performance and productivity, increasing P-utilization efficiency and minimizing nutrient losses under P-deficiency conditions. A greenhouse experiment was conducted to evaluate the response of chickpeas to two P-fertilizer forms (RP and TSP) under N2-fixer and P-solubilizer consortium inoculation to improve biological N fixation and P nutrition under P-deficient conditions. Under inoculation, chickpea chlorophyll content and chlorophyll fluorescence (RP+I and TSP+I) were increased compared to uninoculated treatments. The RP+I treatment increased both shoot and root dry weights by 48,80% and 72,68%, respectively, compared to the uninoculated RP fertilized control. Indeed, the bacterial consortium contributed to enhancing root morphological traits (e.g., root volume, surface area, and diameter) of all inoculated treatments versus the uninoculated treatments. Furthermore, soil available P and root inorganic P were significantly improved in RP+I by 162,84% and 73,24%, respectively, compared to uninoculated RP control. Our research outcomes suggest that the co-inoculation of chickpeas with N2-fixing, and P-solubilizing bacteria improves biomass yield and nutrient uptake. Eventually, enhancing chickpea agrophysiological performance, especially in restricted P-availability conditions.

Keywords: chickpea, consortium, beneficial bacterial inoculants, phosphorus deficiency, rock p-fertilizer, nutrient uptake

Procedia PDF Downloads 8
62 The Use of Nano-Crystalline Starch in Probiotic Yogurt and Its Effects on the Physicochemical and Biological Properties

Authors: Ali Seirafi

Abstract:

The purpose of this study was to investigate the effect and application of starch nanocrystals on physicochemical and microbial properties in the industrial production of probiotic yogurt. In this study, probiotic yoghurt was manufactured by industrial method with the optimization and control of the technological factors affecting the probabilistic biomass, using probiotic bacteria Lactobacillus acidophilus and Bifidobacterium bifidum with commonly used yogurt primers. Afterwards, the effects of different levels of fat (1.3%, 2.5 and 4%), as well as the effects of various perbiotic compounds include starch nanocrystals (0.5%, 1 and 1.5%), galactolegalosaccharide (0.5% 1 and 1.5%) and fructooligosaccharide (0.5%, 1 and 1.5%) were evaluated. In addition, the effect of packaging (polyethylene and glass) was studied, while the effect of pH changes and final acidity were studied at each stage. In this research, all experiments were performed in 3 replications and the results were analyzed in a completely randomized design with SAS version 9.1 software. The results of this study showed that the addition of starch nanocrystal compounds as well as the use of glass packaging had the most positive effects on the survival of Lactobacillus acidophilus bacteria and the addition of nano-crystals and the increase in the cooling rate of the product, had the most positive effects on the survival of bacteria Bifidobacterium bifidum.

Keywords: Bifidobacterium bifidum, Lactobacillus acidophilus, prebiotics, probiotic yogurt

Procedia PDF Downloads 124
61 Genome-Wide Expression Profiling of Cicer arietinum Heavy Metal Toxicity

Authors: B. S. Yadav, A. Mani, S. Srivastava

Abstract:

Chickpea (Cicer arietinum L.) is an annual, self-pollinating, diploid (2n = 2x = 16) pulse crop that ranks second in world legume production after common bean (Phaseolus vulgaris). ICC 4958 flowers approximately 39 days after sowing under peninsular Indian conditions and the crop matures in less than 90 days in rained environments. The estimated collective yield losses due to abiotic stresses (6.4 million t) have been significantly higher than for biotic stresses (4.8 million t). Most legumes are known to be salt sensitive, and therefore, it is becoming increasingly important to produce cultivars tolerant to high-salinity in addition to other abiotic and biotic stresses for sustainable chickpea production. Our aim was to identify the genes that are involved in the defence mechanism against heavy metal toxicity in chickpea and establish the biological network of heavy metal toxicity in chickpea. ICC4958 variety of chick pea was taken and grown in normal condition and 150µM concentration of different heavy metal salt like CdCl₂, K₂Cr2O₇, NaAsO₂. At 15th day leave samples were collected and stored in RNA Later solution microarray was performed for checking out differential gene expression pattern. Our studies revealed that 111 common genes that involved in defense mechanism were up regulated and 41 genes were commonly down regulated during treatment of 150µM concentration of CdCl₂, K₂Cr₂O₇, and NaAsO₂. Biological network study shows that the genes which are differentially expressed are highly connected and having high betweenness and centrality.

Keywords: abiotic stress, biological network, chickpea, microarray

Procedia PDF Downloads 158
60 Arsenic Speciation in Cicer arietinum: A Terrestrial Legume That Contains Organoarsenic Species

Authors: Anjana Sagar

Abstract:

Arsenic poisoned ground water is a major concern in South Asia. The arsenic enters the food chain not only through drinking but also by using arsenic polluted water for irrigation. Arsenic is highly toxic in its inorganic forms; however, organic forms of arsenic are comparatively less toxic. In terrestrial plants, inorganic form of arsenic is predominantly found; however, we found that significant proportion of organic arsenic was present in root and shoot of a staple legume, chickpea (Cicer arientinum L) plants. Chickpea plants were raised in pot culture on soils spiked with arsenic ranging from 0-70 mg arsenate per Kg soil. Total arsenic concentrations of chickpea shoots and roots were determined by inductively coupled plasma-mass-spectrometry (ICP-MS) ranging from 0.76 to 20.26, and 2.09 to 16.43 µg g⁻¹ dry weight, respectively. Information on arsenic species was acquired by methanol/water extraction method, with arsenic species being analyzed by high-performance liquid chromatography (HPLC) coupled with ICP-MS. Dimethylarsinic acid (DMA) was the only organic arsenic species found in amount from 0.02 to 3.16 % of total arsenic shoot concentration and 0 to 6.93 % of total arsenic root concentration, respectively. To investigate the source of the organic arsenic in chickpea plants, arsenic species in the rhizosphere of soils of plants were also examined. The absence of organic arsenic in soils would suggest the possibility of formation of DMA in plants. The present investigation provides useful information for better understanding of distribution of arsenic species in terrestrial legume plants.

Keywords: arsenic, arsenic speciation, dimethylarsinic acid, organoarsenic

Procedia PDF Downloads 95
59 Economic of Chickpea Cultivars as Influenced by Sowing Time and Seed Rate

Authors: Indu Bala Sethi, Meena Sewhag, Rakesh Kumar, Parveen Kumar

Abstract:

Field experiment was conducted at Pulse Research Area of CCS Haryana Agricultural University, Hisar during rabi 2012-13 to study the economics of chickpea cultivars as influenced by sowing time and seed rate on sandy loam soils under irrigated conditions. The factorial experiment consisting of 24 treatment combinations with two sowing time (1st fortnight of November and 1st fortnight of December.) and four cultivars (H09-23, H08-18, C-235 and HC-1) kept in main plots while three seed rates viz. 40 kg ha-1, 50 kg ha-1 and 60 kg ha-1 was laid out in split plot design with three replications. The crop was sown with common row spacing of 30 cm as per the dates of sowing. The fertilizer was applied in the form of di- ammonium phosphate. The soil of the experimental site was deep sandy loam having pH of 7.9, EC of 0.13 dS/m and low in organic carbon (0.34%), low in available N status (193.36 kg ha-1), medium in available P2O5 (32.18 kg ha-1) and high in available K2O (249.67 kg ha-1). The crop was irrigated as and when required so as to maintain adequate soil moisture in the root zone The crop was sprayed with monocrotophos (1.25 l/ha) at initiation of flowering and at pod filling stage to protect the crop from pod borer attack. The yield was measured at the time of harvest. The cost of field preparation, sowing of seeds, thinning, weeding, plant protection, harvesting and cleaning contributed to fixed cost. The experiment was laid out in a split plot design with two sowing time (1st fortnight of November and 1st fortnight of December.) and four cultivars (H09-23, H08-18, C-235 and HC-1) kept in main plots while three seed rates viz. 40 kg ha-1, 50 kg ha-1 and 60 kg ha-1 were kept in subplots and replicated thrice. Results revealed that 1st fortnight of November sowing recorded significantly higher gross (Rs.1, 01,254 ha-1), net returns (Rs. 68,504 ha-1) and BC (3.09) ratio as compared to delayed crop of chickpea. Highest gross (Rs.91826 ha-1), net returns (Rs. 59076ha-1) and BC ratio (2.81) was recorded with H08-18. Higher value of cost of cultivation of chickpea was observed in higher seed rate than the lower ones. However no significant variation in net and gross returns was observed due to seed rates. Highest BC (2.72) ratio was recorded with 50 kg ha-1 which differs significantly from 60 kg ha-1 but was at par with 40 kg ha-1. This is because of higher grain yield obtained with 50 kg ha-1 seed rate. Net profit for farmers growing chickpea with seed rate of 50 kg ha-1 was higher than the farmers growing chickpea with seed rate of 40 and 60 kg ha.

Keywords: chickpea, cultivars, seed rate, sowing time

Procedia PDF Downloads 406
58 Assessing the Impact of Climate Change on Pulses Production in Khyber Pakhtunkhwa, Pakistan

Authors: Khuram Nawaz Sadozai, Rizwan Ahmad, Munawar Raza Kazmi, Awais Habib

Abstract:

Climate change and crop production are intrinsically associated with each other. Therefore, this research study is designed to assess the impact of climate change on pulses production in Southern districts of Khyber Pakhtunkhwa (KP) Province of Pakistan. Two pulses (i.e. chickpea and mung bean) were selected for this research study with respect to climate change. Climatic variables such as temperature, humidity and precipitation along with pulses production and area under cultivation of pulses were encompassed as the major variables of this study. Secondary data of climatic variables and crop variables for the period of thirty four years (1986-2020) were obtained from Pakistan Metrological Department and Agriculture Statistics of KP respectively. Panel data set of chickpea and mung bean crops was estimated separately. The analysis validate that both data sets were a balanced panel data. The Hausman specification test was run separately for both the panel data sets whose findings had suggested the fixed effect model can be deemed as an appropriate model for chickpea panel data, however random effect model was appropriate for estimation of the panel data of mung bean. Major findings confirm that maximum temperature is statistically significant for the chickpea yield. This implies if maximum temperature increases by 1 0C, it can enhance the chickpea yield by 0.0463 units. However, the impact of precipitation was reported insignificant. Furthermore, the humidity was statistically significant and has a positive association with chickpea yield. In case of mung bean the minimum temperature was significantly contributing in the yield of mung bean. This study concludes that temperature and humidity can significantly contribute to enhance the pulses yield. It is recommended that capacity building of pulses growers may be made to adapt the climate change strategies. Moreover, government may ensure the availability of climate change resistant varieties of pulses to encourage the pulses cultivation.

Keywords: climate change, pulses productivity, agriculture, Pakistan

Procedia PDF Downloads 0